Hadron Spectroscopy at COMPASS and ALICE plus related experiments

Suh-Urk CHUNG

Senior Scientist Emeritus Brookhaven National Lab. Upton, NY, USA Physics Department CERN 1211 Genève, Suisse

Physik-Department E18 Tech. Universität München Garching, Germany Department of Physics Pusan National Univ. Busan 609-735, Korea

Based on the slides provided by Boris Grube, TU/München

EDS Blois 2013: The 15th Conference on Elastic and Diffractive Scattering Saariselkä, Finland; 09–13 September 2013

Prelude

• Breit-Wigner Form for $\{m_0, \Gamma_0\}$ for $X^0 \to \pi^+ \pi^-$: Let the spin $J = \ell$, where ℓ = the orbital angular momentum

$$\Delta_{\ell}(m) = \frac{m_0 \,\Gamma_{\ell}(m)}{m_0^2 - m^2 - i \,m_0 \,\Gamma_{\ell}(m)} = \exp\left[i \,\delta_{\ell}(m)\right] \,\sin \delta_{\ell}(m)$$

$$\Gamma_{\ell}(m) = \Gamma_0 \,\frac{F_{\ell}(m)}{F_{\ell}(m_0)}, \quad \Gamma_{\ell}(m_0) = \Gamma_0 \,F_0(m) = F_0(m_0) = 1 \quad \text{for} \quad \ell = 0$$

At
$$m = m_0$$
,
 $\delta_{\ell}(m) = \frac{\pi}{2}$
 $\frac{d\delta_{\ell}(m)}{dm} > 0 = \max \longrightarrow$ the rising phase motion

• Blatt-Weisskopf barrier factors for $F_{\ell}(m)$:

F. von Hippel and C. Quigg, Phys. Rev. 5, 624 (1972)

Prelude

• Breit-Wigner Form for $\{m_0, \Gamma_0\}$ for $X^0 \to \pi^+ \pi^-$: Let the spin $J = \ell$, where ℓ = the orbital angular momentum

$$\Delta_{\ell}(m) = \frac{m_0 \,\Gamma_{\ell}(m)}{m_0^2 - m^2 - i \,m_0 \,\Gamma_{\ell}(m)} = \exp\left[i \,\delta_{\ell}(m)\right] \,\sin \delta_{\ell}(m)$$

$$\Gamma_{\ell}(m) = \Gamma_0 \,\frac{F_{\ell}(m)}{F_{\ell}(m_0)}, \quad \Gamma_{\ell}(m_0) = \Gamma_0 \,F_0(m) = F_0(m_0) = 1 \quad \text{for} \quad \ell = 0$$

At
$$m = m_0$$
,
 $\delta_{\ell}(m) = \frac{\pi}{2}$
 $\frac{d\delta_{\ell}(m)}{dm} > 0 = \max \longrightarrow$ the rising phase motion

• Blatt-Weisskopf barrier factors for $F_{\ell}(m)$:

F. von Hippel and C. Quigg, Phys. Rev. 5, 624 (1972)

• An introduction to quarkonia and beyond

- <u>Diffractive Dissociation</u>: Patial-wave analysis by COMPASS collaboration on $(3\pi)^-$
- <u>Central Production</u>: Future prospects for ALICE on $(2\pi)^0$, $(4\pi)^0$
- Concluding remarks

- An introduction to quarkonia and beyond
- <u>Diffractive Dissociation</u>: Patial-wave analysis by COMPASS collaboration on $(3\pi)^-$
- <u>Central Production</u>:
 - Future prospects for ALICE on $(2\pi)^0$, $(4\pi)^0$
- Concluding remarks

- An introduction to quarkonia and beyond
- <u>Diffractive Dissociation</u>: Patial-wave analysis by COMPASS collaboration on $(3\pi)^-$
- <u>Central Production</u>: Future prospects for ALICE on $(2\pi)^0$, $(4\pi)^0$
- Concluding remarks

- An introduction to quarkonia and beyond
- <u>Diffractive Dissociation</u>: Patial-wave analysis by COMPASS collaboration on $(3\pi)^-$
- <u>Central Production</u>: Future prospects for ALICE on $(2\pi)^0$, $(4\pi)^0$
- Concluding remarks

QCD: Gluonic d.o.f. should manifest themselves in hadron spectra

Hybrids $|q\bar{q}g\rangle$

- Resonances with excited glue
 - Definition of "excited glue" model dependent
- Angular momentum of glue component \implies *all* J^{PC} possible
- Lightest predicted hybrid: spin-exotic *J*^{PC}
 - Mass 1.3 to 2.2 GeV/c²
 - Experimental candidates π₁(1400, 1600, 2000)

