Exclusive photoproduction of J / ψ and $\psi(2 S)$ in $p p$ and $A A$ collisions at the LHC*

Magno V.T. Machado

Instituto de Fisica - UFRGS, Brazil
High Energy Phenomenology Group. Porto Alegre

Outline

- Short motivation
- Ultra-Peripheral Collisions of heavy ions and nucleons
- Quarkonium production in UPCs
- Model for photoproduction cross sections - color dipole approach
- Results for exclusive J / ψ and $\psi(2 S)$ production in $p p$
- Results for exclusive J / ψ and $\psi(2 S)$ production in $A A$
- Summary.

Motivation

- UPCs are defined as collisions in which no hadronic interactions occur due to large spatial separation between projectile and target.
- Interactions are mediated by the electromagnetic field.
- One type of UPC is the photonuclear interactions, in which a photon from the projectile interacts with the hadronic component of target.
- Good reasons to study electromagnetic interactions at hadron colliders:
(1) Range of accessible photon energies are strongly increased at the LHC and the equivalent luminosities are higher than at existing electron colliders.
(2) Using nuclear beams effects of very strong fields can be studied (small- x physics, nuclear shadowing, ...).

Motivation

- Concerning quarkonium production in UPCs, if the photon spectrum is known, $d \sigma / d y$ is a direct measure of the meson photoproduction cross section for a given photon energy.
- In the LHC (PbPb mode) the photon energies for production around mid-rapidity correspond to a gluon x-values of 6×10^{-4} for J / Ψ production and 2×10^{-3} for Υ production. Lower values of x are reached away from mid-rapidity.
- Experimental feasibility of studying exclusive meson production in UPCs has been demonstrated at LHC and supported by previous experience at RHIC.
- Here we focus on $\psi(1 S)$ and $\psi(2 S)$ states. Large theoretical uncertainties, mainly for the photonuclear crosss section.

UPCs of heavy ions

- The electromagnetic field of a relativistic particle corresponds to an equivalent flux of photons.
- In the case of interaction between two nuclei, in general the photon spectrum is computed as a function of impact parameter in a semi-classical approach.
- Thus, interactions where the nuclei interact strongly can be excluded (roughly speaking, considering $b>2 R_{A}$).
- We consider an analytical expression for photon spectrum:

$$
\frac{d n_{\gamma}}{d k}=\frac{2 Z^{2} \alpha_{e m}}{\pi k}\left[\xi K_{0}(\xi) K_{1}(\xi)+\frac{\xi^{2}}{2}\left(K_{1}^{2}(\xi)-K_{0}^{2}(\xi)\right)\right],
$$

- The photon energy is k and $\xi=2 k R_{A} / \gamma_{L}$.

Photoproduction in $p p$ collisions

- In $p p$ case, the photon energy spectrum is given by a modified version of Wiezsäcker-Williams approximation:

$$
\frac{d n_{\gamma}}{d k}=\frac{\alpha_{e m}}{2 \pi k}\left[1+\left(1-\frac{2 k}{\sqrt{s}}\right)^{2}\right]\left(\ln \xi-\frac{11}{6}+\frac{3}{\xi}-\frac{3}{2 \xi^{2}}+\frac{1}{3 \xi^{3}}\right)
$$

- Photon energy is k and \sqrt{s} is the hadron-hadron centre-of-mass energy.
- Given the Lorentz factor of a single beam, $\gamma_{L}=\sqrt{s} /\left(2 m_{p}\right)$, one has that $\xi=1+\left(Q_{0}^{2} / Q_{\text {min }}^{2}\right)$ with $Q_{0}^{2}=0.71 \mathrm{GeV}^{2}$ and $Q_{\text {min }}^{2}=\omega^{2} / \gamma_{L}^{2}$ 。

