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Quench limit calculation:

- based on heat transfer tests (slow losses)
- on THEA code (fast losses)

Comparison to FLUKA values
for different quench tests
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Quench limits
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transient state, mJ/cm3 steady-state, mW/cm3
(fast losses) (slow losses, typically > 1 s)

Dominant stability mechanism

Local heat transfer from strand to He / \ Heat transfer from cable to He bath

inside the cable (through cable electrical insulation)

¥

No conclusive experiments (yet) 2> \l,
we rely on numerical codes:
- 1-D (THEA) and 0-D (ZeroDee)
- QP3 (Arjan - Bernhard)

Experiments and modeling ongoing
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Experimental method

The stack method allows to thermally
characterize SC colls, and determine

Cable -
It allows to measure the heat transfer center At

through the cable’s electrical insulation

typically the most severe barrier for heat
extraction from the magnet

Cable edge

Measure heat extracted as a function of
the cable temperature, in 2 locations
under a controlled pressure

The deduced quench limits refer to a
uniform heat deposit over the cable




Deduction of cable steady-state
guench limits

For steady-state beam losses, a quench occurs if
Tcable exceeds Tes (~ 4 K for Nb-Ti, ~ 7 K for NbaSn in

L
alokK bath) dipole
not T, (2.16 K), which is instead a design limit for Nb-Ti coils
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Method reported in: P.P. Granieri and R. van Weelderen, “Deduction of Steady-State Cable Quench Limits for Various Electrical Insulation Schemes with
Application to LHC and HL-LHC Magnets”, IEEE Trans. Appl. Supercond. 23 submitted for publication




Results: QL along the azimuthal direction

Toath = 1.9 K, held constant during heat removal
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Comparison to 2013 collimation QT

Quench limit as a function of the transport current
in the most critical regions, i.e. mid-plane for MB and close to the pole for MQXF
in agreement with the LHC collimation quench test, performed in 2013
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Numerical methods

Need to distinguish the code used from the physics implemented (i.e. the
parameters used), which is fundamental ! See next slide

We use two different approaches:

1-D code (THEA): a single strand experiencing a
heat deposit and field variation along its length
Similar to QP3

0-D code (ZeroDee): a local balance of energy,
without longitudinal direction
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Transient heat transfer between strands and He inside the cable
From experimental results of each He phase. But the model of the whole process
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Steady-state heat transfer between cable and external He bath
From experimental results (see first part of the talk)
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Results

With the 0-D code we studied all the most critical LHC magnets: MB, MQ,
MQXA, MQXB, MQXF, MOM, MQY, D1, D2, D3, D4, MQTLI, MQTLH

We have performed a systematic scan of each magnet, as a function of:
heating time, beam energy, magnetic field, effect of He bath

Work on the 1-D THEA code started just before the summer holidays

The following results were obtained with 0-D, except the ADT analysis performed using
both codes

More work with the THEA code to be done

A complete report of all the results will be ready within few weeks




Brief overview of results

Heating time Beam energy
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Brief overview

Magnetic field
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What is the most critical cable?
” i"f}

It is determined by the interplay of: ~
Magnetic field
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Comparison to 2013 ADT-fast loss QT
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Comparison to 2013 Q6 QT

MQM, 4.5 K
Heat deposit ~ ns

| = 2000 A, no quench
Quench limit mid-plane: 23 mJ/cm3
Quench limit pole: 21.8 mJ/cm3

Q6 Quench Test (2013): azimuth. distr. in MOQM.6LE inner coils (at peak, radially averaged)
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Experiment: C. Bracco, M. Solfaroli, M. Bednarek, W. Bartmann
Simulations: A. Lechner, N. Shetty
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| = 2500 A, quench
Quench limit mid-plane: 20 mJ/cm3
Quench limit pole: 18.5 mJ/cm3

06 Quench Test (2013): azimuth. distr. in MOM.6LE inner coils (at peak, radially averaged)
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Very good agreement




Comparison to 2010 wire scanner QT
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Conclusion

Pretty good agreement btw computed quench limit and the 4 Quench Tests
analyzed
except in a couple of cases where we have a factor 2 of disagreement

How can we further improve the quench limit computation?

Steady-state:

by further improving the measurement technique (coil geometry rather than a stack) as well as by
extending the numerical model of heat transfer in the coil above the T, region = simulate the actual
heat extraction from the coil and heat deposit pattern

A conclusive test would need the actual radial beam loss profile (not necessarily a quench test, can be
a heat transfer test) > something might be done in the lab. Or testing an instrumented sample with the
beam?

Transient state:

Transient heat transfer experiments in confined volumes to validate or correct the whole model of heat
transfer between strands and He inside the cable

A conclusive test has to be a stability test. Also in this case we would ideally need the actual radial
beam loss profile
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Steady-state results

Summary of the determined steady-state cable quench limits

vagner sc perang - Heatexacted - Quereh i
6.8 (4 TeV) 23 58

MB  Nb-Ti 11 (6.5 TeV) 23 49
11.8 (7 TeV) 23 47

MQXF  Nb,Sn 17.3 2.2 63

The “T, limit” depends of course on the cable cooling witin the magnet
by the way, this design limit is meaningless for Nb;Sn

The provided quench limits refer to the cables: e.g. for MQXF, they
correspond to the magnet quench limits as long as the channels through
the Ti piece do not saturate




