

Joint ESE/DT Seminar, CERN – 24.6.2014

CERN-PH Irradiation Facilities

Federico Ravotti

CERN PH/DT, Irradiation Facilities Team

(Mar Capeans Garrido, Richard Fortin, Roberto Guida, Blerina Gkotse, Maurice Glaser, Martin Jaekel, Pedro Lima, Gilles Maire, Michael Moll)

... presenting the work of many contributors to the **East Area Upgrade** and **GIF**⁺⁺ construction projects at CERN EN holds the overall projects leadership

Core teams:

EA Upgrade Project: D. Brethoux, R. Froeschl, L. Gatignon, M. Lazzaroni, et al.
 R2E Project: M. Brugger & J. Mekki, et al.
 GIF⁺⁺ Project: B. Biskup, I. Efthymiopoulos, A. Fabich, S. Girod, D. Pfeiffer, et al.

CERN groups:

EN-MEF and **EN-STI** (core teams), **HSE** and **EN-HDO** (Projects Safety), **DGS-RP** (op. RP and sources), **EN-CV** (EA-IRRAD ventilation), **EN-HE** (exp. areas transports), **GS-ASE** (access control), **BE-BI** and **TE-CRG** (EA-IRRAD cryogenic system), ...

Summary

Introduction

- definitions, history, requirements for LHC upgrade, type of facilities at CERN
- **Overview (and evolution) of Irradiation Facilities at CERN**
- PS East Area Irradiation Facilities (EA-IRRAD)
 - New IRRAD Proton Facility
 - New CHARM Mixed-Field Facility
- Gamma Irradiation Facilities
 - GIF
 - <u>New GIF</u> at the SPS North Area (GIF⁺⁺)
- Other Irradiation Facilities at CERN (relevant for detectors/electronics)
 - New <u>CC60</u>
 - CERF
 - others on CERN site

Irradiation results data

Summary

Irradiation Facilities: what for ?

Radiation damage studies

- on materials used around accelerators/experiments (cables, glues, ...)
- on semiconductor devices (silicon diodes, detectors, ...)
- on electronic components (transistors, memories, COTS, ASIC, ...)
- on materials / accelerator components exposed to high-intensity pulsed beams (collimators, absorbers, ...)

- Test and development of prototypes / final assemblies / electronic equipment before installation
 - performance degradation after long exposure/ageing (TID, NIEL, ...)
 - functional degradation of electronics (SEU, latch-up, ...)
 - performance evaluation under background conditions ("noise")
- **Test and calibration of components**
 - dosimeters, radiation monitoring / measurement devices
 - provide benchmark data for Monte Carlo particle transport codes

- specific

Irradiation Facility vs. Test Area

"A properly performed irradiation TEST is an EXPERIMENT in itself !"

What a **FACILITY** (should) provide to perform irradiation experiments:

Deliver the desired beam

- on-demand (not parasitic) with required intensity, beam spot, time structure, ...
- □ Knowledge and control the radiation environment
 - well-defined and simulated spectra, in-situ dosimetry, proper shielding, ...

Access conditions regulated

• pre-test documentation, preparation/optimization, dry-runs, logs, traceability of material, ...

Services

• remote handling tools, storage area, qualified lab, flexible infrastructure (gas, cooling), ...

Final product: make scientific results available to the community

• document and spread out the knowledge; results databases

Address RP issues from the beginning: <u>radioactive waste</u>, doses, ... !

Irradiation test locations which are not fulfilling the above requirements (ad-hoc tests, parasitic use of beam, ...) are referred as <u>TEST AREAs</u>

Facilities at CERN (short history ...) (AIDA

end of 2012

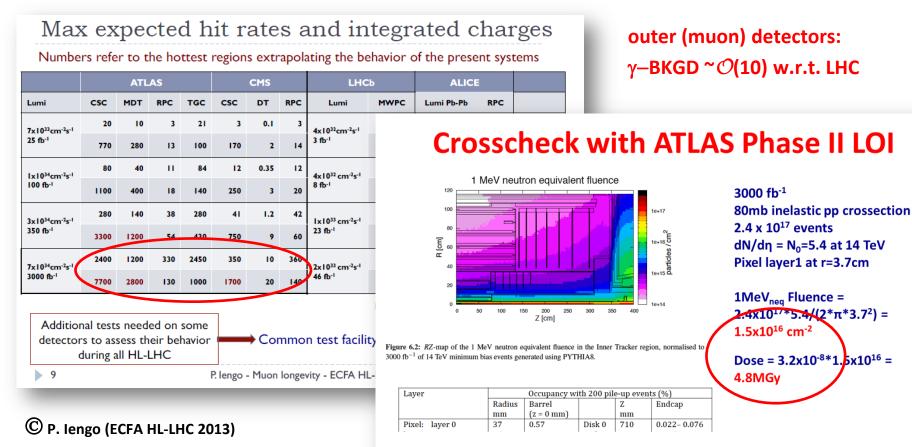
this Talk ...

today

'70-'80: irradiations mainly for damage studies on accelerator materials

- commercial sources, experimental reactor; damage data compilations
- □ '90-'00: suitable locations (= "test areas") at CERN for LHC and its HEP Expt.
 - examples: PSAIF, CERF, IRRAD1, IRRAD2, TCC2, TT40, ...

□ '00-'12: some dismissed / consolidated "facilities" / fulfil temporary needs


examples: TCC2, ... / CERF, GIF, IRRAD, ... / CNRAD, ...

□ '08-'10: WG on "Future irradiation facilities at CERN"

- CERN-wide coherent approach towards future upgrades (HL-LHC)
- http://www.cern.ch/irradiation-facilities/
- Conclusion: need for 4 different types of facilities
- □ '11-'14: implementation phase
 - Before LS1: HiRadMat
 - **During LS1:** EA-IRRAD (IRRAD + CHARM), GIF⁺⁺, ...

Upgrade Requirements (Experiments) AIDA

Radiation levels on detectors/electronics for LHC phase II upgrade

inner detectors (trackers): > 10¹⁶ 1MeV_{neq}/cm²

ERN

PH DT

The predictions for the maximum 1MeV-neq fluence and ionising dose for 3000fb^{-1} in the pixel system is $1.4 \times 10^{16} \text{cm}^{-2}$ and 7.7 MGy at the centre of the innermost barrel layer. For the

04/06/2014

W. Riegler, CERN

F. Ravotti - Joint ESE/DT Seminar, CERN – 24.6.2014 C W. Riegler (TIPP 2014)

6

Upgrade Requirements (Accelerators) AIDA

Testing of electronics equipment in "real" representative conditions

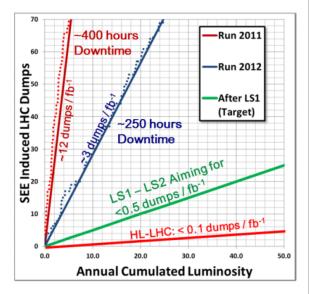
Mixed-Beam Facilities

Advantages:

РН

FRN

- Particle/Energy spectrum 'trimmed' to actual application
- **High-Energy tail of spectrum** (important for SEL, etc...) 0
- **Big volumes** (also many components at the same time!)
- Complete system tests "easily" possible 0
- **On-site (CERN)**, "easy" access ଡ
- **Combined effects:** parallel study of TID/DD/SEE @
- All required services can be pre-installed ଡ
- **Detailed monitoring** adopted for mixed-field requirements

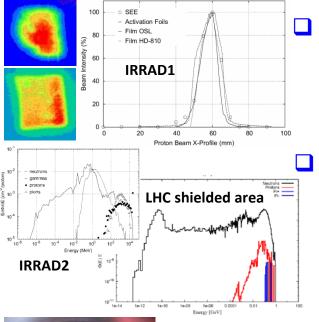

Reduce LHC downtime \rightarrow

R2E Mitigation Project – Radiation Tests & Facilities 15	February 1 st 2012
© М. Brugger (EA-Day, 1 st February 2012)	 Downstream of proton irradiation facility
C R. Froeschl (SATIF 12 Conference)	R. Froeschl, M. Brugger, S. Roesler (CERN) – SATIF 12

Evaluate (mainly SEE) tolerance of commercial electronics:

- broad ("ad-hoc") spectrum
- dedicated (large) space
- pre-installed services
- variable intensity

イロト イポト イヨト イヨト CERN High Energy Accelerator Mixed Field (CHARM) 3


Sac

F. Ravotti - Joint ESE/DT Seminar, CERN – 24.6.2014

Facilities / Test Areas @ CERN

© A. Bertarelli

(AMAT 2014)

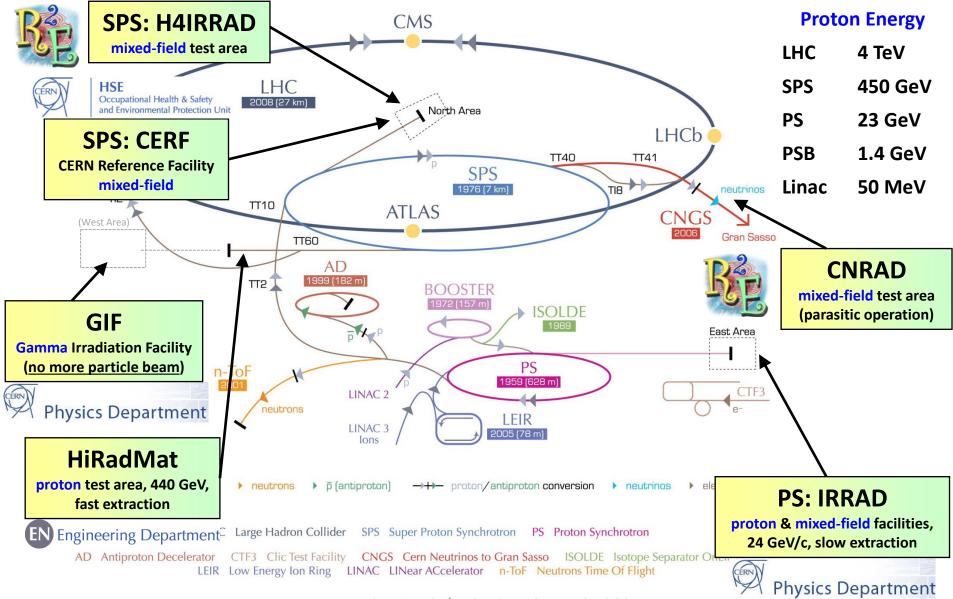
Mono-En. charged hadron beams (slow extraction)

