TOTEM consolidation & upgrade program

K. Österberg, Department of Physics, University of Helsinki & Helsinki Institute of Physics

on behalf of TOTEM collaboration

EDS'13 workshop

- Physics
- Optics
- . Instrumentation

CERN-LHCC-2013-009; LHCC-P-007

Central diffraction ("Double Pomeron Exchange")

TOTEM

- . both p survive with ξ_1 , ξ_2 ($\xi = \Delta p/p$)
- central diffractive mass M
- . 2 rapidity gaps $\Delta\eta_1,\,\Delta\eta_2$

$$\Delta \eta_{1,2} = -\ln \xi_{1,2}, \quad M^2 = \xi_1 \xi_2 s$$

CMS + TOTEM: Large pseudorapidity coverage Redundancy forward vs central: M, p_T, vertex, Δη_{1.2}

Large η -coverage:

- CMS: -5.5<η<5.5
- T1: 3.1 < |η| < 4.7
- T2: 5.3 < |η| < 6.5
- FSC: $6 < |\eta| < 8$

Different LHC Optics

 $\infty \mathbf{J}$

Hit maps of simulated diffractive events for 2 optics configurations

y [mm] S

Standard low β* runs:

diffractive protons in horizontal RP

 $\mu = 25 - 50$ (~5 with reduced N_p/bunch)

low cross-section processes (hard diffraction) – continuous running (with reduced N_p/bunch?)

Special high β^* runs:

diffractive protons in vertical RP

 $\mu = 0.05 - 0.5$

high cross-section processes - dedicated short runs with optimized conditions

~10³⁰⁻³² cm⁻² s⁻¹

3

 10^{3}

Proton & CD mass acceptance

β^* [m]	$\sigma(\Theta_x^*)$ [µrad]	$\sigma(\Theta_y^*)$ [µrad]	$\sigma(t) \; [\text{GeV}^2]$	$\sigma(\Phi^*)$ [rad]	$\sigma(\xi)$	$\sigma(M)$ [GeV]
90 (no vtx.)	17	2.3	$0.22 t ^{0.67}$	$0.075/ t ^{0.59}$	$0.003 \div 0.006$	$40 \div 200$
90 (w. vtx.)	5	2.3	$0.13 t ^{0.79}$	$0.026/\sqrt{ t }$	0.0012	$10 \div 100$
0.55	$32 \div 35$	30	$0.45\sqrt{ t }$	$ -0.23/\sqrt{ t } $	$0.001 \div 0.007$	$(0.025 \div 0.03)M$

Exception: for very low $|\xi|$ can be neglected improving $\sigma(\theta_x^*) \approx 2.3 \mu rad$ = beam divergence

Exclusive central diffraction $p_{1}(\xi_{1})$ $M^{2} = \xi_{1} \xi_{2} s$ P/γ Q $Y_{1}(\xi_{1})$ $M^{2} = \xi_{1} \xi_{2} s$ $p_{2}(\xi_{2})$ $y_{1} = \frac{1}{2} \ln \frac{\xi_{1}}{\xi_{2}}$ gg collider !

exchange of colour singlets with vacuum quantum numbers \Rightarrow Selection rules for system X: J^{PC} = 0⁺⁺, 2⁺⁺

X = $\pi\pi$, KK, ρρ, ηη, χ_{c0} , χ_{cb} , di-/multijet, ? (unknown)....

$$\beta^* = 90 - 0.5 \text{ m}$$

$$\mu = 0.05 - 50$$

$$M = \pi\pi \text{ threshold} - \sim 2 \text{ TeV},$$

$$\sigma = O(\mu b) - O(fb)$$

$$Flexibility$$

Studies on-going to implement $\beta^* = 90$ m with 1000 bunches, pileup ~0.05-0.5; $\mathcal{L} \sim 10^{31-32}$ cm² s⁻¹ \rightarrow 1-10 pb⁻¹/day

RP consolidation & upgrade summary

mechanics/infrastructure in LS1, timing sensors/replacement of Si strips later

• RP system will consist of 4 RP units/arm, each with 2 vertical + 1 horizontal pots equipped with 10 planes Si-strip detectors, with full trigger capability

• Extreme flexibility in using 4 units according to running scenario; possibility to dedicate pots to new **Si-pixel detectors** as well as to timing detectors with low material budget

Improving RP multi-track capability

Current limitation: not able to reconstruct events with ≥ 2 tracks in same pot **Remedy 1: tilt by ~8**° FAR RP station at 210m (ghost tracks suppression)

Remedy 2: Replace existing strip detectors with **pixel detectors**

Reducing RP-beam coupling

To insert RPs close to high intensity beam, important to have an optimized RP impedance (reduce heating & feedback).

A source of impedance for the beam is the empty space of cavity between RP box and cylindrical flange

A cylindrical RP fills the cavity: better RF behaviour and more space available inside RP for timing detector.

Cylindrical RP with Ferrites shown a reduced beam power-loss:
Factor >5 better in beam power-loss compared to box-shape configuration (@1 mm approach).
35% better (@ 1 mm approach) for effective longitudinal impedance.

box shaped RP + Copper shield

For 210m far-horizontal RP a cylindrical copper shield is studied for impedance reduction.

Improving proton left-right correlation capability

Timing sensors with O(10 ps) timing resolution

• Cherenkov detector + SiPM [M.G. Albrow et al., "Quartz Cherenkov Counters for Fast Timing: QUARTIC", JINST 7 (2012) P10027]

- diamond detectors \rightarrow allow more flexibility on cell size
- [M. Ciobanu et al., "In-Beam Diamond Start Detectors", IEEE Trans.Nucl.Sci. 5 (2011) 2073.7]

New cylindrical RP to host timing detectors

Trigger for low β^*

Reduce trigger rates using proton left-right time correlation without killing CD signal \Rightarrow need reliable description of raw RP track rates & distributions!

Use data of a $\mu \approx 9 \text{ low } \beta^*$ run at $\sqrt{s} = 8$ TeV with horizontal RP @ 6 σ (RP alignment run): physics acceptance & background using RP-T2 topology

- . Scale physics acceptance & background separately to reproduce any μ
- · Add CD event to study performance

Multiplicity & distribution studies for low β^{\ast}

Optimizing timing sensor cells equalizing rate/cell (μ = 30):

Inefficiency due to ≥ 2 tracks / cell reduced by factor ~2 w.r.t. fixed square cell size!

Enhance CD purity (at cost of CD efficiency) of triggered proton pair by selecting isolated ($\Delta z \sim 1 \text{ cm}$) vertices in z vertex distribution tails \Rightarrow reduce trigger rates to acceptable levels (~1 kHz)

TOTEM RP consolidation & upgrade summary

. CMS + TOTEM allows large rapidity coverage & reduncy (central vs forward)

. TOTEM RP consolidation & upgrade programme launched expanding the TOTEM physics reach

 mechanics & infrastructure changes/installation in current LHC shutdown, new sensors later

 aim: improve RP multi-track capability, proton left-right correlation capability & RP approach capability at high beam intensity

The End

Transport matrix elements depend on $\xi \rightarrow$ non-linear problem (except in elastic case!)

Excellent optics understanding needed.