

Beam stability without eigenvalues (ongoing work) X. Buffat, N. Mounet, T. Pieloni, S. White

- **Remainder on the circulant matrix model**
- Multibunch beam breakup / coupled bunch instabilities
- Non-diagonalizable system and pseudospectrum
- **First results for the LHC case**

Circulant matrix model

- Discretized distribution in longitudinal plane
- Build and diagonalize one turn map
- Especially usefull to study beambeam and impedance (S. White, et al, "Beam beam and Impedance", BB2013)
- Python module "BimBim"
- 3×10^{-4} $\Delta p/p$ $\overline{0}$ -2 $\overline{0.2}$ 0.6 0.2 0.4 -0.6 -0.4 0.0
- Single/multi bunch Impedance based on wake tables
- 4D/6D Beam-beam interactions
- **Perfect BbyB damper**
- Any filling scheme / IP configuration

Multibunch beam breakup 2 bunch model

- For simplicity, let us consider 2 bunches with 1 slice, 1 ring (i.e. Rigid bunches)
- **One turn map for a single bunch:** B
- One turn map for the two bunches, assuming that the distance from b1 to b2 $<<$ b2 to b1 (e.g. Train of two bunches in the LHC)

$$
M = \begin{pmatrix} B & 0 \\ 0 & B \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ Z & 1 \end{pmatrix}
$$

- This matrix is not diagonalizable !
	- \rightarrow Eigenvectors do not provide a complete basis for $\, {\mathbb C}^{dim(M)}$

3 \rightarrow The dynamic of the system is not fully described by the eigenvalues/eigenvectors

Jordan normal form

- One can always find a basis such that the matrix has the Jordan normal form \rightarrow
- Vectors of this basis, which are not eigenvectors, are generalized eigenvectors
- Behavior under n^{th} power of M :
	- **Eigenvectors** : $\vec{v}_n = e^{2\pi i \mathcal{Q}n} \vec{v}_0$
	- Generalized eigenvectors : *v* \vec{v}

$$
\vec{v}_n = e^{2\pi i Qn} \vec{v}_0 + \dots
$$

Powers of M 2 bunch model

$$
M_d = \begin{pmatrix} \lambda_1 & 1 & 0 & 0 \\ 0 & \lambda_1 & 0 & 0 \\ 0 & 0 & \lambda_2 & 1 \\ 0 & 0 & 0 & \lambda_2 \end{pmatrix}
$$

Consider a vector in the subspace associated to λ_{j} :

$$
\vec{V} = a_1 \vec{e}_1 + a_2 \vec{e}_2 \quad \text{with} \quad \vec{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \vec{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}
$$

$$
\vec{V}_n = \lambda_i^n a_1 \vec{e}_1 + \lambda_i^n a_2 \vec{e}_2 + \sum_{k=0}^{n-1} (\lambda_i a_2)^k \vec{e}_1
$$

Powers of M 2 bunch model

$$
M_{d} = \begin{pmatrix} \lambda_{1} & 1 & 0 & 0 \\ 0 & \lambda_{1} & 0 & 0 \\ 0 & 0 & \lambda_{2} & 1 \\ 0 & 0 & 0 & \lambda_{2} \end{pmatrix}
$$

Consider a vector in the subspace associated to λ_{j} :

$$
\vec{V} = a_1 \vec{e}_1 + a_2 \vec{e}_2 \quad \text{with} \quad \vec{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \vec{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}
$$

$$
\vec{V}_n = \lambda_i^n a_1 \vec{e}_1 + \lambda_i^n a_2 \vec{e}_2 + \sum_{k=0}^{n-1} (\lambda_i a_2)^k \vec{e}_1
$$

- Linear growth which depends on the initial condition
- The behavior of the system under a small perturbation is no longer independant of the perturbation
- More complicated behavior expected for higher number of bunches

Multibunch beam breakup 2 bunch model

- **Matrix model confirms this** behavior
- **However, mathematically, and** physically, the matrix can be rendered diagonalizable
	- **-** Multiturn wake
	- Equidistant bunches
	- Beam-beam
- Does the physcis change?

Coupled bunch instabilities

This phenomenon can be described by the pseudo spectrum

Spectrum $(M) = {\lambda \in \mathbb{C} | \exists \vec{v} : (M - \lambda I) \cdot \vec{v} = 0 }$

Pseudo spectrum $(M, \epsilon) = {\lambda \in \mathbb{C} | \exists \vec{v} : } ||(M - \lambda I) \cdot \vec{v}|| < \epsilon}$

For a given point of the complex plane z, the corresponding ε is given by the smallest singular value of (*M*−*zI*)

Method applied in many field, for example : L. Trefethen, et al, *"Hydrodynamic stability without eigenvalues"*, Science, New Series, Vol. 261, No. 5121. (Jul. 30, 1993), pp. 578-584

1 bunch

0.0 chromaticity, no damper

11

4 bunches

0.0 chromaticity, no damper

■ 8 bunches

■ 0.0 chromaticity, no damper

4 bunches

0.0 chromaticity, 1000 turn damper

4 bunches

■ 0.0 chromaticity, 100 turn damper

A naive trial to include transverse non-linearities

Small tune shift : each side band can be treated separately

15 Ľ If all eigenvalues are in the stable area, one can characterize the stability of the beam by the maximum of $-log(\epsilon)$ on the stability diagram

- **Results in accordance** with expectations
- Not valid for most cases of interest, where mode coupling is not negligible

Conclusion

- Coupled bunch instabilities cannot be fully treated using the standard eigenvalue approach
	- **Transient growth may be expected even in** systems with only decaying eigenmodes
	- **Behavior depends on initial condition / external** excitation
- The pseudo spectrum provides information on the behavior of such non-normal system
- Real life application less obvious than eigenvalues
- **Including the effect of transverse non-linearities is** also not trivial