- radiation field similar to **experiments inner detectors** (π)
- study of basic mechanisms; physics of damaging processes

Mixed-field radiation environments (slow extraction)

- mimic radiation field within experiments / accelerators
 regions: tunnel & partially shielded areas (n⁰, γ, HEH)
- SEE studies; calibration of radiation monitors

High-energy (-density) pulsed proton/ion beams


- impact of intense pulsed beam on materials
- study of LHC collimators & absorbers
- γ- (X-)photon "beams"
 - accelerated TID tests; simulate detectors background
 - ageing studies; detector tracking performance

CERN Irradiation Facilities until 2012 AIDA

CÉRN

PH DT

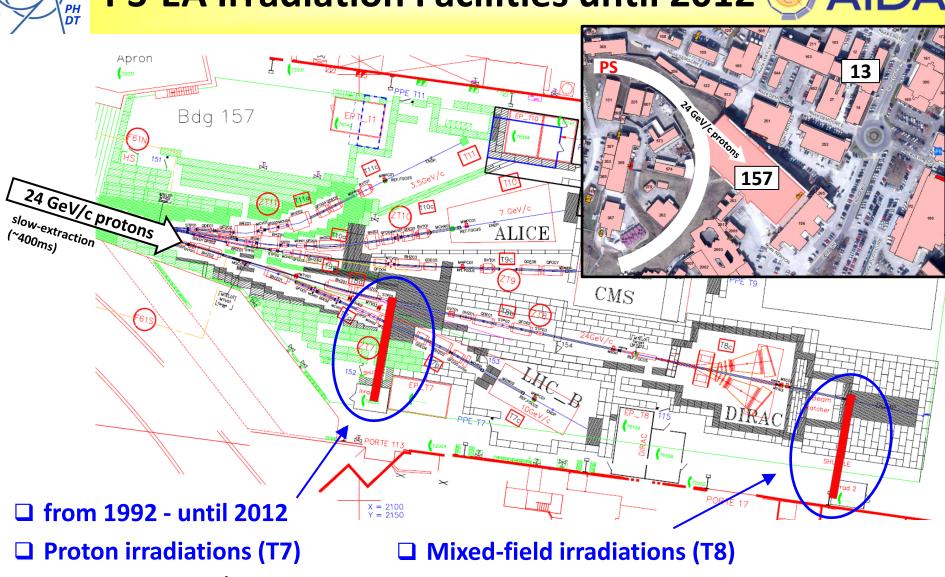
F. Ravotti - Joint ESE/DT Seminar, CERN – 24.6.2014

CERN Irradiation Facilities from 2014

CÉRN

PH DT

F. Ravotti - Joint ESE/DT Seminar, CERN – 24.6.2014

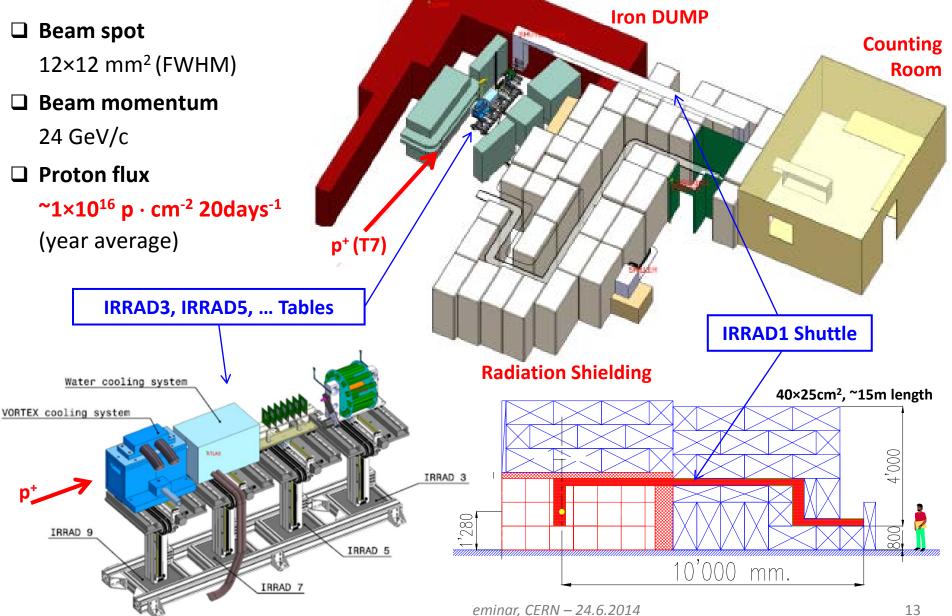


Joint ESE/DT Seminar, CERN – 24.6.2014

New PS EA-IRRAD Facility

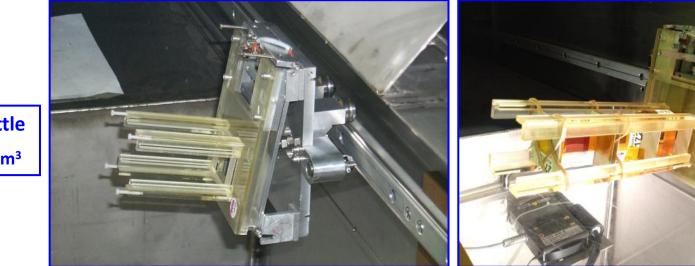
PS-EA Irradiation Facilities until 2012 O AIDA

Primary 24 GeV/c proton beam (IRRAD1, IRRAD3, IRRAD5, ...)


CERN

Mixed field produced in cavity after
 C (50cm) - Fe (30cm) - Pb (5cm) 'target' (IRRAD2)

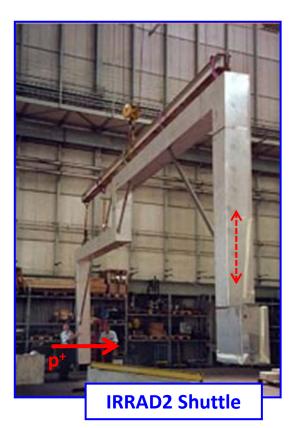
Proton Irradiation Facility (2012)

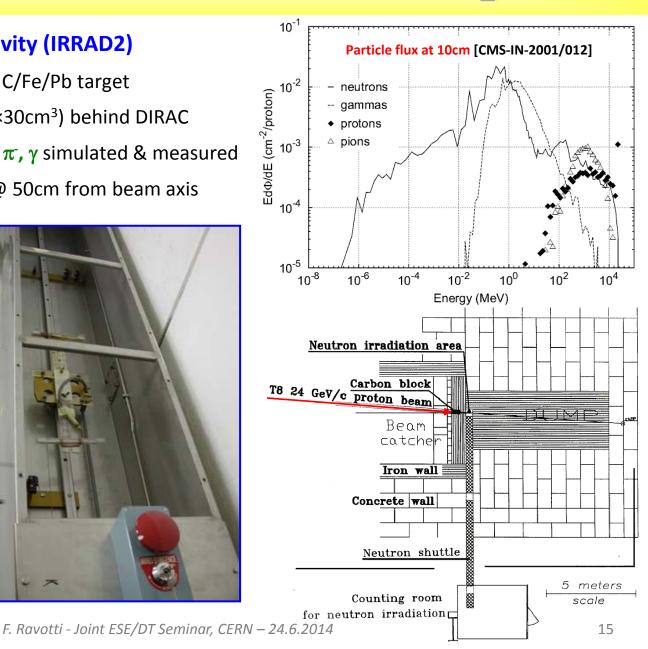



IRRAD1 Shuttle & IRRADx Tables

IRRAD1 Shuttle V_{max}=5×5×15cm³

IRRAD3 & IRRAD7 Tables V_{max}=20×20×50cm³ scanning over surface


F. Ravotti - Joint ESE/DT Seminar, CERN – 24.6.2014

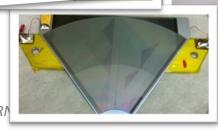

Mixed-field Irradiation Facility (2012) 🛞 AIDA

Secondary particles in a cavity (IRRAD2)

- 24 GeV/c proton beam on a C/Fe/Pb target
- Small volume (max ~30×30×30cm³) behind DIRAC
- Spectrum & flux of **n**, p^+ , π^+ , π^- , γ simulated & measured
- ~1×10¹³ n_(E>1MeV) cm⁻² 5d⁻¹ @ 50cm from beam axis

Past Irradiation Experiments

IRRAD facilities in numbers ...


- from 1999 to 2012 (no beam in 2005)
- more than <u>8300</u> "pieces" irradiated (~650 per year)!
- about <u>5800</u> dosimeters (Al foils) measured!

Statistics for 2012 ...

- from 20 institutes belonging to several experiments/projects
- main users: ATLAS, CMS, LHCb, ALICE, RD39, RD50, LHC (BE and TE)
- 649 objects irradiated
- 358 dosimeters measured
- 223 days of beam time (~8.5×10¹⁶ protons delivered to IRRAD)

© IRRAD user community!

Drawbacks & Shortcomings

(of the old facilities / test areas with respect to future needs)

Proton IRRAD Facility

- Located in primary radiation area (limited access: stop all beam lines of East Area for access)
- Limited space (ALARA, difficult to scan beam over big objects, backscattered particles)
- Limited flux of primary protons (weakness of the shielding)
- Safety standards to be improved!

Mixed-field IRRAD Facility (behind DIRAC)

- No irradiation positions lateral to target (missing an important 'particle mix' component)
- <u>Limited intensity</u> (present flux not interesting for inner detector community)
- Too little space and limited accessibility (access only via shuttle system!)
- Parasitic to DIRAC operation
 - IRRAD Facilities were located in different beam lines: <u>competing for beam!</u>

Mixed-field H4IRRAD/CNRAD Test Areas

- CNRAD not operational after 2012
- Limited accessibility ("ad-hoc installations", lack of flexibility, access required shielding removal)
- Limited control on beam intensity

Towards a new EA Irradiation Facility 🛞 AIDA

2012: CERN management agrees on EA facilities upgrade

- CERN-EN is charged and funded to design and construct the irradiation beam line in the framework of the **EA renovation plan during LS1** (PL: *Lau Gatignon*)
- CERN-PH through AIDA EU FP7-founded project (Task 8.3)
- 19 Nov. 2012: first technical meeting on upgrade
 - R2E project (LHC machine): Mixed-field facility & infrastructure design
 - CERN-PH & AIDA: Proton facility & infrastructure design
- **26 Nov. 2012: last day of operation for the DIRAC experiment**
- **2013:** Dismantling (DIRAC & old IRRAD facilities); beginning of construction
 - Involvement of teams from EN, PH, DGS-RP, ...

