Central Exclusive Production of Two-Pseudoscalar Final States at COMPASS

Alexander Austregesilo for the COMPASS Collaboration

15th Conference on Elastic and Diffractive Scattering Blois 2013 September 9-13, 2013

Introduction

Kinematic Selection

Partial-Wave Analysis in Mass Bins

Mass-Dependent Parametrisation

Conclusion and Outlook

SM₂

The COMPASS Experiment

Multi-Purpose Setup

- Fixed-target experiment @ CERN SPS
- Two-stage magnetic spectrometer
- Broad kinematic range
- Tracking, calorimetry, particle ID

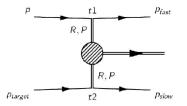
E/HCAL

target + RPD
CEDARs
RICH

SM₁

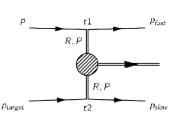
Data Set

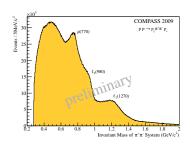
- 190 GeV/c hadron beam (proton or π⁻)
- Liquid H₂ target
 - Trigger on recoil proton



$p p \rightarrow p_{\text{fast}} X p_{\text{slow}}$

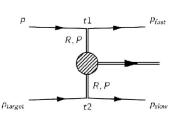
- Proton beam impinging on liquid hydrogen target
- Double-Pomeron Exchange as glue-rich environment
 ⇒ Production of non-qq̄-mesons (Glue Balls, Hybrids) at central rapidities

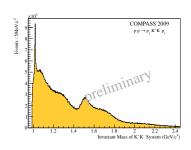




$p p o p_{\mathsf{fast}} X p_{\mathsf{slow}}$

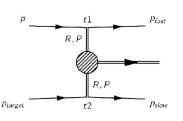
- Proton beam impinging on liquid hydrogen target
- Double-Pomeron Exchange as glue-rich environment
 ⇒ Production of non-qq̄-mesons (Glue Balls, Hybrids) at central rapidities
- Decay into two-pseudoscalar final state $(\pi^+\pi^-, \pi^0\pi^0, K^+K^-, \eta\eta, ..)$

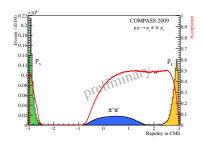




$p p o p_{\mathsf{fast}} X p_{\mathsf{slow}}$

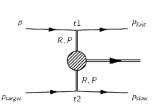
- Proton beam impinging on liquid hydrogen target
- Double-Pomeron Exchange as glue-rich environment
 ⇒ Production of non-qq̄-mesons (Glue Balls, Hybrids) at central rapidities
- Decay into two-pseudoscalar final state $(\pi^+\pi^-, \pi^0\pi^0, K^+K^-, \eta\eta, ..)$





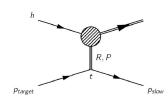
$p p \rightarrow p_{\text{fast}} X p_{\text{slow}}$

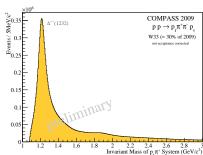
- Proton beam impinging on liquid hydrogen target
- Double-Pomeron Exchange as glue-rich environment
 ⇒ Production of non-qq̄-mesons (Glue Balls, Hybrids) at central rapidities
- Decay into two-pseudoscalar final state $(\pi^+\pi^-, \pi^0\pi^0, K^+K^-, \eta \eta, ..)$
- lacktriangle Rapidity gap between p_s and the central system X introduced by the principal trigger

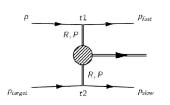


Kinematic Selection

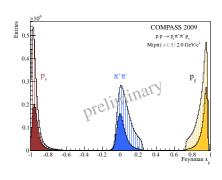
• $M(p\pi) > 1.5 \,\mathrm{GeV}/c^2$

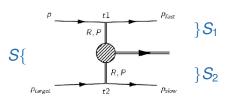


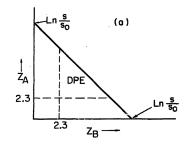




• $x_F(p_f) > .9$







Kinematic Selection

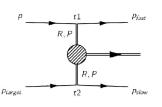
• $Z_{A,B} > 2.3$

- $Z_B = \ln \frac{s}{s_0}$

D.M. Chew, [Nucl. Phys. B 82 (1974)]