Glueballs |gg|

- Bound states consisting purely of gluons
- Lightest predicted glueball: ordinary J^{PC} = 0⁺⁻
 - Will strongly mix with nearby conventional $J^{PC} = 0^{++}$ states
 - Mass 1.5 to 2.0 GeV/c²
 - Experimental candidate f₀(1500); glueball interpretation disputed

QCD: Gluonic d.o.f. should manifest themselves in hadron spectra

Hybrids $|q\bar{q}g\rangle$

- Resonances with excited glue
 - Definition of "excited glue" model dependent
- Angular momentum of glue component \implies all J^{PC} possible
- Lightest predicted hybrid: spin-exotic $J^{PC} = 1^{-+}$
 - Mass 1.3 to 2.2 GeV/*c*²
 - Experimental candidates π₁(1400, 1600, 2000)

Glueballs |gg|

- Bound states consisting purely of gluons
- Lightest predicted glueball: ordinary J^{PC} = 0⁺
 - Will strongly mix with nearby conventional $J^{PC} = 0^{++}$ states
 - Mass 1.5 to 2.0 GeV/ c^2
 - Experimental candidate f₀(1500); glueball interpretation disputed

QCD: Gluonic d.o.f. should manifest themselves in hadron spectra

Hybrids $|q\bar{q}g\rangle$

- Resonances with excited glue
 - Definition of "excited glue" model dependent
- Angular momentum of glue component \implies all J^{PC} possible
- Lightest predicted hybrid: spin-exotic $J^{PC} = 1^{-+}$
 - Mass 1.3 to 2.2 GeV/c²
 - Experimental candidates $\pi_1(1400, 1600, 2000)$

Glueballs |gg

- Bound states consisting purely of gluons
- Lightest predicted glueball: ordinary J^{PC} = 0⁺
 - Will strongly mix with nearby conventional $J^{PC} = 0^{++}$ states
 - Mass 1.5 to 2.0 GeV/ c^2
 - Experimental candidate *f*₀(1500); glueball interpretation disputed

QCD: Gluonic d.o.f. should manifest themselves in hadron spectra

Hybrids $|q\bar{q}g\rangle$

- Resonances with excited glue
 - Definition of "excited glue" model dependent
- Angular momentum of glue component \implies *all* J^{PC} possible
- Lightest predicted hybrid: spin-exotic $J^{PC} = 1^{-+}$
 - Mass 1.3 to 2.2 GeV/c²
 - Experimental candidates $\pi_1(1400, 1600, 2000)$

Glueballs $|gg\rangle$

- Bound states consisting purely of gluons
 - Lightest predicted glueball: ordinary $J^{PC} = 0^{+1}$
 - Will strongly mix with nearby conventional $J^{PC} = 0^{++}$ states
 - Mass 1.5 to 2.0 GeV/c²
 - Experimental candidate $f_0(1500)$; glueball interpretation disputed

QCD: Gluonic d.o.f. should manifest themselves in hadron spectra

Hybrids $|q\bar{q}g\rangle$

- Resonances with excited glue
 - Definition of "excited glue" model dependent
- Angular momentum of glue component \implies *all* J^{PC} possible
- Lightest predicted hybrid: spin-exotic $J^{PC} = 1^{-+}$
 - Mass 1.3 to 2.2 GeV/*c*²
 - Experimental candidates $\pi_1(1400, 1600, 2000)$

Glueballs $|gg\rangle$

- Bound states consisting purely of gluons
- Lightest predicted glueball: ordinary $J^{PC} = 0^{++}$
 - Will strongly mix with nearby conventional $J^{PC} = 0^{++}$ states
 - Mass 1.5 to 2.0 GeV/c²
 - Experimental candidate $f_0(1500)$; glueball interpretation disputed

Finding states beyond the CQM is difficult

- Physical mesons = linear superpositions of *all* allowed basis states: |qq̄⟩, |qq̄g⟩, |gg⟩, |q²q̄²⟩,...
 - Amplitudes determined by QCD interactions
- Resonance classification in quarkonia, hybrids, glueballs, tetraquarks, etc. assumes dominance of *one* basis state
 - In general "configuration mixing"
 - Disentanglement of contributions difficult

Special case: "exotic" mesons

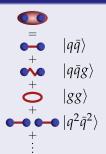
- Have quantum numbers forbidden for $|q\bar{q}
 angle$
 - Discovery \implies unambiguous proof for meson states beyond CQM
- Especially attractive:

"spin-exotic" states with $J^{PC} = 0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, 3^{-+}, .$

 $|q\bar{q}\rangle$

 $|q\bar{q}g\rangle$

 $|gg\rangle$ $|q^2\bar{q}^2\rangle$


Finding states beyond the CQM is difficult

- Physical mesons = linear superpositions of all allowed basis states: |qq̄⟩, |qq̄g⟩, |gg⟩, |q²q̄²⟩,...
 - Amplitudes determined by QCD interactions
- Resonance classification in quarkonia, hybrids, glueballs, tetraquarks, etc. assumes dominance of *one* basis state
 - In general "configuration mixing"
 - Disentanglement of contributions difficult

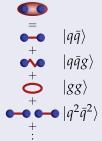
Special case: "exotic" mesons

- Have quantum numbers forbidden for $|q\bar{q}
 angle$
 - Discovery \implies unambiguous proof for meson states beyond CQM
- Especially attractive:

"spin-exotic" states with $J^{PC} = 0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, 3^{-+}, .$

Finding states beyond the CQM is difficult

- Physical mesons = linear superpositions of *all* allowed basis states: |qq̄⟩, |qq̄g⟩, |gg⟩, |q²q̄²⟩,...
 - Amplitudes determined by QCD interactions
- Resonance classification in quarkonia, hybrids, glueballs, tetraquarks, etc. assumes dominance of *one* basis state
 - In general "configuration mixing"
 - Disentanglement of contributions difficult


Special case: "exotic" mesons

- Have quantum numbers forbidden for $|q\bar{q}\rangle$
 - Discovery \implies unambiguous proof for meson states beyond CQM
- Especially attractive:

Suh-Urk CHUNG

"spin-exotic" states with $J^{PC} = 0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, 3^{-+}, \dots$

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production

E/HCAL2

E/HCAL1

The COMPASS Experiment at the CERN SPS

Experimental Setup

NIM A 577, 455 (2007)

Fixed-target experiment

- Two-stage spectrometer
- Large acceptance over wide kinematic range
- Electromagnetic and hadronic calorimeters
- Beam and final-state particle ID (CEDARs, RICH)

RPD + Target

Suh-Urk CHUNG

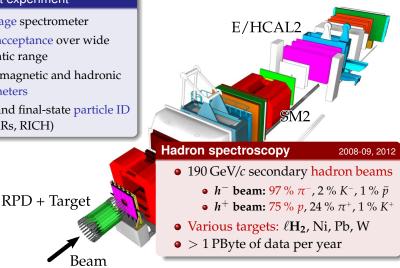
BNL / CERN / TU München / PNU

⊰eam

SM

RICF

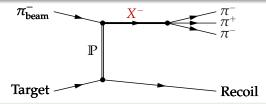
Hadron spectroscopy Conclusions and Outlook


The COMPASS Experiment at the CERN SPS

Experimental Setup

NIM A 577, 455 (2007)

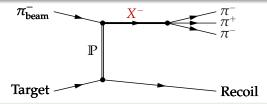
Fixed-target experiment


- Two-stage spectrometer
- Large acceptance over wide kinematic range
- Electromagnetic and hadronic calorimeters
- Beam and final-state particle ID (CEDARs, RICH)

BNL / CERN / TU München / PNU

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production

Production of Hadrons in Diffractive Dissociation BNL E852, VES, COMPASS

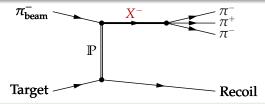


• Soft scattering of beam hadron off nuclear target (remains intact)

- Beam particle is excited into intermediate state X
- X decays into *n*-body final state
- High \sqrt{s} , low $t' = |t| |t|_{min}$: Pomeron exchange dominant
- Rich spectrum: large number of overlapping and interfering X
- **Goal:** use kinematic distribution of final-state particles to
 - Disentangle all resonances X
 - Determine their mass, width, and quantum numbers
- **Method:** partial-wave analysis (PWA)

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production

Production of Hadrons in Diffractive Dissociation BNL E852, VES, COMPASS

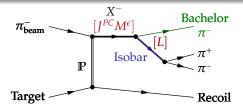


• Soft scattering of beam hadron off nuclear target (remains intact)

- Beam particle is excited into intermediate state X
- X decays into *n*-body final state
- High \sqrt{s} , low $t' = |t| |t|_{min}$: Pomeron exchange dominant
- Rich spectrum: large number of overlapping and interfering X
- **Goal:** use kinematic distribution of final-state particles to
 - Disentangle all resonances X
 - Determine their mass, width, and quantum numbers
- Method: partial-wave analysis (PWA)

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production

Production of Hadrons in Diffractive Dissociation BNL E852, VES, COMPASS



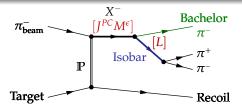
• Soft scattering of beam hadron off nuclear target (remains intact)

- Beam particle is excited into intermediate state X
- X decays into *n*-body final state
- High \sqrt{s} , low $t' = |t| |t|_{min}$: Pomeron exchange dominant
- Rich spectrum: large number of overlapping and interfering X
- Goal: use kinematic distribution of final-state particles to
 - Disentangle all resonances *X*
 - Determine their mass, width, and quantum numbers
- Method: partial-wave analysis (PWA)

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production

Diffractive Dissociation of π^- into $\pi^-\pi^+\pi^-$ Final State BNL E852, VES, COMPASS

Isobar model: X^- decay is chain of successive two-body decays

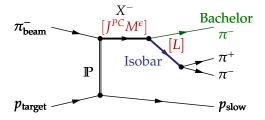

"Wave": unique combination of isobar and quantum numbers
 Full wave specification (in reflectivity basis): J^{PC}M^e[isobar]L

Fit model: $\sigma(m_X, \tau) = \sigma_0 \sum_{\epsilon \lambda \lambda'} \left| \sum_{\text{waves}} T_{\text{wave}}(m_X) A_{\text{wave}}(m_X, \tau) \right|$

- Calculable decay amplitudes $A_{wave}(m_X, \tau)$
- Transition amplitudes $T_{wave}(m_X)$ determined from multi-dimensional fit to final-state kinematic distributions taking into account interference effects

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production

Diffractive Dissociation of π^- into $\pi^-\pi^+\pi^-$ Final State BNL E852, VES, COMPASS


Isobar model: X^- decay is chain of successive two-body decays

"Wave": unique combination of isobar and quantum numbers
 Full wave specification (in reflectivity basis): J^{PC}M^e[isobar]L

Fit model:
$$\sigma(m_X, \tau) = \sigma_0 \sum_{\epsilon \lambda \lambda'} \left| \sum_{\text{waves}} T_{\text{wave}}(m_X) A_{\text{wave}}(m_X, \tau) \right|^2$$

- Calculable decay amplitudes $A_{wave}(m_X, \tau)$
- Transition amplitudes $T_{wave}(m_X)$ determined from multi-dimensional fit to final-state kinematic distributions taking into account interference effects

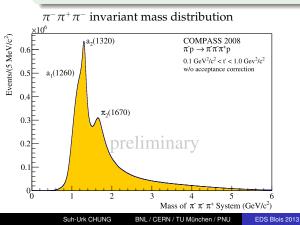
Search for spin-exotic mesons in pion diffraction Scalar mesons in central production

- 190 GeV/c negative hadron beam: 97 % π^- , 2 % K^- , 1 % \bar{p}
- Liquid hydrogen target
- Recoil proton *p*_{slow} measured by RPD
- Kinematic range $0.1 < t' < 1.0 \, (\text{GeV}/c)^2$

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production

PWA of $\pi^- \, p ightarrow \pi^- \pi^+ \pi^- \, p_{ m slow}$

World's largest diffractive 3π data set: \approx **50 M exclusive events**

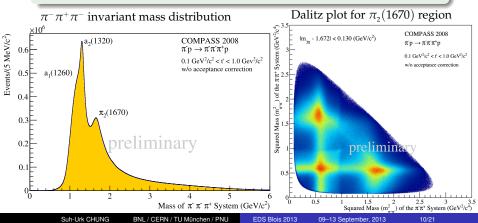

- Challenging analysis
 - Needs precise understanding of apparatus
 - Test of analysis Models

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production

PWA of $\pi^- \, p ightarrow \pi^- \pi^+ \pi^- \, p_{ m slow}$

World's largest diffractive 3π data set: \approx **50 M exclusive events**

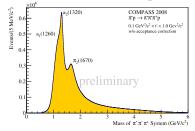
- Challenging analysis
 - Needs precise understanding of apparatus
 - Test of analysis Models

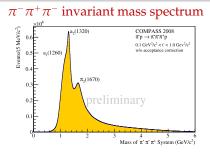


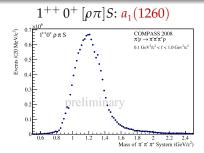
Search for spin-exotic mesons in pion diffraction Scalar mesons in central production

PWA of $\pi^- \, p ightarrow \pi^- \pi^+ \pi^- \, p_{ m slow}$

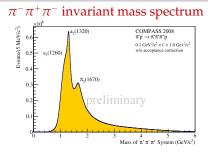
World's largest diffractive 3π data set: \approx **50 M exclusive events**