2014: End of construction, equipment and commissioning of new facilities

- First irradiation experiments toward end of the year
 - R2E project: <u>Cern High-energy AcceleRator Mixed-field facility (CHARM)</u>
 - CERN-PH & AIDA: proton IRRADiation facility (IRRAD)

Decommissioning (2013)

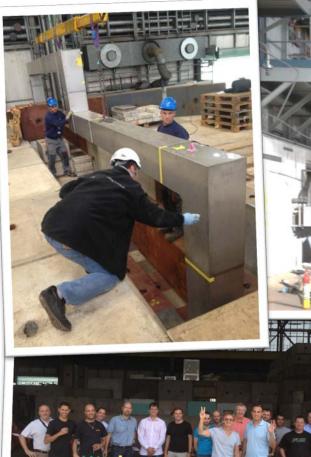
T7 roof open

T8 roof open

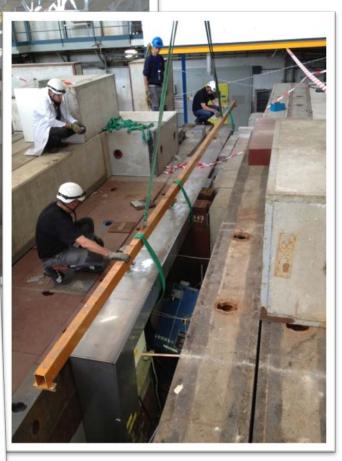
T7b area dismounted Removal of DIRAC experimental

equipment

. Ravotti - Joint ESE/DT Seminar, CERN — 24



Decommissioning (2013)



IRRAD2 Shuttle (April)

IRRAD1 Counting Rooms (May)

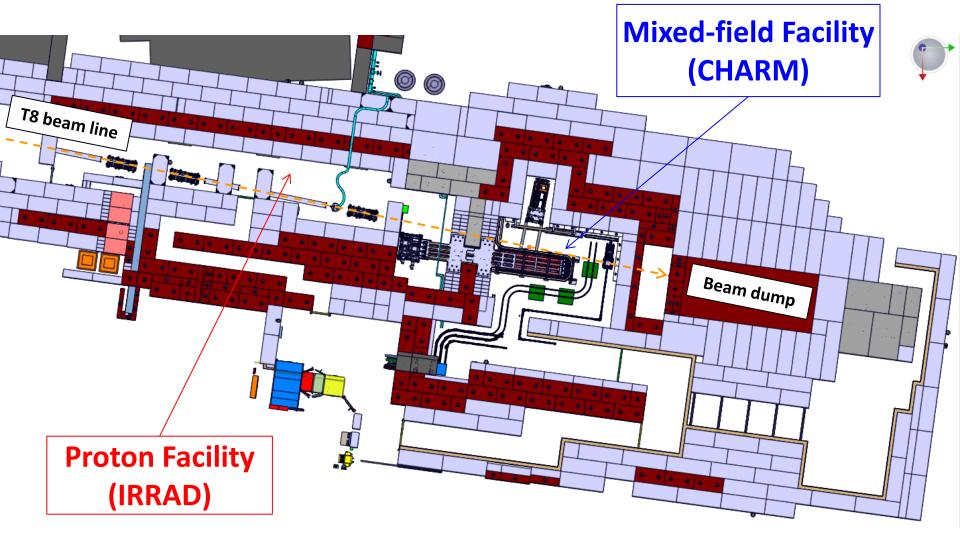
IRRAD1 Shuttle (June)

F. Ravotti - Joint ESE/DT Seminar, CERN – 24.6.2014

Decommissioning (2013)

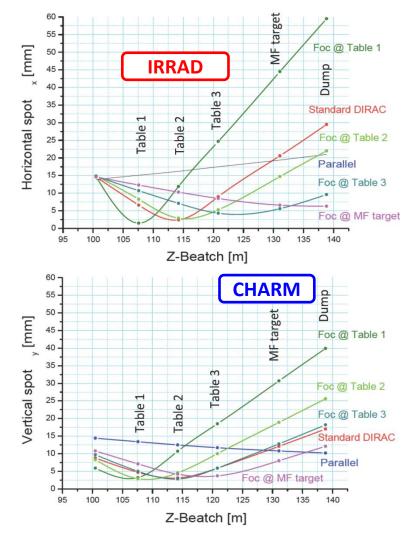
F. Ravotti - Joint ESE/DT Seminar, CERN – 24.6.2014

OLD East Area Layout



NEW East Area IRRAD Layout

 ${igodol C}$ drawings provided by EN-MEF

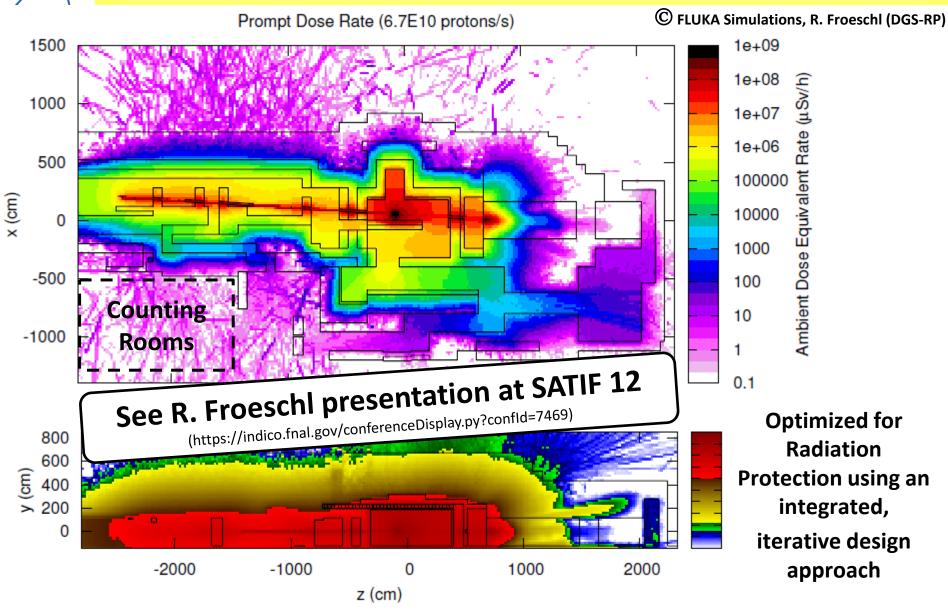


Beam dimensions

- several optic variants possible on T8
- standard size: 12x12 mm² (FWHM)
- spot size from 5x5 mm² to 20x20 mm² (FWHM)

Beam intensity (estimations)

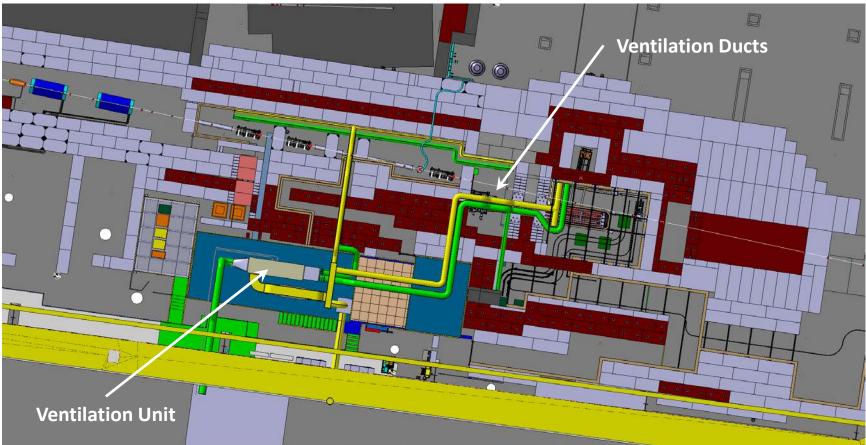
- p⁺ are delivered in "spills" of ~5×10¹¹ p
- number of spills/frequency depends on CPS
- Typical CPS from 2014: 30s
- Typical figures (High Intensity): 3 spills per CPS
 - ~1 × 10¹⁶ p cm⁻² 5days⁻¹ (12x12 mm² FWHM)
 - <u>~4x more than the old facilities</u>
- Design figures (maximum): 6 spills per CPS
 - ~1 × 10¹⁷ p cm⁻² 4days⁻¹ (5x5 mm² FWHM)


C L. Gatignon, preliminary calculations (EDMS 1270807) Here dimensions are mm (RMS)

ERN

IRRAD Facility Design

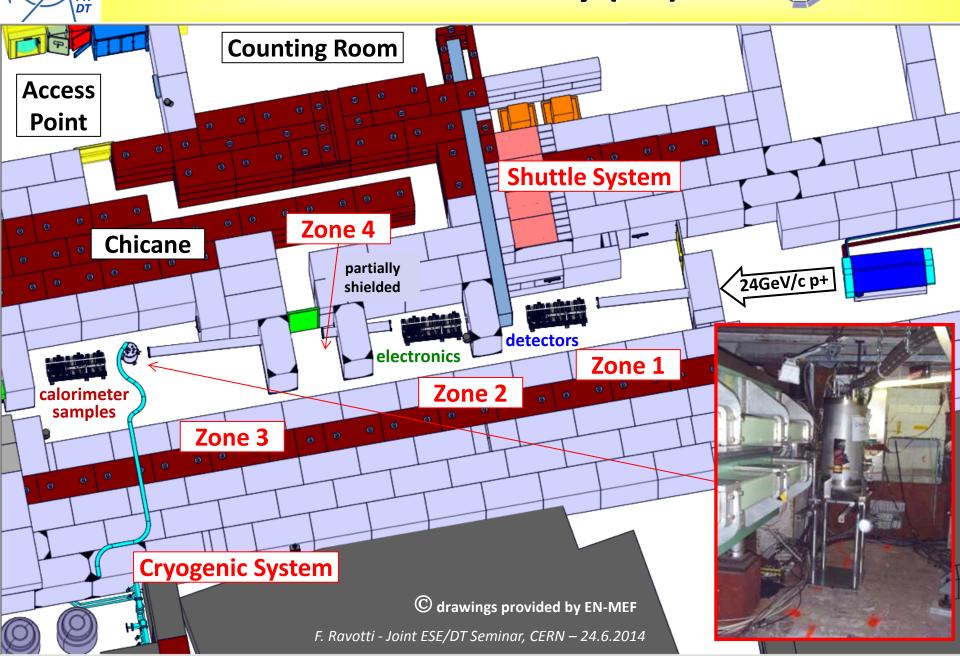
F. Ravotti - Joint ESE/DT Seminar, CERN – 24.6.2014


