FROM RESEARCH TO INDUSTRY

The SamPic readout chip

Phd Thesis work supervised by E. Delagnes and C.Royon

LHC Working Group on Forward Phhysics and Diffraction | Hervé Grabas

27 AUGUST 2013

INTRO: MEASURE PICOSECOND TIME OF FLIGHT IN PARTICLE DETECTORS

PILE-UP SUPPRESSION

TIME MEASUREMENT

TIME EXTRACTION

Single threshold

Advantage of simplicty. Poor results

Multiple threshold

Basically interpolation on the rising edgel.

Constant fraction

Complicated hardware.
Relatively good precision.

Sampling

All digital algorithm possible: Mean square, Crosscorrelation, ...

TIME DELAY ESTIMATORS

- Normalized cross-correlation
- $c[k] = \frac{\sum_{0}^{N-1} s[i] \times t[i-k]}{\sqrt{\sum_{0}^{N-1} s[i]^2 \times \sum_{0}^{N-1} t[i]^2}} \ k \in [-N+1..N-1]$
- Sum of absolute difference
- $a[k] = \sum_{i=0}^{N-1} |s[i] t[i-k]| \ k \in [-N+1..N-1]$

• Least mean squares

$$l[k] = \sum_{i=0}^{N-1} (s[i] - t[i-k])^2 \ k \in [-N+1..N-1]$$

WHY SAMPLING?

SPS CERN test beam – October 2012

WHY HIGHER BANDWIDTH?

THE SAMPIC CHIP

INTRODUCTION

SamPic is a CMOS chip designed to read the forward timing detectors of ATLAS. **Sampler** for **Pic**osecond time pick-off.

R&D financed by P2IO

Goals:

- Technology evaluation (IBM 0.18μm)
- Tests of design choices (DLL & SCA architecture)
- Simultaneous Read&Write
- Creating a multi-channel chip easily integrable in large-scale experiments (ATLAS).

CEA | 27 AUGUST 2013 | PAGE 10

PRINCIPLE AND TRESHOLD DETECTION

Detection of 'Event of interest' above threshold.

- Adjustable threshold (DAC).
- Pulse polarity (rising or falling edge).
- Additional post-trigger delay.

SAMPLING AND COARSE TIME ESTIMATION (TDC)

Sampling & time-stamping.

- 64 points from 1 to 10Gs/s.
- TDC 18 bits 100ps precision.

ADC CONVERSION AND REGION OF INTEREST READOUT

Conversion and readout.

- Wilkinson 11 bits 2GHz.
- Region of interest readout LVDS 400MHz.

READOUT DATA STRUCTURE

Priority token readout between the 16 channels.

- If channels 2, 5 and 15 are hit they will be sequentially read, until no more available data.
- Process transparent to the user.

Structure of readout data.

SPECIFIC FEATURES OF SAMPIC

- Internal discriminators on all channels (with indiv. thresholds).
- 64 fully recorded samples (no dead zone).
- High bandwidth design.
- Reset before write (ghosts pulses removal).
- Gray code ADC conversion (limitation of metastability errors).
- Wide sampling range (Fast and Slow DLL modes).
- Fully configurable by serial link.

RESULTS & PERFORMANCES

THE ACQUISITION BOARD (LAL)

CEA | 27 AUGUST 2013 | PAGE 17

THE ACQUISITION SOFTWARE (LAL)

- 5V voltage supply 1Amp.
- USB Ethernet Fiber Optic readout.
- Windows PC with LAL USB DLLs (easy: .exe 5min install).

GUI – EASY CONFIGURATION AND MONITORING

EXAMPLE OF FEATURE: PEDESTAL CALIBRATION

- Simple graphic interface for all calibrations.
- Calibration parameters loaded automatically at start-up.
- Pedestal & Fix pattern sampling time tess Seconds jitter correction.

OTHER SOFTWARE CAPABILITIES

- Save data to file.
- Noise measurements.
- Sampling time jitter measurements.
- Sampling frequency modification.
- Single event Continuous Finite Hit number Finite time acquisition mode.
- Time measurement Charge measurement mode.
- DLL jitter monitoring.
- Hit rate monitoring.
- On-board internal pulsers for calibrations.
- Any other requirements, ...

SAMPIC DOCUMENTATION

SAMPIC PERFORMANCES

SAMPIC NOISE MAP

- Noise floor at 1mV for input dynamic of 1V.
- Noisiest cell are at 1.3mV
- Result with no shielding nor filtering applied.
- RF shielding and better insulation will improve things.

BANDWIDTH AND TRIGGER

Bandwidth

- Measurements show 1.5GHz 3db-bandwidth in all channels.
- Bandwidth is uniform over all 64x16 cells.
- No resonance peak.

Trigger

- All internal triggers functional.
- Adjustable threshold per channel.
- Adjustable delay per channel.
- External trigger for selected channels possible.

POST TRIGGER

3 post-trig modes

- No delay
- 800ps delay
- 1.6ns delay

DLL STABILITY AND NON-LINEARITY CORRECTIONS

QUALITY OF SAMPLING

1GHz sinewave 64 samples 'out of the box' (pedestal cal. only) @ 10Gs/s. 64 usable data points.

Will improve with DNL calibration.

Will improve with linearity corrections.

HITS – CONVERSION & READOUT RULES

The SamPic rules for Hits - Conversion & Readout

- Rule 1. All SamPic channels that are not triggered are tacking data.
- Rule 2. All triggered channels that are not holding data to read are converted **simultaneously**. User activated.
- Rule 3. All converted channels are readout **sequentially**. User activated.

HIT RATE

Maximum SamPic Hit rate:

- 1µs for conversion
- 2.5ns/word read (min 20ns max 170ns x 16).
- SamPic can take data during read sequence.
- Hit rate does not vary if int. or ext trigger used.
- Currently software limited!
- Acquisition board is Optic fiber ready and Ethernet ready

DÉTAIL D'UNE STRUCTURE: LA DLL

Le rôle de la DLL est de définir les instants d'échantillonages $t_1, t_2, ..., t_{64}$ dans SamPic.

CEA | 27 AUGUST 2013 | PAGE 32

SAMPIC CHARACTERISTICS

	Measure
Channel number	16
Input bandwidth	1.5 GHz
Sampling frequency	1 - 10GHz
ADC precision	11bit
Noise	1mV
Range	1V
Conversion time	1μs
Readout clock	400MHz max. (* not verified)
Readout time	2.5ns/word+ header x nb of channels

LAYOUT

CEA | 27 AUGUST 2013 | PAGE 40

THE SAMPIC CHIP

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Saclay | 91191 Gif-sur-Yvette Cedex T. +33 (0)1 XX XX XX XX | E +33 (0)1 XX XX XX XX Direction DSM
Département IRFU
Service SEDI