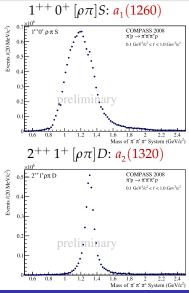

- Challenging analysis
 - Needs precise understanding of apparatus
 - Test of analysis Models

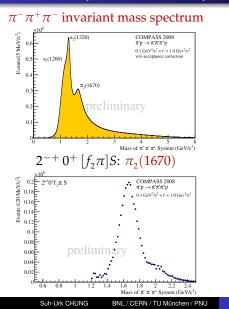

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production

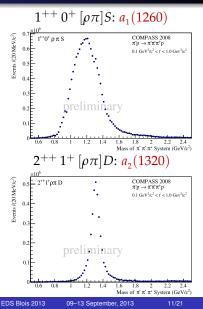

PWA of $\pi^- \, p ightarrow \pi^- \pi^+ \pi^- \, p_{ m slow}$

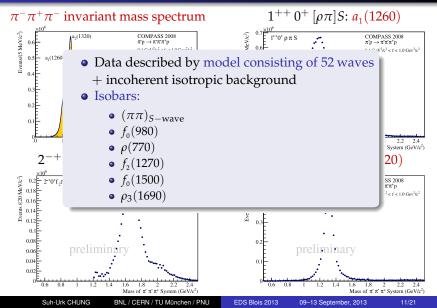
$\pi^{-}\pi^{+}\pi^{-}$ invariant mass spectrum



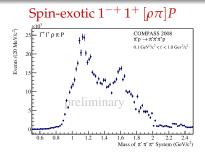

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production




Search for spin-exotic mesons in pion diffraction Scalar mesons in central production

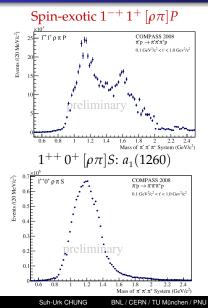


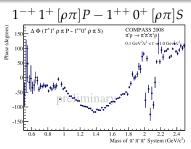
Search for spin-exotic mesons in pion diffraction Scalar mesons in central production



Search for spin-exotic mesons in pion diffraction Scalar mesons in central production

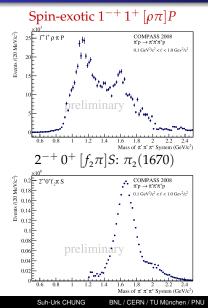
Search for spin-exotic mesons in pion diffraction Scalar mesons in central production

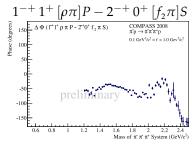

PWA of $\pi^- \, p ightarrow \pi^- \pi^+ \pi^- \, p_{ m slow}$



- Structure around 1.1 GeV/*c*² unstable w.r.t. fit model
- Enhancement around 1.6 GeV/c²
- Phase motion w.r.t. to tail of $a_1(1260)$
- Phase locked w.r.t. $\pi_2(1670)$

• Ongoing analysis


Search for spin-exotic mesons in pion diffraction Scalar mesons in central production



- Structure around 1.1 GeV/*c*² unstable w.r.t. fit model
- Enhancement around 1.6 GeV/c²
- Phase motion w.r.t. to tail of $a_1(1260)$
- Phase locked w.r.t. $\pi_2(1670)$
- Ongoing analysis

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production

- Structure around 1.1 GeV/*c*² unstable w.r.t. fit model
- Enhancement around 1.6 GeV/c²
- Phase motion w.r.t. to tail of $a_1(1260)$
- Phase locked w.r.t. $\pi_2(1670)$
- Ongoing analysis

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production

PWA of $\pi^-\,p o \pi^-\pi^+\pi^-\,p_{ m slow}$

Summary

Understanding of spin-exotic 1^{-+} wave is work in progress

- COMPASS: intensity in $\rho\pi$ and $\eta'\pi$ channels
 - Similar to BNL E852 and VES
 - Resonance interpretation still unclear
 - As CLAS: no signal in photoproduction
- Other spin-exotic 1⁻⁺ seen in channels
 - $f_1(1285)\pi$ (E852, VES)
 - $b_1(1235)\pi$ (E852, VES, Crystal Barrel)
 - COMPASS will analyze these channels as well