Ventilation System

□ Ventilation system (CERN EN/CV)

- area confinement (under-pressure) for air activation, ozone formation, temp. control, etc.
- air re-circulated during operation (through filters) and flushed before access
- integration of ducts through the shielding:

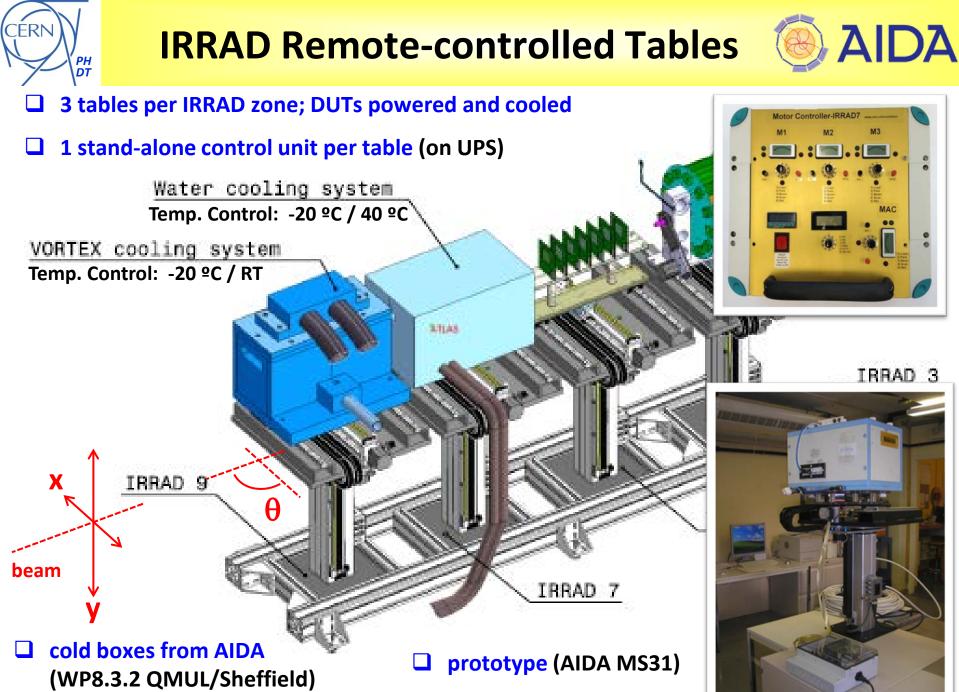
 ${igodol C}$ drawings provided by EN-MEF



Proton IRRAD Facility (PH)

CÉRN

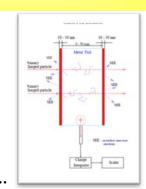
PH

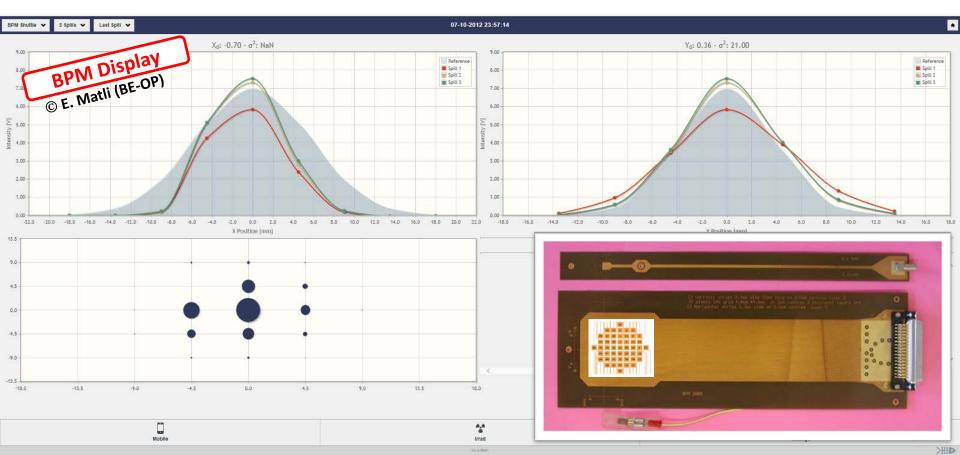

Proton IRRAD Shuttle System

mainly "passive" samples

possibility to
 irradiate
 samples under
 bias

F. Ravotti - Joint ESE/DT Seminar, CERN – 24.6.2014




F. Ravotti - Joint ESE/DT Seminar, CERN – 24.6.2014

IRRAD Beam Instrumentation & DAQ

- New Beam Position Monitors (Metal Foil Detectors)
- New Web-application
 - display Beam Profile Monitor data (for IRRAD users and CERN CCC)
 - new database for data storage (ORACLE); can display multiple BPM devices
 - flexible display also for other IRRAD data: SEC counters, table/shuttle positions, T., ...

"CryoBLM" Setup

Setup for irradiation in cryogenic conditions (1.8K/4.2K)

- clone of the system used for "CryoBLM" (BE-BI) experiment in 2012
- cryogenic line "embedded" in the shielding; bigger cryostat

Cryogenic system operated by TE-CRG

- manual refilling; dewar outside rad. area
- installed on a movable irradiation table

Past installation - overview

- P&I Diagram
 - > Manual refilling
 - > Temperatures between 1.8 K and 4.2 K

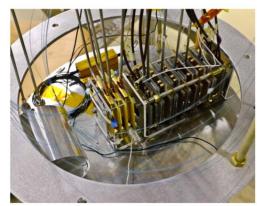
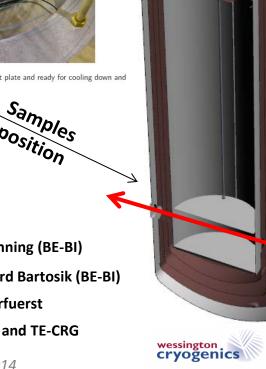
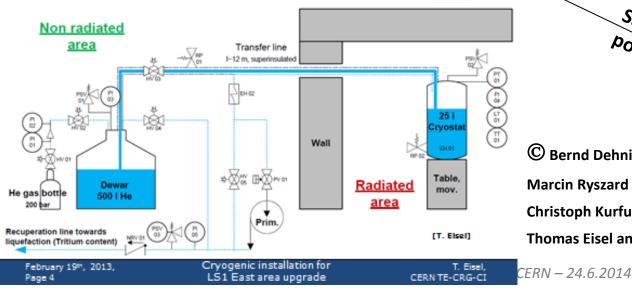
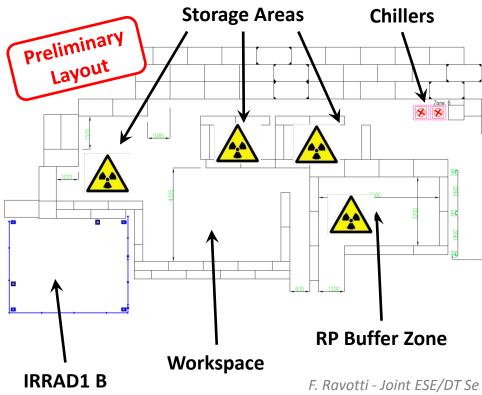
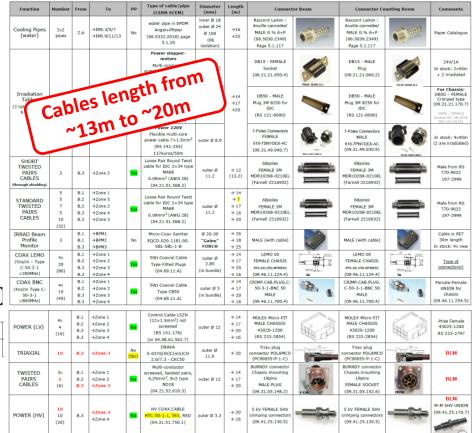




Figure 6.16: Detector modules mounted on the support plate and ready for cooling down and irradiating.

C Bernd Dehning (BE-BI) Marcin Ryszard Bartosik (BE-BI) **Christoph Kurfuerst Thomas Eisel and TE-CRG**

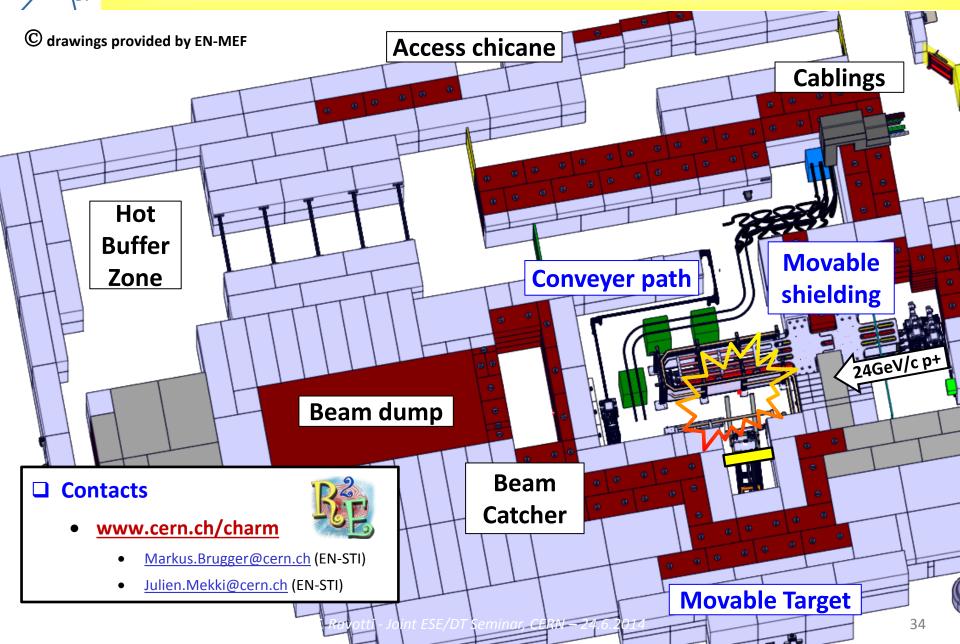



Proton IRRAD Infrastructure

Storage area

- shielded zones for cool-down and storage at room and low temperature of IRRAD (and CHARM) irradiated equipment
- workspace to handle and perform (setup) measurements on irradiated equipment

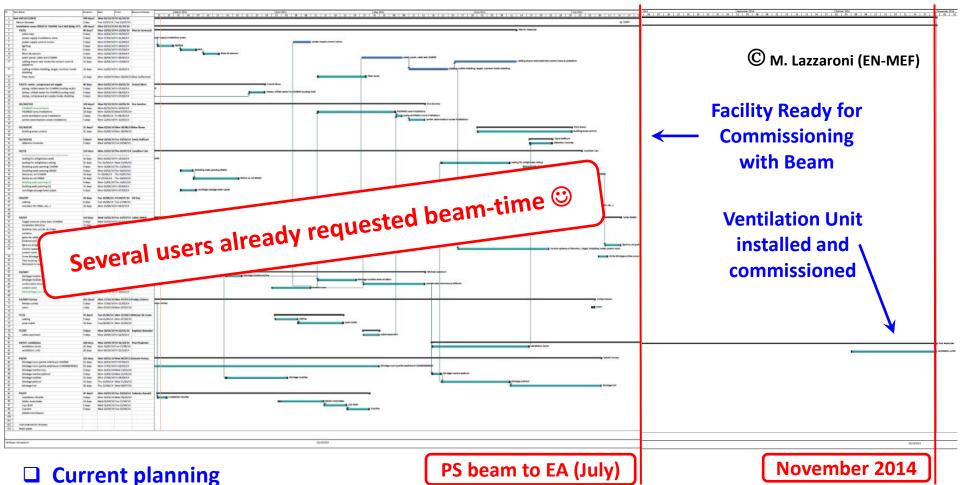
Fixed cabling/piping infrastructure


- 4 Patch-Panels installed along IRRAD
- twisted-pairs, coaxial, power HV/LV, ...
- space for custom users-cabling (optical fibers, etc..)

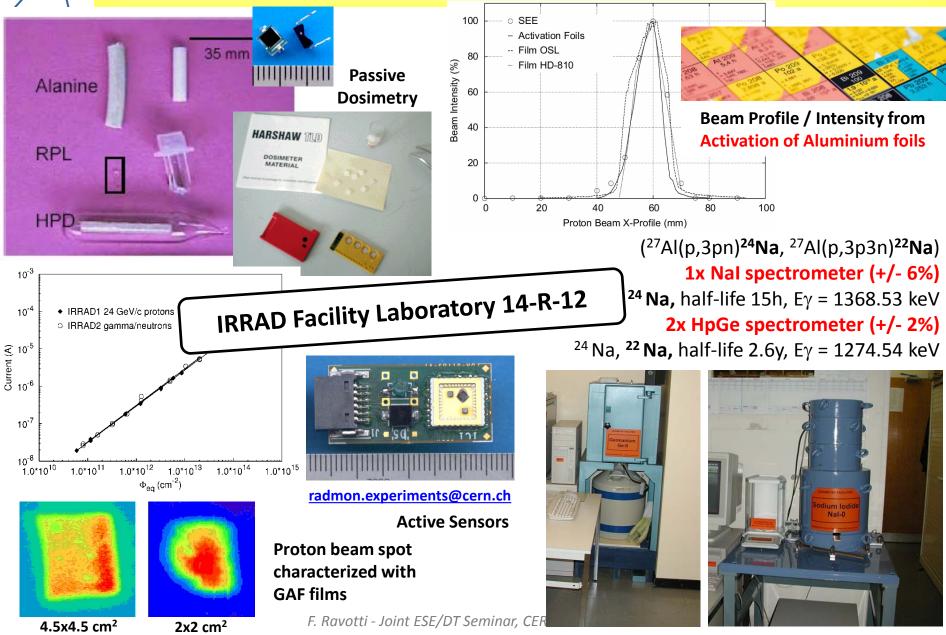
CÉRN

PH DT

Under construction



Schedule To Completion



- goal: EA-IRRAD facility ready for beam from the beginning of the EA exploitation in 2014
- commissioning with low intensity beam from summer 2014
- goal to start first irradiation experiments in IRRAD before Winter TS (Nov. Dec. 2014)

Dosimetry & RadMon

Joint ESE/DT Seminar, CERN – 24.6.2014

New Gamma Irradiation Facility (GIF⁺⁺)

Gamma Irradiation Facility (GIF)

Among other clients, most LHC gas detector technologies have been validated at the GIF: CMS (RPC, CSC); ATLAS (MDT, RPC, TGC, CSC); ALICE (TOF, AMS, CPC, RPC); LHCb (MWPC); COMPASS detectors....

GIF: former SPS West Area

- ¹³⁷Cs, 650 GBq installed in `90s
 - Set of movable filters to attenuate γ flux
- secondary (μ) beam de-commissioned (2004)

Since then: limited use for physics!

- limited photon yield
- **<u>limited space</u>** for increasing number of users
- ... but always <u>fully booked !</u>

GIF Irradiator

F. Ravotti - Joint ESE/DT Seminar, CERN – 24.6.2014

GIF⁺⁺ - A New Irradiation Facility

□ HL-LHC: new challenge for particle detector technologies

• test detectors reliability

□ GIF⁺⁺ focuses on the long-term behavior of large GAS DETECTORS

- increase in luminosity will produce a higher particle background
- measure particle signal under harsh background (photon) radiation conditions
 - asses performance of detectors under high particle fluxes
 - understanding of possible aging of detector materials under irradiation

1 New radiation source

• at least 10x higher source activity needed to produce a γ background equivalent to the one expected at the HL-LHC in a reasonable time

2 Again access to secondary beam from the SPS

• **100 GeV muons**, 10⁴ particles per spill traversing 10x10 cm²

GIF⁺⁺ - A Joint Project

The CERN EN-department (EN-MEF)

- provides the infrastructure for housing the irradiator and detectors: civil engineering components (shielding, false floor ...), beam line elements, control room and the supply of general infrastructure (electricity, gas ...)
- provides the gas distribution lines inside the facility (about 5 km) (PL: I. Efthymiopoulos, A. Fabich)
 Engineering Department

The CERN PH-department (PH-DT)

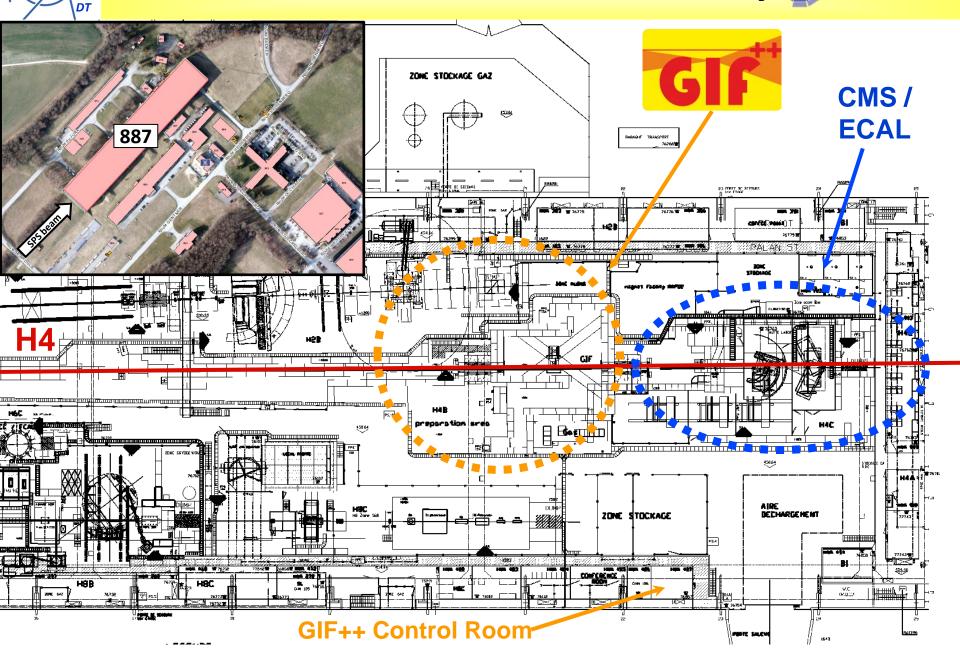
 provides the irradiator & attenuator, the facility controls (GIF control system), the gas systems, as well as the user management

The user community

- providing the detector specific infrastructures (beam trigger, cosmic trigger, ...)
- within the framework of the FP7 AIDA project

