
High-Mass Diffraction in Pythia (6 & 8)

• σdiff obtained from parametrizations (Schuler-Sjöstrand) ~ dM/M2 with 
exponential t slope, and fudge parameters

• 1) (1-M2/s) to kill distribution at edge of phase space. 2) Smeared-out enhancement in resonance region (no 
attempt to model individual resonances separately). 3) DD: Suppression for systems overlapping in rapidity.

• String fragmentation. Constrained by LEP, but diffraction is different. Could we constrain multiplicity 
distributions and momentum (x) spectra, identified-particle ratios (eg K/π, K*/K, p/π, 
Λ/p) directly in diffractive processes (as function of M)?

• P8: M>10 GeV (user-definable) modeled as Pomeron-proton collision

• M and t distribution depends on Pomeron flux: several parametrizations

• MPI allowed inside Pomeron-proton system (amount depends on σPp)

• Default σPp ~ 10 mb (larger than nominal value of 2 mb, which would give too much activity). Perceive as 
effective parameter that lumps together many effects. Includes gap survivial.

• Gap always survives (no MPI involving Pomeron’s p remnant)

• To constrain, need data on event shapes in diffractive events, such as multiplicity 
distributions, UE in diffractive jets. (Still useful if only in restricted fiducial regions.)

• Colour reconnections can mimic large gaps, but now without constraint of 
no net quantum number transfer → measurable?
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The couplings ⇥AIP are related to the pomeron term XABs⌅ of the total cross section
parameterization, eq. (112). Picking a reference scale

'
sref = 20 GeV, the couplings are

given by ⇥AIP⇥BIP = XAB s⌅
ref . The triple-pomeron coupling is determined from single-

di⌦ractive data to be g3IP � 0.318 mb1/2; within the context of the formulae in this
section.

The spectrum of di⌦ractive masses M is taken to begin 0.28 GeV � 2m↵ above the
mass of the respective incoming particle and extend to the kinematical limit. The simple
dM2/M2 form is modified by the mass-dependence in the di⌦ractive slopes and in the Fsd

and Fdd factors (see below).
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Here � = 0.25 GeV�2 and conventionally s0 is picked as s0 = 1/� . The term e4 in Bdd is
added by hand to avoid a breakdown of the standard expression for large values of M2

1 M2
2 .

The bA,B terms protect Bsd from breaking down; however a minimum value of 2 GeV�2

is still explicitly required for Bsd, which comes into play e.g. for a J/◆ state (as part of a
VMD photon beam).

The kinematical range in t depends on all the masses of the problem. In terms of
the scaled variables µ1 = m2
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The Regge formulae above for single- and double-di⌦ractive events are supposed to
hold in certain asymptotic regions of the total phase space. Of course, there will be
di⌦raction also outside these restrictive regions. Lacking a theory which predicts di⌦eren-
tial cross sections at arbitrary t and M2 values, the Regge formulae are used everywhere,
but fudge factors are introduced in order to obtain ‘sensible’ behaviour in the full phase
space. These factors are:

Fsd =

�

1� M2

s

 �

1 +
cres M2

res

M2
res + M2

 

,

Fdd =

�

1� (M1 + M2)
2

s

 �
sm2

p

sm2
p + M2

1 M2
2

 

⇤
�

1 +
cres M2

res

M2
res + M2

1

 �

1 +
cres M2

res

M2
res + M2

2

 

. (120)

The first factor in either expression suppresses production close to the kinematical limit.
The second factor in Fdd suppresses configurations where the two di⌦ractive systems
overlap in rapidity space. The final factors give an enhancement of the low-mass region,
where a resonance structure is observed in the data. Clearly a more detailed modelling
would have to be based on a set of exclusive states rather than on this smeared-out
averaging procedure. A reasonable fit to pp/pp data is obtained for cres = 2 and Mres =
2 GeV, for an arbitrary particle A which is di⌦ractively excited we use MA

res = mA�mp +
2 GeV.

The di⌦ractive cross-section formulae above have been integrated for a set of c.m.
energies, starting at 10 GeV, and the results have been parameterized. The form of
these parameterizations is given in ref. [Sch94], with explicit numbers for the pp/pp case.
Pythia also contains similar parameterizations for �p (assumed to be same as �p and
p), ⌘p, J/◆p, �� (�� etc.), �⌘, �J/◆, ⌘⌘, ⌘J/◆ and J/◆J/◆.

The processes above do not obey the ordinary event mixing strategy. First of all,
since their total cross sections are known, it is possible to pick the appropriate process
from the start, and then remain with that choice. In other words, if the selection of
kinematical variables fails, one would not go back and pick a new process, the way it
was done in section 7.4.4. Second, it is not possible to impose any cuts or restrain
allowed incoming or outgoing flavours; especially for minimum-bias events the production
at di⌦erent transverse momenta is interrelated by the underlying formalism. Third, it is
not recommended to mix generation of these processes with that of any of the other ones:
normally the other processes have so small cross sections that they would almost never be
generated anyway. (We here exclude the cases of ‘underlying events’ and ‘pile-up events’,
where mixing is provided for, and even is a central part of the formalism, see sections 11.2
and 11.5.)

Once the cross-section parameterizations has been used to pick one of the processes,
the variables t and M are selected according to the formulae given above.

A �0 formed by ⇤ ⇣ �0 in elastic or di⌦ractive scattering is polarized, and therefore
its decay angular distribution in �0 ⇣ �+�� is taken to be proportional to sin2 ⌥, where
the reference axis is given by the �0 direction of motion.

A light di⌦ractive system, with a mass less than 1 GeV above the mass of the in-
coming particle, is allowed to decay isotropically into a two-body state. Single-resonance
di⌦ractive states, such as a ⇥+, are therefore not explicitly generated, but are assumed
described in an average, smeared-out sense.

A more massive di⌦ractive system is subsequently treated as a string with the quantum
numbers of the original hadron. Since the exact nature of the pomeron exchanged between
the hadrons is unknown, two alternatives are included. In the first, the pomeron is
assumed to couple to (valence) quarks, so that the string is stretched directly between the
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The fudge factors are:


