Soft-diffraction with AFP

Oldřich Kepka Institute of Physics, Academy of Sciences, Prague

August 26th, 2013, CERN

Program of AFP

- 1) High luminosity
 - Hundreds of fb $^{-1}$, interactions / crossing = 50 100
- 2) Medium luminosity
 - Hundreds of pb⁻¹ (1-3 weeks of special running), interactions / crossing = up to 1
- 3) Low luminosities
 - < 1 pb⁻¹ (~1 day of special running) 10pb⁻¹ (3-4days*), interactions / crossing < 0.5
- 1) Exclusive production
- 2) Hard diffraction DPE, pomeron structure double tag timing needed
- 3) Soft diffraction, pA runs, SD (dijets/W/...) particle production, correlation, etc. (never discussed in much detail, assuming that AFP will join dedicated special runs together with other experiments)
 - * 2013 run- 600nb-1 in 5hours @ 2.76TeV
 - beta*=11, bunch intensity 1.5E11 ppb, 50ns bunch spacing, crossing angle 170 urad, mu=0.6

Low-mu program

- Luminosity of ~100nb⁻¹: millions of single tag and double tagged events
- Due to AFP acceptance, essentially high mass diffraction $0.015 < \xi < 0.13$
 - The low mass diffraction interesting (TOTEM shows 3 times higher cross section then models predict for $\xi < 10^{-7}$), but not in the acceptance
- Proton tagging information correlation with rapidity gaps in central detector
 - Limited, but some separation between single and double diffraction possible
- Essentially all the measurements of the soft particle activity that were done in ATLAS/CMS can be repeated after adding a proton tag requirement

Hard soft diffraction

- Hard diffraction described by Gribov-Regge theory triple-pomeron interactions
 - Super critical pomeron $\alpha(0) > 1$ has problems in high energy limit amplitudes violate unitary
 - Predicted diffractive cross section grows faster than Tevatron data
- Many theoretical approaches to resolve this
 - Modification of Pomeron-hadron vertex, renormalization or dumping of pomeron flux, resumation of enhanced Pomeron diagrams decrease pomeron intercept wrt to bare pomeron
- Measurement of diffractive cross section as a function of ξ and t will help to resolve this issue

Soft Diffractive Measurements

K. Goulianos, hep-ph/0407035

AFP acceptance: M²>4x10⁶ GeV²

• AFP 210 can resolve the problem of mass spectrum at large $\rm M_{x}$

- Unifying the description of 'soft' and 'hard' physics
- Need to run at different energies?

M.G Ryskin et al. arXiv:1102.2844v1

S. Ostapchenko, Phys.Rev.D81:114028,2010

Pythia 6 / 8

- Differences in the modeling of high xi region uncertainty ~ 30%
- Significant contribution of the non-diffractive and double diffractive events
- Forward physics community should aim at constraining the prediction (ALFA/TOTEM/AFP)
 - Particularly important to predict pile-up in forward detectors

Comparison of various contributions

 SD event with intrinsic intact protons tend to agree

 Big differences between the generators for DD and ND

Rapidity gaps

- A flat cross section as a function of rapidity gap size is the standard signature for diffraction.
- ATLAS measurement EPJC 72 (2012) 1926 exposed a likely too-large contribution from double diffractive events in PYTHIA.

- Repeated measurement + single proton-tagged data will unambiguously determine whether that was indeed the case.
 - One proton tag on same side as gap = SD
 - Two proton tags + gap = CD

Rapidity gaps in tagged events

- AFP restricts diffractive masses to be large Mx>1.7 TeV
- Consequently there is limited correlation seen for SD, gaps measured on the same side as intact proton
- Tagging suppresses ND contribution and DD contribution can be estimated, it has completely different shape

Charged particles in min-bias collision

 Repeat basic density measurements from the minbias studies in NJP. 13 (2011) 053033

$$\frac{1}{N_{\mathrm{ev}}} \cdot \frac{\mathrm{d}N_{\mathrm{ch}}}{\mathrm{d}\eta}, \quad \frac{1}{N_{\mathrm{ev}}} \cdot \frac{1}{2\pi p_{\mathrm{T}}} \cdot \frac{\mathrm{d}^{2}N_{\mathrm{ch}}}{\mathrm{d}\eta\mathrm{d}p_{\mathrm{T}}}, \quad \frac{1}{N_{\mathrm{ev}}} \cdot \frac{\mathrm{d}N_{\mathrm{ev}}}{\mathrm{d}n_{\mathrm{ch}}}$$

- Less activity due to reduced number of partonic interactions in proton
- Allows the first ever tune of the diffractive components in MC
 - Pythia 6 has an incorrect model of diffraction and will fail
 - Same tune parameters in Pythia 8 for proton tagged and non-proton tagged events?

Underlying event

- The classic Rick Field measurements: charged particle density perpendicular in azimuth to a hard object in the event. Most of the activity comes from multiple parton-parton scattering between spectator quarks/gluons in the protons
- If there is a forward proton, MPI must be reduced because an interaction would remove color from the proton and it would break up (soft-survival prob.)
 - Can have scattering between spectator partons in the pomeron
 - One proton tag will test MPI for pomeron-proton Interactions
 - Two tagged protons tests MPI in pomeron-pomeron interactions
- With more luminosity:
 - SD/CD: Dijet decorrelation in Δφjj
 - SD/CD: Four jets (MPI in diffraction)

Conclusion

- AFP is clearly as significant add-on for understanding QCD for ATLAS
 - On CMS side situation a bit more optimistic, TOTEM has already horizontal detectors, CMS is installing FWD shower counters $6<|\eta|<8$
- Data taking will be performed during low-mu runs where trigger prescales are not an issue
- Diffraction not so relevant for the central physics program (non-diffraction)
- But it is relevant for fwd physics and MC development (Pytha8, Herwig++, KMR in Sherpa, QGSJET, etc.)
- Measurements of hard diffraction will improve understanding of multiple scattering and merging description of 'soft' and 'hard' phenomena
- To theorists: Please help us, the experimentalists, to identify why it is important to make these measurements. Persuading the large LHC experiments to do these measurement is not easy.

Backup

Correlation analyses

- Azimuthal ordering of charged hadrons is sensitive to structure of hadronisation model
 - Diffractive events are less-hard and have less MPI
- Two particle correlations and forward/backward correlations are sensitive to long-range correlations
 - Diffractive processes has typically longer range correlations
- Events with one/two proton tags can provide even more data to investigate these correlations
- Bose-Einstein correlations have never been measured in diffractive events, but the BEC radius may be a factor of two smaller for DPE than ND

Forward protons

 AFP – proton taggers (206/214m) to measure position and time of arriving protons

- For increasing relative proton momentum loss $\xi \simeq (1-E/E_0)$ protons scatter outside the ring
- Acceptance large for 0.012 < ξ< 0.14
- d at 15σ : 2.3mm = 0.13x15 + 0.3 mm

Also Pomeron exchanges, exclusive gluon exchange, Pomeron-photon

Kinematics

- Acceptance large for $0.015 < \xi < 0.13$
- Good resolution in ξ , not so great resolution in p_{T}
- Tag protons in both stations to reconstruct mass (resolution ~ 1-2% depending on mass)
- Timing detectors, mass trigger at L1 from course bars (quart/diamonds)