Quarkonium photoproduction in $p p$

- The rapidity y of the produced vector meson is related to its mass M_{V} and the photon energy through

$$
k=\left(M_{V} / 2\right) \exp (y) .
$$

- The rapidity distribution can be obtained as

$$
\frac{d \sigma(p p \rightarrow p p+V)}{d y}=S_{\text {gap }}^{2}\left[k_{1} \frac{d n_{\gamma}}{d k_{1}} \sigma_{\gamma p \rightarrow V p}\left(k_{1}\right)+k_{2} \frac{d n_{\gamma}}{d k_{2}} \sigma_{\gamma p \rightarrow V p}\left(k_{2}\right)\right]
$$

- Here, $k_{1,2}=\left(M_{V} / 2\right) \exp (\pm y)$. At mid-rapidity, $k_{1}=k_{2}$ and the contributions from the two terms are equal.
- The square of the γp centre-of-mass energy is given by $W_{\gamma p}^{2} \simeq 2 k \sqrt{s}$.
- The absorptive corrections due to spectator interactions between the two hadrons are represented by the factor $S_{\text {gap }}$.

Model for photoproduction cross section

- We consider the color dipole approach to compute the photoproduction cross section (valid for $x \lesssim 10^{-2}$).

$$
\mathcal{A}(\gamma p \rightarrow V p)=-i \int d z d^{2} \boldsymbol{r} \Psi_{V}^{*}(z, r) \sigma_{d i p}\left(x, x^{\prime}, \boldsymbol{r}\right) \Psi_{\gamma}\left(z, r, Q^{2}\right)
$$

- The basic quantities are the photon and vector meson wavefunction (Ψ_{γ} and Ψ_{V}) as well as the dipole-target cross section, $\sigma_{d i p}(x, r)$.

Model for photoproduction cross section

- The cross section for exclusive production of charmonia off a nucleon target is given by:

$$
\sigma_{\gamma^{*} p \rightarrow V p}\left(s, Q^{2}\right)=\frac{1}{16 \pi B_{V}}\left|\mathcal{A}\left(x, Q^{2}, \Delta=0\right)\right|^{2}
$$

- B_{V} is the diffractive slope parameter in the reaction $\gamma^{*} p \rightarrow V p$. Here, we consider the energy dependence of the slope using the Regge motivated expression:

$$
\begin{aligned}
B_{V}\left(W_{\gamma p}\right) & =b_{e l}^{V}+2 \alpha^{\prime} \log \left(\frac{W_{\gamma p}}{W_{0}}\right)^{2} \\
\alpha^{\prime} & =0.25 \mathrm{GeV}^{-2} \text { and } W_{0}=90 \mathrm{GeV}
\end{aligned}
$$

- We used measured slopes at $W_{\gamma p}=90 \mathrm{GeV}$, i.e.
$b_{e l}^{\psi(1 S)}=4.99 \pm 0.41 \mathrm{GeV}^{-2}$ and $b_{e l}^{\psi(2 S)}=4.31 \pm 0.73 \mathrm{GeV}^{-2}$ (H1@HERA).

Model for the meson wavefunction

- We consider the boosted gaussian wavefunction:

$$
\begin{aligned}
\psi_{\lambda, h \bar{h}}^{n S} & =\sqrt{\frac{N_{c}}{4 \pi}} \frac{\sqrt{2}}{z(1-z)}\left\{\delta_{h, \bar{h}} \delta_{\lambda, 2 h} m_{c}+i(2 h) \delta_{h,-\bar{h}} e^{i \lambda \phi}\right. \\
& \left.\times\left[(1-z) \delta_{\lambda,-2 h}+z \delta_{\lambda, 2 h}\right] \partial_{r}\right\} \phi_{n S}(z, r)
\end{aligned}
$$

- For the $1 S$ state one has explicitly:

$$
\begin{aligned}
\phi_{1 S}(r, z) & =N_{T}^{(1 S)}\left\{4 z(1-z) \sqrt{2 \pi R_{1 S}^{2}} \exp \left[-\frac{m_{q}^{2} R_{1 S}^{2}}{8 z(1-z)}\right]\right. \\
& \left.\times \exp \left[-\frac{2 z(1-z) r^{2}}{R_{1 S}^{2}}\right] \exp \left[\frac{m_{q}^{2} R_{1 S}^{2}}{2}\right]\right\}
\end{aligned}
$$

- Parameters $\left(R_{1 S}^{2}, N_{T}\right)$ obtained using the normalization property of wavefunctions and the predicted decay widths.