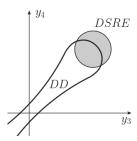
Technische Universität Müncher

Central Exclusive Production



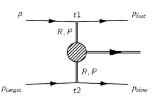
Kinematic Selection

● $|y(\pi)| < 1$



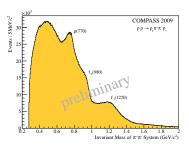
- DD: double diffraction (= central production)
- DSRE: diffractive single resonance excitation

P. Lebiedowicz and A. Szczurek, [Phys. Rev. D 81 (2010)]



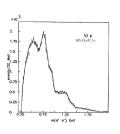
Kinematic Selection

- $M(p\pi) > 1.5 \,\text{GeV}/c^2$
- $x_F(p_f) > .9$
- $Z_{A,B} > 2.3$
- $|y(\pi)| < 1$
- ۵

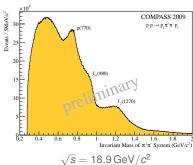


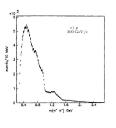
Large overlap of the cuts, weak dependence of the results (CEP sample by all definitions, but not pure DPE!)

T.A. Armstrong et al. [Z. Phys. C51 (1991)]



 $\sqrt{s} = 12.7 \, \text{GeV} / c^2$



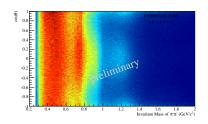


Invariant Mass of
$$\pi'\pi$$
 System (GeV/ c^2) $\sqrt{s} = 23.7 \text{ GeV}/c^2$

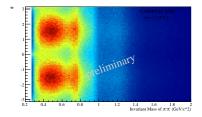
- Production of $\rho(770)$ disappears rapidly with increasing \sqrt{s}

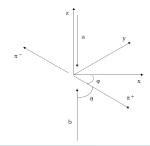
Two-Body Partial-Wave Analysis in Mass Bins

Partial-Wave Analysis

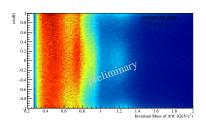


- Assumption: collision of two space-like exchange particles (\mathbb{P}, \mathbb{R})
- Decay fully described by $M(\pi^+\pi^-)$, $\cos(\theta)$ and ϕ

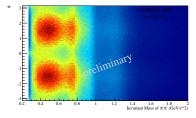


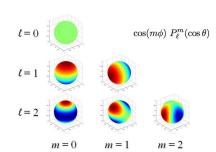


Partial-Wave Analysis



- Assumption: collision of two space-like exchange particles (\mathbb{P}, \mathbb{R})
- Decay fully described by $M(\pi^+\pi^-)$, $\cos(\theta)$ and ϕ
- Fit complex production amplitudes in mass bins to match spin contributions and interference pattern





Construction of Wave-Set

Strong Interaction Conserves Parity

• Linear combination of spherical harmonics as eigenstates of reflectivity ϵ , limiting the spin projection m > 0, waves with opposite ϵ do not interfere

$$Y_m^{\epsilon\ell}(\theta,\phi) = c(m) \left[Y_m^{\ell}(\theta,\phi) - \epsilon(-1)^m Y_{-m}^{\ell}(\theta,\phi) \right]$$

Naturality

- Minus-sign was chosen historically, such that reflectivity coincide with exchanged naturality η for reaction with pion beam
- Here: correspondence only for product of naturality of exchange particles
- If at least one Pomeron is involved, natural transfer corresponds to $\epsilon = -1$

S.-U. Chung, [Phys. Rev. D 56 (1997)]

Partial-Wave Decomposition

Expand intensity $I(\theta, \phi)$ in terms of partial-waves for narrow mass bins:

$$I(\theta,\phi) = \sum_{\varepsilon} \left| \sum_{\ell m} T_{\varepsilon\ell m} Y_m^{\varepsilon\ell}(\theta,\phi) \right|^2$$

- Complex transition amplitudes $T_{\varepsilon\ell m}$, no assumption on mass-dependence
- Spectroscopic notation: ℓ_m^{ϵ}
- Significant contributions only from $\ell = S, P, D, m < 1$

⇒ Maximum Likelihood Fit in Mass Bins

Partial-Wave Decomposition

Expand intensity $I(\theta, \phi)$ in terms of partial-waves for narrow mass bins:

$$I(\theta,\phi) = \sum_{\varepsilon} \left| \sum_{\ell m} T_{\varepsilon\ell m} Y_m^{\varepsilon\ell}(\theta,\phi) \right|^2$$