Improvements of wave set and isobar parameterization

PWA of $\pi^-\,p o \pi^-\pi^+\pi^-\,p_{ m slow}$

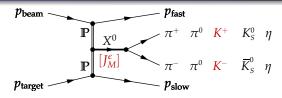
Summary

Understanding of spin-exotic 1^{-+} wave is work in progress

- COMPASS: intensity in $\rho\pi$ and $\eta'\pi$ channels
 - Similar to BNL E852 and VES
 - Resonance interpretation still unclear
 - As CLAS: no signal in photoproduction
- Other spin-exotic 1⁻⁺ seen in channels
 - $f_1(1285)\pi$ (E852, VES)
 - $b_1(1235)\pi$ (E852, VES, Crystal Barrel)
 - COMPASS will analyze these channels as well
- Significant contributions from non-resonant Deck-like processes
 - Inclusion into fit model
- Exploit *t*'-dependence of partial-wave amplitudes
 - PWA in narrow m_{π⁻π⁺π⁻} and t' bins
- $\pi_{\text{beam}} = 1 \text{ sobar} \qquad \pi^{-}$ $\pi^{+} \qquad \pi^{-}$ π^{-} Target Recoil
- Improvements of wave set and isobar parameterization

Hadron spectroscopy Conclusions and Outlook

PWA of $\pi^- p ightarrow \pi^- \pi^+ \pi^- p_{slow}$


Summary

Understanding of spin-exotic 1^{-+} wave is work in progress

- COMPASS: intensity in $\rho\pi$ and $\eta'\pi$ channels
 - Similar to BNL E852 and VES
 - Resonance interpretation still unclear
 - As CLAS: no signal in photoproduction
- Other spin-exotic 1⁻⁺ seen in channels
 - $f_1(1285)\pi$ (E852, VES)
 - $b_1(1235)\pi$ (E852, VES, Crystal Barrel)
 - COMPASS will analyze these channels as well
- Significant contributions from non-resonant Deck-like processes
 - Inclusion into fit model
- Exploit *t*'-dependence of partial-wave amplitudes
 - PWA in narrow $m_{\pi^-\pi^+\pi^-}$ and t' bins
- π_{beam}^- Isobar π π P Target Recoil Improvements of wave set and isobar parameterization

Search for spin-exotic mesons in pion diffraction Scalar mesons in central production

Central Production COMPASS, CERN Omega (WA76, WA91, WA102)

Search for glueball candidates

- Glueballs: mesonic states with no valence quarks
- Lattice QCD simulations predict lightest glueballs to be scalars
 - Glueball would appear as supernumerous state
 - Strong mixing with conventional scalar mesons expected
 - Difficult to disentangle
- Pomeron-Pomeron fusion well-suited to search for glueballs
 - Isoscalar mesons produced at central rapidities
 - Scalar mesons dominant in this channel
 - Gluon-rich environment

COMPASS has acquired large data sets for many reactions

- Diffractive dissociation of p, π^- , and K^- on various targets
- Central production with p and π^- beams on proton target
- $\pi^-\gamma$ and $K^-\gamma$ Primakoff reactions on heavy targets

Main focus: search for mesonic states beyond the CQM

- Huge diffractive π⁻π⁺π⁻ data set: precision spectroscopy of light-quark isovector sector
- Spin-exotic $J^{PC} = 1^{-+}$ signals observed in π^- diffraction
 - $\pi^-\eta$ and $\pi^-\eta'$ channels
 - $\pi^-\pi^+\pi^-$ and $\pi^-\pi^0\pi^0$ final states
 - Resonance interpretation still unclear
- Study of scalar mesons in central production of $\pi\pi$, *KK*, and $\eta\eta$
 - π^- diffraction into $\pi^-\eta\eta$, $\pi^-\pi^+\pi^-\pi^+\pi^-$, $(\pi\pi K\bar{K})^-$,.
 - K^- diffraction into $K^-\pi^+$?
 - Radiative couplings of $a_2(1320)$ and $\pi_2(1670)$

COMPASS has acquired large data sets for many reactions

- Diffractive dissociation of p, π^- , and K^- on various targets
- Central production with p and π^- beams on proton target
- $\pi^-\gamma$ and $K^-\gamma$ Primakoff reactions on heavy targets

Main focus: search for mesonic states beyond the CQM

- Huge diffractive π⁻π⁺π⁻ data set: precision spectroscopy of light-quark isovector sector
- Spin-exotic $J^{PC} = 1^{-+}$ signals observed in π^- diffraction
 - $\pi^-\eta$ and $\pi^-\eta'$ channels
 - $\pi^-\pi^+\pi^-$ and $\pi^-\pi^0\pi^0$ final states
 - Resonance interpretation still unclear
- Study of scalar mesons in central production of $\pi\pi$, $K\bar{K}$, and $\eta\eta$
- Further analyses
 - π^- diffraction into $\pi^-\eta\eta$, $\pi^-\pi^+\pi^-\pi^+\pi^-$, $(\pi\pi K\overline{K})^-$, ...
 - K^- diffraction into $K^-\pi^+\pi$
 - Radiative couplings of $a_2(1320)$ and $\pi_2(1670)$