Model for the meson wavefunction

- The radial wavefunction of the $\psi(2 S)$ is obtained by the following modification of the $1 S$ state:

$$
\begin{aligned}
& \phi_{2 S}(r, z)=N_{T}^{(2 S)}\left\{4 z(1-z) \sqrt{2 \pi R_{2 S}^{2}} \exp \left[-\frac{m_{q}^{2} R_{2 S}^{2}}{8 z(1-z)}\right]\right. \\
\times & \exp \left[-\frac{2 z(1-z) r^{2}}{R_{2 S}^{2}}\right] \exp \left[\frac{m_{q}^{2} R_{2 S}^{2}}{2}\right] \\
\times & {\left.\left[1-\alpha\left(1+m_{q}^{2} R_{2 S}^{2}-\frac{m_{q}^{2} R_{2 S}^{2}}{4 z(1-z)}+\frac{4 z(1-z)}{R_{2 S}^{2}} r^{2}\right)\right]\right\} }
\end{aligned}
$$

- Parameters α and $R_{2 S}$ are constrained from the orthogonality conditions for the meson wavefunction.

Dipole-proton cross section

- We take parameterization based on the saturation physics [lancu-Itakura-Munier, PLB590:199, 2004]:

$$
\sigma_{d i p}^{\mathrm{CGC}}(x, r)=\sigma_{0} \begin{cases}\mathcal{N}_{0}\left(\frac{\bar{\tau}^{2}}{4}\right)^{\gamma_{\mathrm{eff}}(x, r)}, & \text { for } \bar{\tau} \leq 2 \\ 1-\exp \left[-a \ln ^{2}(b \bar{\tau})\right], & \text { for } \bar{\tau}>2\end{cases}
$$

where $\bar{\tau}=\boldsymbol{r} Q_{\text {sat }}$ and $\gamma_{\text {eff }}(x, r)=\gamma_{\text {sat }}+\frac{\ln (2 / \tilde{\tau})}{\kappa \lambda Y}$, where $\gamma_{\text {sat }}=0.63, \kappa=9$ and $Y=\ln (1 / x)$.

- Saturation scale is given by $Q_{\text {sat }}=\left(x_{0} / x\right)^{\lambda / 2}$.
- Fit to small- x HERA data: $x_{0}=2.7 \times 10^{-7}, \lambda=0.177$ and $\sigma_{0}=35.7 \mathrm{mb}\left(\chi^{2} /\right.$ dof $=0.9$ for $\left.Q^{2}=[0.5,45]\right)$.
- Ref.: Kowalski, Motyka and Watt, PRD74: 074016 (2006).
- Quark masses are $m_{q}=0.14 \mathrm{GeV}$ and $m_{c}=1.4 \mathrm{GeV}$.

Corrections for exclusive processes

- The real part of amplitude can be accounted for by multiplying the differential cross section by a factor $\left(1+\beta^{2}\right)$.
- The ratio of real to imaginary parts is given by:

$$
\beta=\tan \left(\frac{\pi \alpha}{2}\right), \quad \text { where } \alpha \equiv \frac{\partial \ln [\mathcal{A}(\gamma N \rightarrow V N)]}{\partial \ln \left(W^{2}\right)}
$$

- For exclusive production, off-diagonal gluon distribution should be used, since the two exchanged gluons carry different fractions x and x^{\prime} of the proton's momentum.
- Off-forward effects can be (phenomenologically) accounted for by multiplying the differential cross section by a factor R_{g}^{2} [Shuvaev at al., Phys. Rev D60 014015 (1999)], where

$$
R_{g}=\frac{2^{2 \alpha+3}}{\sqrt{\pi}} \frac{\Gamma\left(\alpha+\frac{5}{2}\right)}{\Gamma(\alpha+4)}
$$