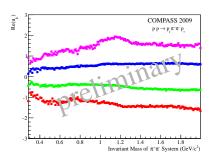
- Complex transition amplitudes $T_{\varepsilon\ell m}$, no assumption on mass-dependence
- Spectroscopic notation: ℓ_m^{ϵ}
- Significant contributions only from $\ell = S, P, D, m < 1$

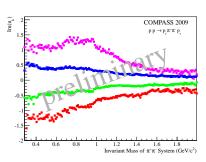
⇒ Maximum Likelihood Fit in Mass Bins

Inherent Ambiguities of Two-Pseudoscalar Final State

- Intensity can also be expressed as a 4th-order polynomial
- Complex conjugation of the roots ('Barrelet zeros') results in the same angular distribution, i.e. the same likelihood

S.-U. Chung, [Phys. Rev. D 56 (1997)]





- Real (left) and imaginary (right) part of polynomial roots
- Well separated, imaginary parts do not cross the real axis
- ⇒ Solutions can be uniquely identified and linked from mass bin to mass bin

Ambiguities in the $\pi\pi$ Systems

$\pi^+\pi^-$ System

- 8 different solutions can be calculated analytically
- Differentiation requires additional input (e.g. behaviour at threshold, physics content)

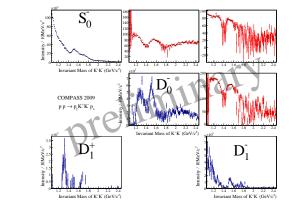
$\pi^0\pi^0$ System

- Identical particles, only even waves allowed
- Reduces number of ambiguities to 2

Combination of $\pi\pi$ Systems

- Consistent picture of the reaction, measured with different parts of experimental setup
- Interpretation with mass dependent parametrisation under way!

Fit to the K^+K^- System



- Odd waves do not play a significant role above the ϕ (1020)-mass \Rightarrow Reduction of ambiguities
- Interpretation only with mass-dependent parametrisation

Mass-Dependent Parametrisation of K^+K^- -System

Parametrisation

S_0 -Wave

• Relativistic Breit-Wigner parametrisation: $f_0(1370)$, $f_0(1500)$, $f_0(1710)$

D₀-Wave

Relativistic Breit-Wigner parametrisation: f₂(1270), f'₂(1525)

Non-resonant contribution

- Phase space factor $q^{\ell} \cdot \sqrt{\frac{q}{m^2}}$ with breakup momentum q
- Exponential damping factor $\exp(-\alpha q \beta q^2)$ with fit parameters α, β

S_0 -Wave

• Relativistic Breit-Wigner parametrisation: $f_0(1370)$, $f_0(1500)$, $f_0(1710)$

D₀-Wave

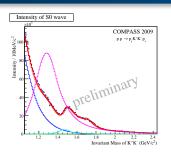
Relativistic Breit-Wigner parametrisation: f₂(1270), f'₂(1525)

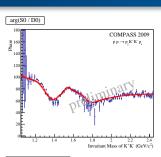
Non-resonant contribution

- Phase space factor $q^{\ell} \cdot \sqrt{\frac{q}{m^2}}$ with breakup momentum q
- Exponential damping factor $\exp(-\alpha q \beta q^2)$ with fit parameters α, β

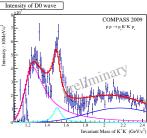
In total: 27 parameters

Intensities and Phase

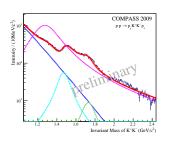


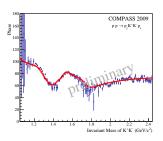


- BW contributions
- non-resonant contribution
- coherent sum

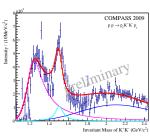


Intensities and Phase





- BW contributions
- non-resonant contribution
- coherent sum



Summary

- **Central production** of two-pseudoscalar final states (not pure DPE)
- Order-of-magnitude larger sample than previous experiments (for charged channels)
- Performed acceptance corrected PWA
- Studied mathematically ambiguous solutions
- Simple mass-dependent parametrisation can describe the K^+K^- fit
- Breit-Wigner parameters mostly consistent with **PDG values**