COMPASS has acquired large data sets for many reactions

- Diffractive dissociation of p, π^- , and K^- on various targets
- Central production with p and π^- beams on proton target
- $\pi^-\gamma$ and $K^-\gamma$ Primakoff reactions on heavy targets

Main focus: search for mesonic states beyond the CQM

- Huge diffractive π⁻π⁺π⁻ data set: precision spectroscopy of light-quark isovector sector
- Spin-exotic $J^{PC} = 1^{-+}$ signals observed in π^- diffraction
 - $\pi^-\eta$ and $\pi^-\eta'$ channels
 - $\pi^-\pi^+\pi^-$ and $\pi^-\pi^0\pi^0$ final states
 - Resonance interpretation still unclear

• Study of scalar mesons in central production of $\pi\pi$, $K\overline{K}$, and $\eta\eta$

- Further analyses
 - π^- diffraction into $\pi^-\eta\eta$, $\pi^-\pi^+\pi^-\pi^+\pi^-$, $(\pi\pi K\overline{K})^-$, ...
 - K^- diffraction into $K^-\pi^+\pi$
 - Radiative couplings of $a_2(1320)$ and $\pi_2(1670)$

COMPASS has acquired large data sets for many reactions

- Diffractive dissociation of p, π^- , and K^- on various targets
- Central production with p and π^- beams on proton target
- $\pi^-\gamma$ and $K^-\gamma$ Primakoff reactions on heavy targets

Main focus: search for mesonic states beyond the CQM

- Huge diffractive π⁻π⁺π⁻ data set: precision spectroscopy of light-quark isovector sector
- Spin-exotic $J^{PC} = 1^{-+}$ signals observed in π^- diffraction
 - $\pi^-\eta$ and $\pi^-\eta'$ channels
 - $\pi^-\pi^+\pi^-$ and $\pi^-\pi^0\pi^0$ final states
 - Resonance interpretation still unclear
- Study of scalar mesons in central production of $\pi\pi$, $K\bar{K}$, and $\eta\eta$
- Further analyses
 - π^- diffraction into $\pi^-\eta\eta$, $\pi^-\pi^+\pi^-\pi^+\pi^-$, $(\pi\pi K\bar{K})^-$, ...
 - K^- diffraction into $K^-\pi^+\pi^-$
 - Radiative couplings of $a_2(1320)$ and $\pi_2(1670)$

Conclusions and Outlook

Running and upcoming experiments

- VES
- BESIII
- Belle II
- GlueX, CLAS12
- PANDA
- ...

COMAPSS Conclusion

Establish an exotic meson $J^{PC} = 1^{-+}$:

 $\pi_1^-(1600) \to \rho^0 + \pi^-$

consistent with previous publications by BNL E852 and by COMPASS (2004 data).

Central Productions: COMPASS and ALICE

• Reaction:

 $a + b \rightarrow 1 + 3 + 2$

 $a \rightarrow 1 + c$ (space-like) $b \rightarrow 2 + d$ (space-like) $c + d \rightarrow 3$ (time-like)

A good approximation for ALICE:

Regge Domain:

$$s_{13}s_{23} \simeq s \, w_3^2 = s \, (m_3^2 + \kappa_3^2)$$

 $w_3 =$ Transverse mass

 $\kappa_3 =$ Transverse momentum

(2-dimensional, normal to the beam direction)

Central Productions—continued

Lorentz-invariant phase-space element in the 3RF: The plane(*a*, 1) is the x - z plane; the plane(*b*, 2) is arbitrary; the *z*-axis is along $\vec{c} - \vec{d}$ (note $\vec{c} = -\vec{d}$):

$$\mathrm{d}\Phi_3 = \left(\frac{1}{2E_1}\right) p_1^2 \mathrm{d}p_1 \,\mathrm{d}\cos\theta_1 \,\left(\frac{1}{2E_2}\right) p_2^2 \mathrm{d}p_2 \,\mathrm{d}\cos\theta_2 \,\mathrm{d}\phi$$

Central Production at COMPASS and ALICE S. U. Chung — to be an ALICE internal note

Final states for PWA:

- $\pi^+\pi^-, \pi^+\pi^-\pi^+\pi^-, \pi^+\pi^-\pi^+\pi^-\pi^+\pi^-$
- $\pi^+\pi^-K^+K^-$, $K_S K^{\pm}\pi^{\mp}$, $K_S \to \pi^+\pi^-$

- Jan Figiel and Lidia Goerlich / PAN Cracow, Poland
- Jeewon SEO (temporarily unavailable), Konkuk Univ., Korea Beomkyu KIM and Taesoo KIM / Yonsei Univ., Seoul, Korea
- Sergey Evdokimov, IHEP Protvino, Russia