Numerical results for $p p @$ LHC

Photoproduction of $V=J / \Psi, \psi(2 S)$ at 7 TeV :

- Fairly describes the measured forward rapidity region.
- With $S_{\text {gap }}^{2}=0.8$ we find in the interval $2 \leq y \leq 4.5$

$$
\begin{aligned}
& \sigma(p p \rightarrow p+J / \psi+p) \times \operatorname{Br}\left(J / \psi \rightarrow \mu^{+} \mu^{-}\right)=698 \mathrm{pb} \text { and } \\
& \sigma(p p \rightarrow p+\psi(2 S)+p) \times \operatorname{Br}\left(\psi(2 S) \rightarrow \mu^{+} \mu^{-}\right)=18 \mathrm{pb} .
\end{aligned}
$$

Quarkonium production in UPCs

- The total exclusive (coherent) cross section can be written as an integral over the equivalent photon energy:

$$
\sigma(A+A \rightarrow A+A+V)=2 \int \sigma_{\gamma+A \rightarrow V+A}(k) \frac{d n_{\gamma}}{d k} d k
$$

- The rapidity distribution reads now as:

$$
\frac{d \sigma(A A \rightarrow A A+V)}{d y}=k_{1} \frac{d n_{\gamma}}{d k_{1}} \sigma_{\gamma A \rightarrow V A}\left(k_{1}\right)+k_{2} \frac{d n_{\gamma}}{d k} \sigma_{\gamma A \rightarrow V A}\left(k_{2}\right),
$$

- Once again, one has $k_{1,2}=\left(M_{V} / 2\right) \exp (\pm y)$.
- Now, a model for the photonuclear cross section is in order.
- Information on nuclear effects should be included.

Photonuclear cross section

- The photonuclear cross section can be written as

$$
\sigma(\gamma A \rightarrow V A)=\left.\frac{d \sigma(\gamma A \rightarrow V A)}{d t}\right|_{t=0} \int_{t_{\min }}^{\infty} d|t|\left|F_{A}(t)\right|^{2}
$$

- $F_{A}(t)$ is the nuclear form factor and $t_{\text {min }}=\left(M_{V}^{2} / 4 k \gamma_{L}\right)^{2}$.
- Different implementations of $\left.\frac{d \sigma(\gamma A \rightarrow V A)}{d t}\right|_{t=0}$ in literature.
- Klein and Nystrand: consider hadronic shadowing negligible for J / Ψ and $\Upsilon,\left.\frac{d \sigma(\gamma A \rightarrow V A)}{d t}\right|_{t=0}=\left.A^{2} \frac{d \sigma(\gamma p \rightarrow V p)}{d t}\right|_{t=0}$. Last quantity is taken from a fit to HERA data for vector mesons (and its corresponding extrapolation).
- M. Strikman and collaborators: consider leading twist shadowing $\left.\frac{d \sigma(\gamma A \rightarrow V A)}{d t}\right|_{t=0}=\left.\frac{\left[x g_{A}(x, \bar{Q})\right]^{2}}{\left[x g_{N}(x, Q)\right]^{2}} \frac{d \sigma(\gamma p \rightarrow V p)}{d t}\right|_{t=0}$. Last quantity also taken from fits to HERA data.

Model for photonuclear reaction

- We consider the color dipole approach to compute the photonuclear cross section.

$$
\sigma(\gamma A \rightarrow V A)=\int d^{2} b \mid \int d z d^{2} \boldsymbol{r} \Psi_{V}^{*}(z, r) \mathcal{N}^{\mathrm{nuc}}(x, \boldsymbol{r} ; b) \Psi_{\gamma}\left(z, r, Q^{2},\right.
$$

- Dipole amplitude can be extended for nuclear case, with simple expression at large coherent length:

$$
\mathcal{N}^{\mathrm{nuc}}(x, r ; b)=\left\{1-\exp \left[-\frac{1}{2} A T_{A}(b) \sigma_{d i p}(x, \boldsymbol{r})\right]\right\}
$$

- Nuclear thickness function $T_{A}(b)$ (from Wood-Saxon), where b is the impact parameter of the center of the dipole relative to the center of the nucleus.
- The nuclear effect included via eikonalization above corresponds to the lowest $c \bar{c}$ Fock component of photon.