Detector Technologies

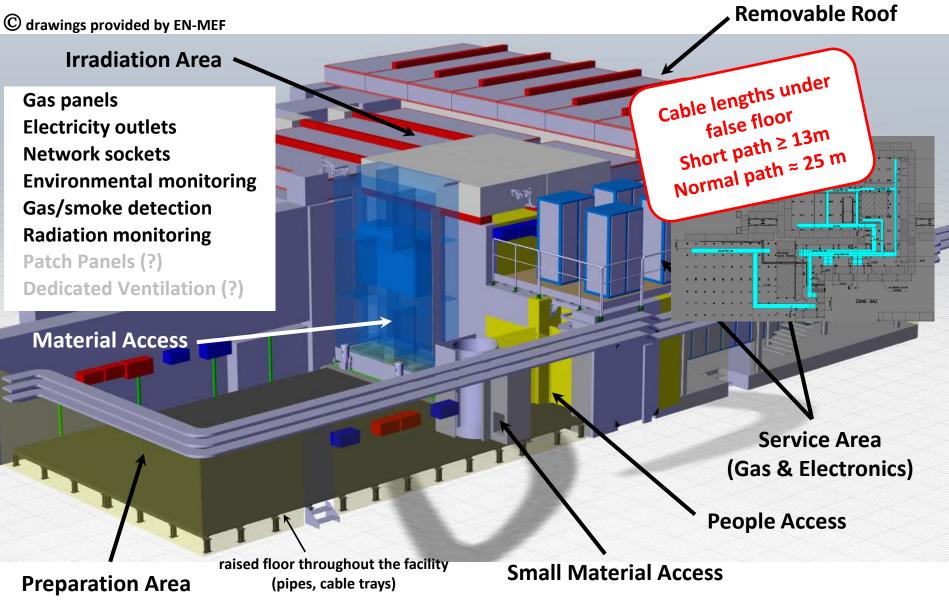
GIF⁺⁺ - Highlights


Unique features

- high-energy μ beam combined with a ¹³⁷Cs source (14 TBq)
- ~30x higher intensity than that at current GIF
- □ High energy muon beam from T2 target, on H4 beam line
 - 6-8 weeks dedicated beam & around \approx 30% of the SPS operation time halo μ beam
- **100m²** Irradiation Bunker
 - two independent irradiation zones
 - real size detectors, (several m²), smaller prototypes, electronic components, ...
- □ Irradiation fields (±37°)
 - equipped with independent attenuator systems up to a reduction of 50.000
 - equipped with angular correction filters (exchangeable).
- □ Fixed installed beam-trigger & cosmic-trigger
- Central Control System
 - record of parameters (environmental, beam, filter settings, gas, ...)
 - provides interlocks (e.g. for wrong gas mixtures)
- □ Wide range of available gases (+ custom gases)
 - gas patch panels in bunker & service zone

New CERN Gamma Irradiation Facility AIDA

CÉRN


РН

GIF++ Irradiation Bunker

GIF⁺⁺ - Irradiation Fields

 ${\hbox{\sc C}}$ drawings provided by EN-MEF

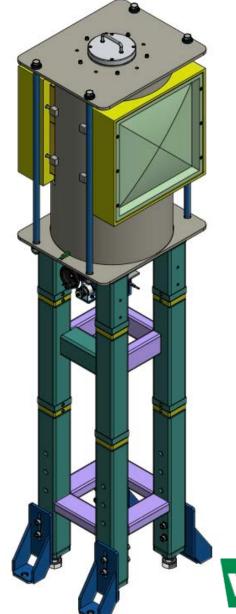
GIF⁺⁺ - Irradiation Fields + beam pipe AIDA

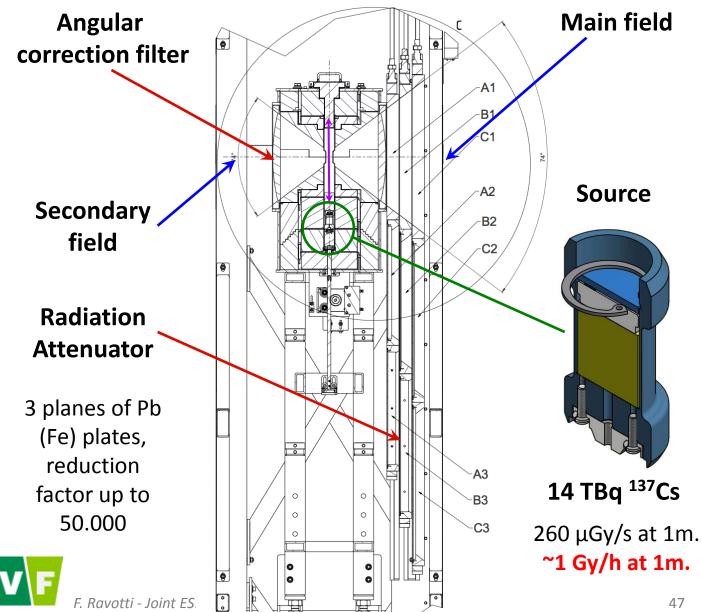
□ CMS ECAL requires e⁻ beam for ≈ 3 weeks per year

- installation of beam pipe necessary
- γ-irradiation possible

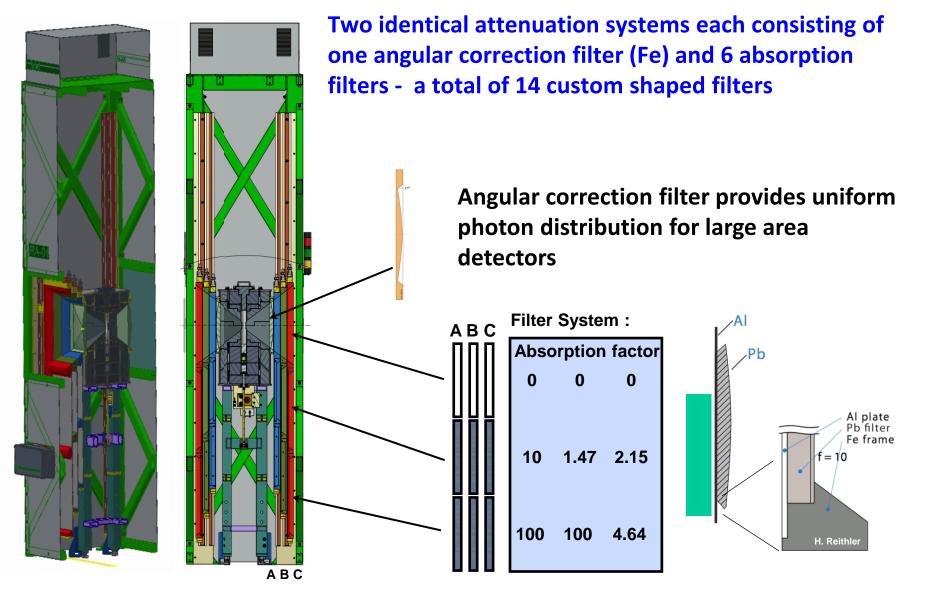
CÉRN

PH DT

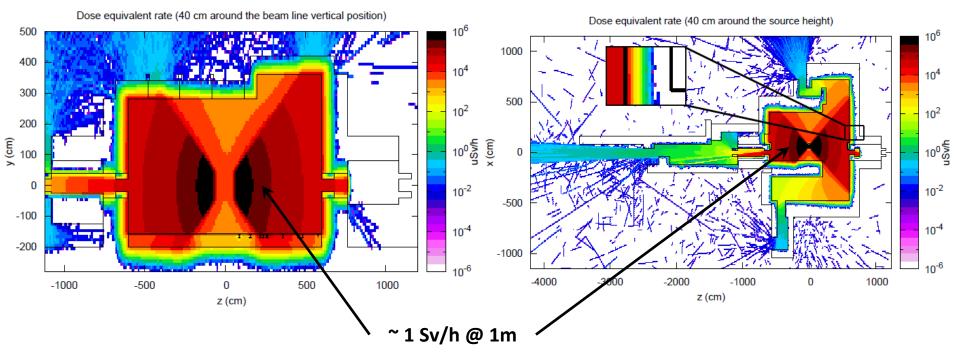

- access constraints
- interference with equipment installation



GIF++ Source

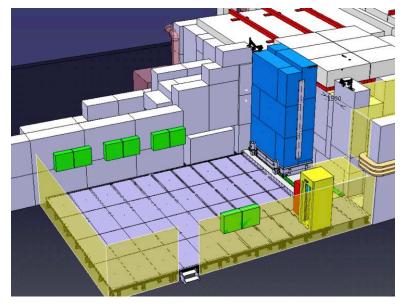


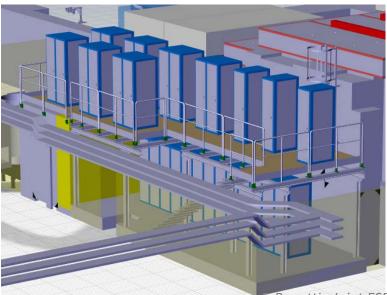
GIF⁺⁺ - Irradiator & Filter Setup


F. Ravotti - Joint ESE/DT Seminar, CERN – 24.6.2014

GIF⁺⁺- Radiation Simulation

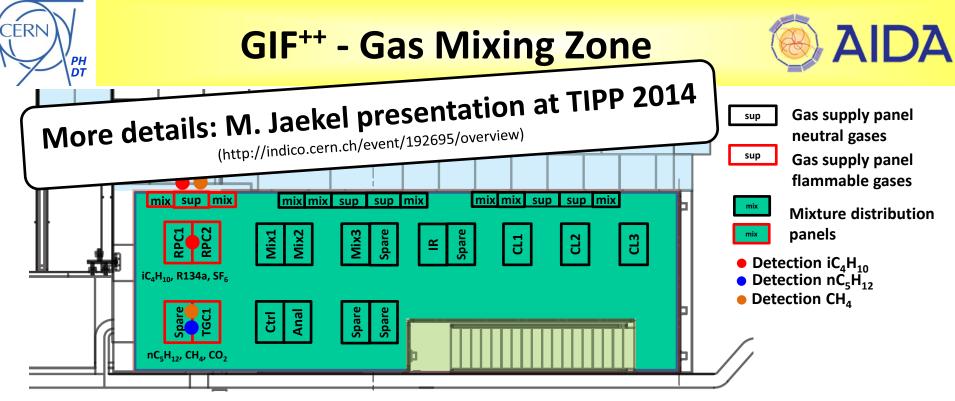
${inom{}}{m{C}}$ B. Biskup (EN-MEF), D. Pfeifer


Max. expected doses	Equivalent time at GIF++		
at HL-LHC	(~ 50 cm from source)		
Si-trackers: ~ MGy/y	>> years		
Calorimeters: ~ tens kGy/y	< 1 year		
Muon systems: ~< Gy/y	~ minutes/hours		


Layout Optimized for Radiation Safety (FLUKA Simulations)

GIF⁺⁺ - Preparation & Service Zone (**B**) **AIDA**

Large Preparation Zone (~ 80m²)


- equipped with gas lines, electricity & network. Signal cables and HV/LV patch panels will be added during a first upgrade
- full-size detectors can be setup and commissioned before moved to the radiation zone, already connected to the final DAQ

Ground floor

• 17 electronic racks hosting the irradiator controls, DCS, user equipment, fire detection, ...