Final states for PWA:

- $\pi^+\pi^-, \pi^+\pi^-\pi^+\pi^-, \pi^+\pi^-\pi^+\pi^-\pi^+\pi^-$
- $\pi^+\pi^-K^+K^-$, $K_S K^{\pm}\pi^{\mp}$, $K_S \to \pi^+\pi^-$

- Jan Figiel and Lidia Goerlich / PAN Cracow, Poland
- Jeewon SEO (temporarily unavailable), Konkuk Univ., Korea Beomkyu KIM and Taesoo KIM / Yonsei Univ., Seoul, Korea
- Sergey Evdokimov, IHEP Protvino, Russia

Final states for PWA:

- $\pi^+\pi^-, \pi^+\pi^-\pi^+\pi^-, \pi^+\pi^-\pi^+\pi^-\pi^+\pi^-$
- $\pi^+\pi^-K^+K^-$, $K_S K^{\pm}\pi^{\mp}$, $K_S \to \pi^+\pi^-$

- Jan Figiel and Lidia Goerlich / PAN Cracow, Poland
- Jeewon SEO (temporarily unavailable), Konkuk Univ., Korea Beomkyu KIM and Taesoo KIM / Yonsei Univ., Seoul, Korea
- Sergey Evdokimov, IHEP Protvino, Russia

Final states for PWA:

- $\pi^+\pi^-, \pi^+\pi^-\pi^+\pi^-, \pi^+\pi^-\pi^+\pi^-\pi^+\pi^-$
- $\pi^+\pi^-K^+K^-$, $K_S K^{\pm}\pi^{\mp}$, $K_S \to \pi^+\pi^-$

- Jan Figiel and Lidia Goerlich / PAN Cracow, Poland
- Jeewon SEO (temporarily unavailable), Konkuk Univ., Korea Beomkyu KIM and Taesoo KIM / Yonsei Univ., Seoul, Korea
- Sergey Evdokimov, IHEP Protvino, Russia

Final states for PWA:

- $\pi^+\pi^-, \pi^+\pi^-\pi^+\pi^-, \pi^+\pi^-\pi^+\pi^-\pi^+\pi^-$
- $\pi^+\pi^-K^+K^-$, $K_S K^{\pm}\pi^{\mp}$, $K_S \to \pi^+\pi^-$

- Jan Figiel and Lidia Goerlich / PAN Cracow, Poland
- Jeewon SEO (temporarily unavailable), Konkuk Univ., Korea Beomkyu KIM and Taesoo KIM / Yonsei Univ., Seoul, Korea
- Sergey Evdokimov, IHEP Protvino, Russia

Finale

In the X[−] rest frame for X[−] → ρ⁰ + π[−] and ρ⁰ → π⁺π[−], let *p* and ε(*m*) to be the momentum and the polarization vector for the *ρ*;
 p^μ ε_μ(m) = 0

Lorentz factors:

 $\frac{E_{
ho}}{m_{
ho}} \ge 1$ for the ho(760) where $J = \ell = 1$

• Reference:

Covariant Helicity-Coupling Amplitudes: A New Formulation, S. U. Chung, BNL/TUM/PNU and Jan Friedrich, TUM Phys. Rev. **D78**, 074027 (2008).

• Thank you

Finale

In the X[−] rest frame for X[−] → ρ⁰ + π[−] and ρ⁰ → π⁺π[−], let *p* and ε(*m*) to be the momentum and the polarization vector for the *ρ*;
 p^μ ε_μ(m) = 0

Lorentz factors:

 $\frac{E_{\rho}}{m_{\rho}} \ge 1$ for the $\rho(760)$ where $J = \ell = 1$

• Reference:

Covariant Helicity-Coupling Amplitudes: A New Formulation, S. U. Chung, BNL/TUM/PNU and Jan Friedrich, TUM Phys. Rev. **D78**, 074027 (2008).

• Thank you

Finale

In the X[−] rest frame for X[−] → ρ⁰ + π[−] and ρ⁰ → π⁺π[−], let *p* and ε(*m*) to be the momentum and the polarization vector for the *ρ*;
 p^μ ε_μ(m) = 0

Lorentz factors:

 $\frac{E_{\rho}}{m_{\rho}} \ge 1$ for the $\rho(760)$ where $J = \ell = 1$

• Reference:

Covariant Helicity-Coupling Amplitudes: A New Formulation, S. U. Chung, BNL/TUM/PNU and Jan Friedrich, TUM Phys. Rev. **D78**, 074027 (2008).

• Thank you