Theoretical remark

- The previous expressions do not include any correction for gluons shadowing, but rather correspond to shadowing of sea quarks in nuclei.
- Although $\sigma_{d i p}$ includes all possibles effects of gluon radiation, the eikonal assumes that none of radiated gluons take part in multiple interactions in the nucleus.
- The leading order correction corresponding to gluon shadowing comes from the eikonalization of the next Fock component $c \bar{c}+g$.

Numerical results - J / Ψ

Photoproduction of $V=J / \psi(3097)$:

- Photonuclear cross section as a function of $W_{\gamma A}$.
- Extrapolation to $W_{\gamma A}=1 \mathrm{TeV}$.
- Differential cross section as a function of $|t|$.

Numerical results - rapidity distribution

Photoproduction of $V=J / \psi, \psi(2 S)$ at 2.76 TeV :

- Overestimation of ALICE data for central rapidity.
- Message is that nuclear effects in model are weaker than expected from data.
- Possible modification $\sigma_{d i p} \Rightarrow R_{G}(x, b) \sigma_{d i p}$. Use leading twist shadowing model.

Incoherent cross section

- The incoherent processes can also be computed in high energies where the large coherence length $l_{c} \gg R_{A}$ is fairly valid.
- In such case the transverse size of $c \bar{c}$ dipole is frozen by Lorentz effects.
- The expression for the incoherent cross section can be written as:

$$
\begin{aligned}
\sigma\left(\gamma A \rightarrow V A^{*}\right) & =\frac{1}{16 \pi B_{V}(s)} \int d^{2} b T_{A}(b) \\
& \left.\times\left|\left\langle\Psi^{V}\right| \sigma_{d i p}(x, \boldsymbol{r}) \exp \left[-\frac{1}{2} \sigma_{d i p}(x, \boldsymbol{r}) T_{A}(b)\right]\right| \Psi^{\gamma}\right\rangle \mid
\end{aligned}
$$

- The bracket means overlaping on the photon/meson wavefunctions.

Numerical result - incoherent case

Incoherent $J / \psi, \psi(2 S)$ photoproduction in $A A$ collisions @ LHC

- Fairly description of J / ψ ALICE data at central rapidity.
- Some space for further suppression. Not compared to coherent case.

Comments and remarks

- In the $p A$ collisions the quasireal photons can be emmited by both the nucleus and the proton.
- The expression for the cross section takes the form

$$
\frac{d \sigma(p A \rightarrow p A+V)}{d y}=\frac{d n_{\gamma}^{A}}{d k_{1}} \sigma_{\gamma p \rightarrow V p}(y)+\frac{d n_{\gamma}^{p}}{d k_{2}} \sigma_{\gamma A \rightarrow V A}(-y),
$$

- $\frac{d n_{\gamma}^{p}}{d k_{2}}$ is the photon flux of the accelerated proton.
- $\frac{d n_{\gamma}^{A}}{d k_{2}}$ is the photon flux of the accelerated nucleus.
- Allow to do phenomenology for γp and γA interactions.

Numerical result - $p A$ @ LHC

Preliminary result for J / ψ photoproduction in $p A$ collisions @ LHC

- Nuclear effects are quite important at large rapidities.
- Compared to $\sigma(\gamma A \rightarrow V A)=A^{4 / 3} \sigma(\gamma p \rightarrow V p)$.

Summary

- We compute the charmonium photoproduction $(J / \Psi$ and $\psi(2 S)$) production in $p p$ and PbPb scattering at the LHC.
- For the photonuclear cross section we consider the color dipole approach, with a particular phenomenological model for the dipole amplitude.
- The theoretical prediction for $p p$ case is consistent with LHCb data on forward rapidity.
- In PbPb the predicted coherent cross section has weaker nuclear effect than expected from ALICE data at central rapidity. Incoherent case is somehow consistent with ALICE data.