Technische Universität Mün

Summary

- Central production of two-pseudoscalar final states (not pure DPE)
- Order-of-magnitude larger sample than previous experiments (for charged channels)
- Performed acceptance corrected PWA
- Studied mathematically ambiguous solutions
- Simple mass-dependent parametrisation can describe the K^+K^- fit
- Breit-Wigner parameters mostly consistent with PDG values

Outlook

- Unitary models (K-matrix, ..)
- Combined fit of all available channels
- Include production kinematics (t_1, t_2, φ)
- Information about the **composition** of supernumerous scalar resonances

Summary

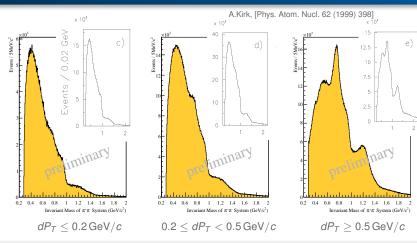
- Central production of two-pseudoscalar final states (not pure DPE)
- Order-of-magnitude larger sample than previous experiments (for charged channels)
- Performed acceptance corrected PWA
- Studied mathematically ambiguous solutions
- Simple mass-dependent parametrisation can describe the K⁺K⁻ fit
- Breit-Wigner parameters mostly consistent with PDG values

Outlook

- Unitary models (*K*-matrix, ..)
- Combined fit of all available channels
- Include production kinematics (t_1, t_2, φ)
- Information about the composition of supernumerous scalar resonances

Thank you for your attention!

'Glueball Filter'



- $dP_T = |\overrightarrow{p}_{T_1} \overrightarrow{p}_{T_2}|$ in pp centre-of-mass
- Only scalar signals remain for small dPt

Maximise likelihood function

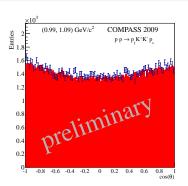
$$\ln L = \sum_{i=1}^{N} \ln I(\theta_i, \phi_i) - \int d\Omega I(\theta, \phi) \eta(\theta, \phi)$$

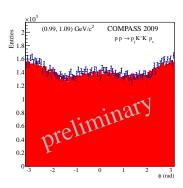
- by choosing $T_{e\ell m}$ such that the intensity fits the observed N events
- the normalisation integral is evaluated by a phase-space Monte Carlo sample
- with the acceptance $\eta(\theta, \phi)$

Barrelet Zeros

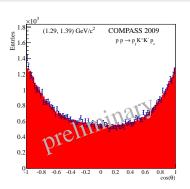
- Through variable transformation $u = \tan(\theta/2)$, angular distribution for this wave set can be written as a function of $|G(u)|^2$ with $G(u) = a_4u^4 a_3u^3 + a_2u^2 a_1u + a_0$ where coefficients a_i are functions of amplitudes
- or with in terms of 4 complex roots u_i ('Barrelet zeros') $G(u) = a_4(u u_1)(u u_2)(u u_3)(u u_4)$
- Laguerre's method to find polynomial roots numerically
- Complex conjugation of one/more of these roots result in the same measured angular distribution
 - → 8 different ambiguous solutions (same likelihood per definition!)

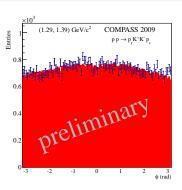
Techniques of amplitude analysis for two-pseudoscalar systems S.U. Chung, [Phys. Rev. D 56 (1997), 7299]



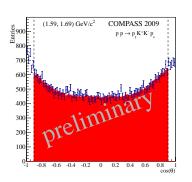


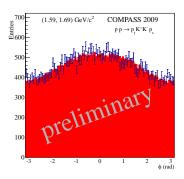
Blue: data, red: weighted MC



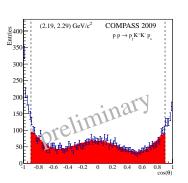


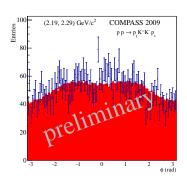
Blue: data, red: weighted MC





Blue: data, red: weighted MC





- Blue: data, red: weighted MC
- Peaking distribution for $|cos(\theta)| > 0.9$ for masses above $2 \, \text{GeV}/c^2$ cannot be described by fit (limited wave set)
- Signature of diffractive dissociation background