

Diffractive Z Analysis

Roberta Arcidiacono¹, Nicolò Cartiglia¹, <u>Diego Figueiredo</u>², A. Vilela² and A. Santoro²

¹ Torino - Italy

² UERJ - Brazil

Physics Motivation

excited proton: it can also break up of Y diffractive system.

Event Topology

single diffractive Z (inclusive)

Phase Space

Hard Analysis: as the M_z + X system is large, the gap is very forward.

Main Background: non diffractive

Drell-Yan process

Z Channels:

$$Z \rightarrow \mu^+ \mu^-$$

 $Z \rightarrow e^+ e^-$

CASTOR

-6.6 < η < -5.2

undetected particles in Inl < 5.2

Physics Motivation

> Another motivation: a beautiful event!

Eur. Phys. J. C72 (2012) 1839

"Forward Energy Flow, Central Track Multiplicities and Large Rapidity Gaps in W and Z Boson Events at 7 TeV pp Collisions"

at 7 TeV pp Collisions" Outline

- Monte Carlo dependent. Compare data with Pompyt, Pomheg and Pythia;
- >2010 CMS data with low pile-up has been analyzed with Castor calorimeter (-6.6 < η < 5.2);
- Maybe 2011 and 2012 CMS data;
- > Looking forward to use proton tagged detectors or special runs with low luminosity (2015). Plans for feasibility studies at simulation level.