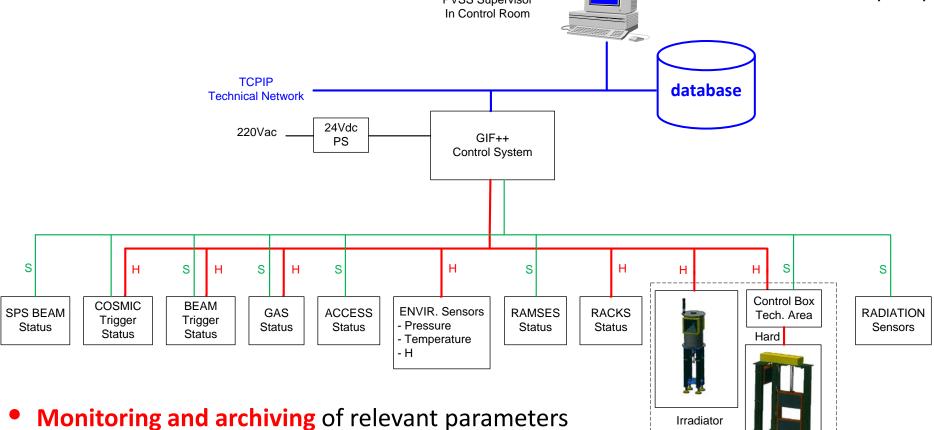
D Top floor

• 17 gas racks and distribution panels (40m² net area)

Gas-mixing zone

- 9 lines for neutral gases: Ar, CO₂, N₂, He, SF₆, CF₄
- 6 lines for **flammable gases** or with very low vapour pressure:

 iC_4H_{10} , CH4, Ar/H₂ (optional), $C_2H_2F_4$ + 2 spares

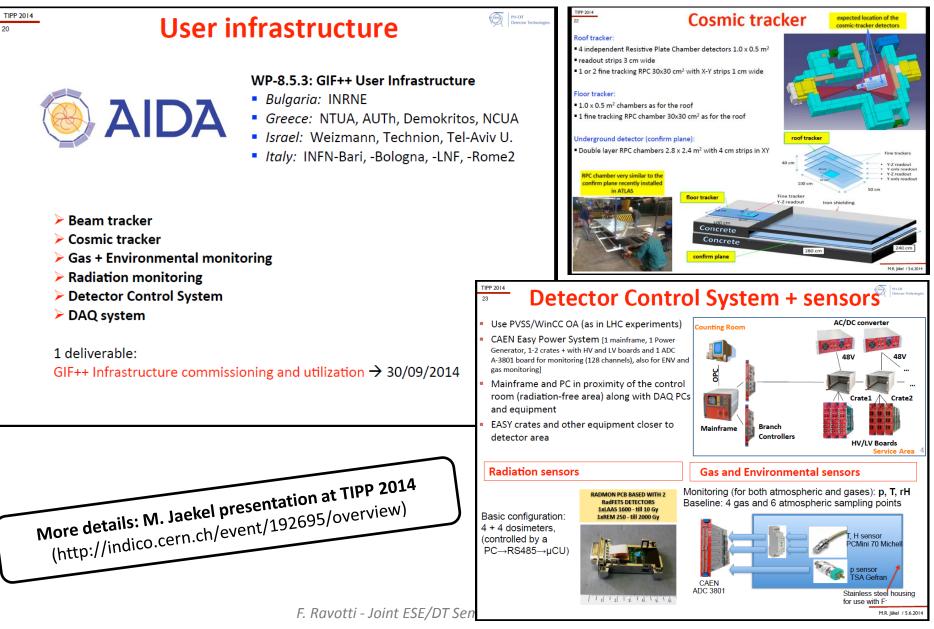

- 3 spare pipes; 2 exhaust lines
- lines & room heated
- several supply panels

At full capacity

- 6 mixing racks
- 3 closed loop gas systems
- 2 analysis racks
- 1 control rack
- 5 spare racks

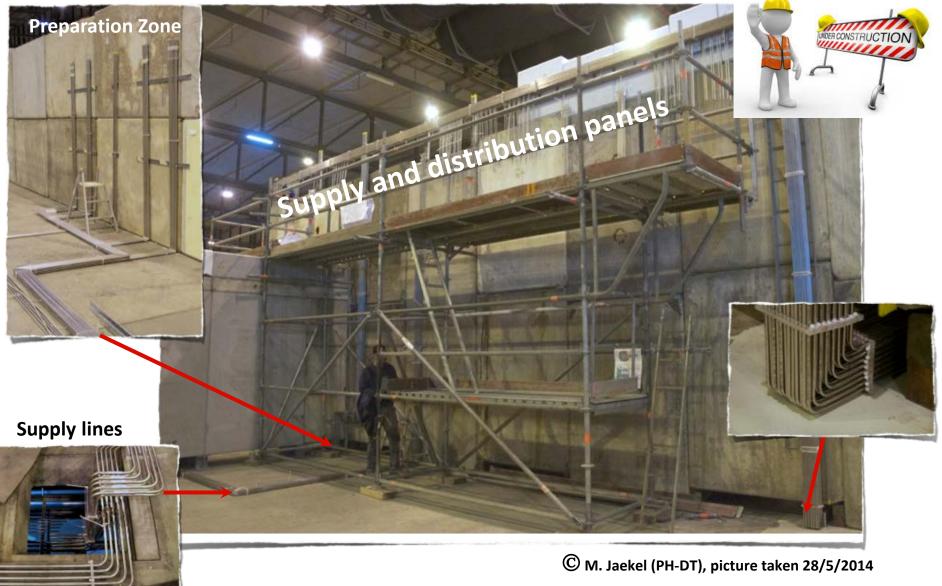
Gas analysis capabilities

- Control of filter system, monitor of radiation (RADMON)
- **Providing interlocks** (e.g. on gas system faults)
- Remote monitoring, web display,


ERN

Filter

GIF⁺⁺ User Infrastructure

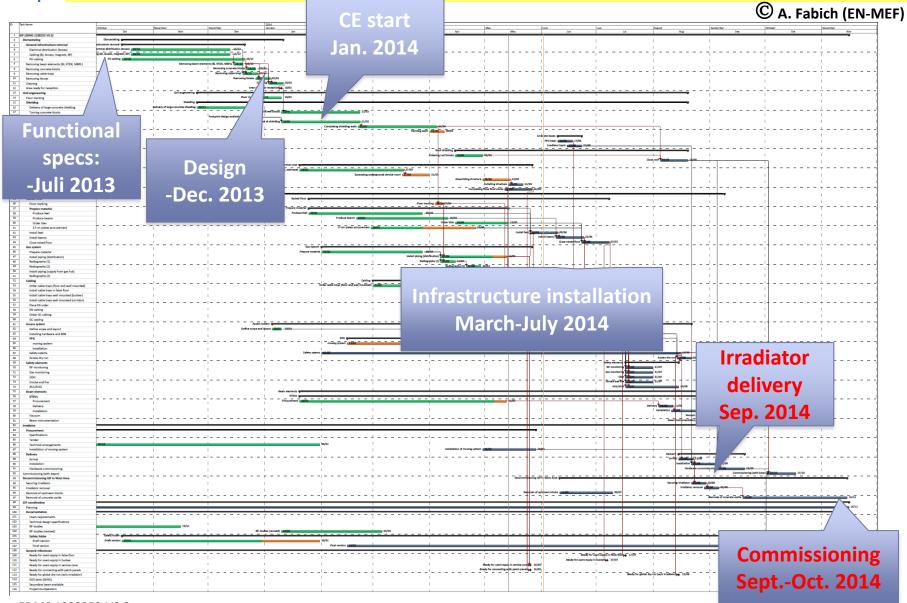


GIF⁺⁺ - Construction Overview

GIF⁺⁺ - Construction Overview

© M. Jaekel (PH-DT), picture taken 28/5/2014

GIF⁺⁺ - Control Room



Schedule To Completion

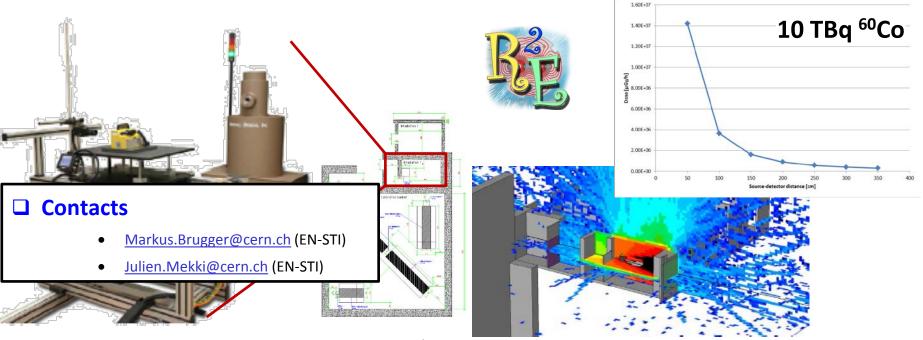
EDMS 1328252 V0.3

Joint ESE/DT Seminar, CERN – 24.6.2014

Other CERN Irradiation Facilities

CC60 - CERN Cobalt 60 Test Facility

© M. Brugger (EN-STI)

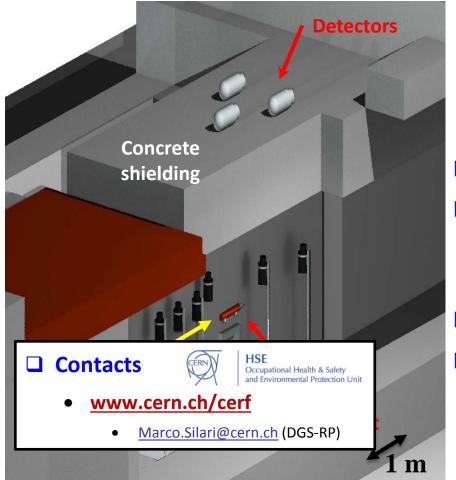


New CERN Co-60 Test Facility

- Location: new DGS-RP calibration hall on Prevessin site
- Available: > Nov. 2014

Target users (main)

- electronic component/system qualifications including batch testing, .
- dose range from ELDRS to applications in the 1-10kGy range (for larger volumes)
- higher doses (up to the range of 100kGy) can be reached for smaller samples



CERF - CERN Reference Facility

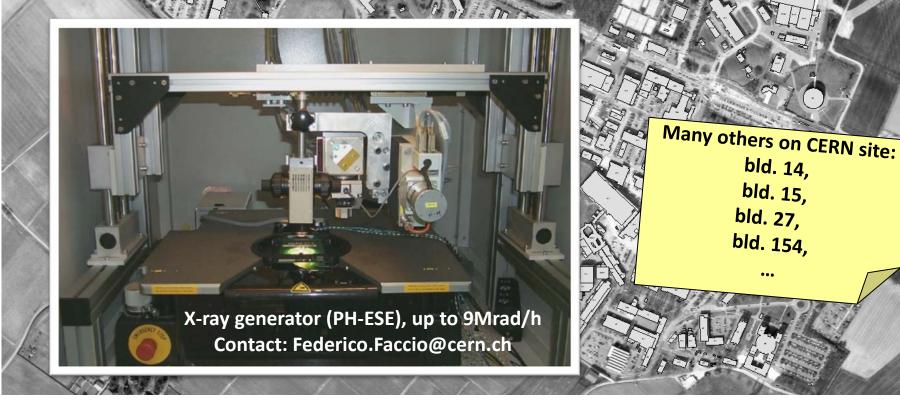
SPS (H6) secondary beam, 120 GeV/c hadrons

- SPS North Area; H6 beam-line
- HEH beam (61% π⁺, 35% p⁺, 4% k) on Cu target

Well defined & simulated mixed-field

Intensity

- max 10⁸ particles/pulse (slow extraction)
- resulting in up to few Gy/h
- □ In operation since 1992 (few weeks/y)
- **Users (mainly)**
 - test/calibration of passive/active detectors for **dosimetry** or **rad. monitoring**
 - internal and external users



CERN "small" Irradiation Facilities

Irradiation equipment on CERN site

- X-ray generators/sources belonging to CERN groups / institutes
- specific use (e.g. calibration); **sometimes** open for "public" use
- not covered in this talk ...

Joint ESE/DT Seminar, CERN – 24.6.2014

Irradiation Results Data

Radiation Damage CERN Reports

© compiled after M. Tavlet (EIROWorkshop RadHard2010, Lisbon, 2010)

Radiation test results DATA COMPILATION

- Systematic results "catalogues" published as CERN Yellow Reports (<u>http://cds.cern.ch/</u>):
 - 79-04 + 89-12 / cable insulating materials
 - 79-08 + 98-01 / resins and rigid plastics
 - 82-10 / miscellaneous materials and components
 - 85-02 / resins for HV applications
 - 2001-006 / adhesives

Other interesting CERN reports on Radiation Damage/Effects on Materials:

- 68-13 / The effect of nuclear radiation on the electrical properties of epoxy resins
- 70-05 / Effects of radiation on materials and components
- 75-10 / Action des radiations ionisantes sur les résines époxydes
- 72-07 / Selection guide to organic materials for nuclear engineering
- 75-03 / Radiation and fire resistance of cable-insulating materials used in accelerator engineering
- 81-05 / The selection and properties of epoxide resins used for the insulation of magnet systems (...)
- 83-08 / Long-term radiation effects on commercial cable-insulating materials irradiated at CERN
- 85-08 / Radiation damage to organic scintillation materials
- 96-05 / Results of radiation tests at cryogenic temperature on some selected organic materials for the LHC

AIDA Database (Experiments)

Qualification of selected components in the framework of AIDA

Participants

- INFN (MI, PG), STFC-RAL, UNIGE, ETHZ
- on-line since March 2014

http://tinyurl.com/aidaimhotep

Material tested so far:

- inorganic scintillating crystals, electronics, APS, epoxies, ...
- 17 entries (March 2014)

Characteristics

- ready to take data,
- rely on the users!
- possibility to upload pdf
- robust implementation
 4 servers (backup, firewalled)

Link to data entry page

AIDA HOME IMHOTEP		FAQ ABO	UT US CONT
Welcome to	Imhotep		
his database contains summary pgrades. f you would like to submit data t			for LHC detector
Scope of Search	Choose scope 🗸		
Material or Component	Choose material	~	
Particle Type	Choose particle	~	
Radiation Parameters	Particle Energy	More than	
Particle Energy/Fluence DR Dose	(MeV)	Less than	
Jose	and Fluence (cm ²)	More than	
		Less than	
/	Dose (MGy)	More than	
		Less than	
rradiation Temperature (K)		More than	
		Less than	
Related Experiment	Choose experiment \checkmark		
Record contains these words:		5%	
Published After	dd/mm/yyyy	(inclusive)	
SEARCH			

Electronics Equipment (Accelerators) (ADA

Radiation Working Group (Rad	Chairman: G. Spiezia Scientific secretary: P. Oser								
Infos Radiation Tests LHC Radiation Test Facilities Publications Documentation About									
News	© CERN dom	ain only Europe/Zurich▼ English▼ Login Everywhere ▼ P							
Website update 04/06/2014 A section with a collection of links has been added to the documentation area. Additional links and documents are always welcome! (Contact: G. Spiezia or P. Oser) - Links	Nome Create event * Room booking Help * Nome » Projects » R2E Project (Radiation to Electronics) » RADWG (RAdiation Working Group) RADWG (RAdiation Working Group) Image: Parent category Image: Par								
Website update 19/05/2014 The website was updated with a news section. Launch of new website 10/04/2014	May 2014 22 May RadW(April 2014	Q Managers ▲ Brugger, M. Useful links							
The RadWG website has been completly re-designed in order to fit the needs of implementing more data and information. A presentation about the new structure has been done during the RadWG in April 2014: <u>Slides</u> Some of the new features are: - Follow-up to track the activities of the RadWG - Summary table to track the results of the radiation tests in an easy way 1 Radiation Test Reports	e.htm • Test reports: https://	<u>/radwg</u>							
Contact: G. Spiezia (EN-STI) ESE Seminar, December 2013 (https://indico.cern.ch/event/267	A19/) Powered by Indico								

Summary

Unique set of Irradiation Facilities available at CERN

- from **TEST-AREA "locations"** in the '90 ...
- ... to fully dedicated (and equipped) FACILITIES after LS1
- upgrade of **detectors**, **electronics** and **accelerator equipment** toward HL-LHC

Upgrade projects (fully operational in 2015)

- Experimental community (PH):
 - Proton facility (IRRAD) and "detector" gamma facility (GIF⁺⁺)
- Accelerator community (EN):
 - Mixed-field facility (CHARM) and gamma facility (CC60)

Existent infrastructures

- back after LS1: HiRadMat and CERF
- "always" running: X-rays generators/sources in laboratories within CERN

Irradiation results data

- "historical" CERN reports (data collections)
- efforts ongoing to create dedicated "collections" for accelerator/experiments

Summary

Facility	Particle Type	En. / Mom.	Intensity	Beam Spot	Beam structure	Availability
IRRAD	p⁺	24 GeV/c	~ 1-3×10 ¹⁰ p/cm ² /s	12×12mm ² (FWHM)	1-3 spill/CPS (30s) spill = 0.4s	May-November (PS operation)
CHARM	mixed-field (24 GeV/c p⁺)	n ⁰ (thermal - HE) + HEH > few 100MeV	Lateral: 10 ⁷ -10 ¹⁰ HEH/cm ² /h Long.: 10 ⁸ -10 ¹¹ HEH/cm ² /h TID: 0.01-100 Gy/h	secondary environment from target	1-3 spill/CPS (30s) spill = 0.4s	May-November (PS operation)
GIF++	$\gamma + \mu$	0.662 MeV + 100 GeV muons	14TBq (~1Gy/h at 1m.) + 10 ⁴ particles/spill	panoramic (±37°) + 100×100mm ²	continuous + spills/SPS cycle	all year + 6-8 weeks/year
CC60	γ	1.17 MeV, 1.33 MeV	10TBq (~3Gy/h at 1m.)	standard	continuous	all year
CERF	mixed-field (120 GeV/c HEH)	n ⁰ (10-100 MeV or lower) + HEH	max: 10 ⁸ particles/spill (on the target)	tertiary environment from target	spills/SPS cycle spill of few sec.	few weeks/year (SPS operation)
HiRadMat	p⁺ or HI	440 GeV or 173GeV/u	3×10 ⁹ to 1.7×10 ¹¹ (p ⁺)	~1 mm²	1 pulse/ SPS cycle pulse = 7.2μs	May-November (SPS operation)

.... many <u>EXTERNAL FACILITIES</u> used by CERN people

- complementary to CERN facilities (> intensities and/or < E); study of basic mechanisms
- RADECS 2011: Compendium of International Irradiation Test Facilities (link)

Contacts for Irradiation Experiments

- IRRAD: <u>www.cern.ch/irradiation</u> (Maurice.Glaser@cern.ch Federico.Ravotti@cern.ch)
- GIF/GIF⁺⁺: <u>IMPACT-GIF-Coordination@cern.ch</u> (<u>Martin.Jaekel@cern.ch</u> <u>Roberto.Guida@cern.ch</u>)
- CHARM/CC60: <u>www.cern.ch/charm</u> (Markus.Brugger@cern.ch Julien.Mekki@cern.ch)

Questions?

References

• H. Vincke, 2008, Status report of the working group on future irradiation facilities at CERN, presentation at SPSC

(www.cern.ch/irradiation-facilities)

- A. Fabich, 2013, *HiRadMat facility at the CERN SPS*, WAMAS at CERN (<u>https://indico.cern.ch/event/229108/</u>)
- M. Jaekel, 2014, The new Gamma Irradiation Facility at CERN (https://indico.cern.ch/event/282487/)
- M. Brugger, 2014, CHARM: a new high-energy mixed beam test facility for various radiation environments, presentation at RADSOL ... and (many) private communications!

Some other interesting links

- GIF⁺⁺ facility: <u>https://espace.cern.ch/sba-workspace/gifpp/SitePages/Home.aspx</u>
- Irradiation facilities around the world: <u>http://www.cern.ch/rd50</u> and <u>http://radwg.web.cern.ch/</u>
- L. Linssen, 2009, Future Irradiation Facilities at CERN (<u>http://indico.cern.ch/event/51128/</u>)
- G. Spiezia, 2013, Radiation Tests A&T sector (https://indico.cern.ch/event/267419/)
- M. Brugger, 2012, Irradiation facilities R2E requirements at East Area Day (<u>https://indico.cern.ch/event/167761/</u>)