pp Elastic Scattering Amplitudes in t and b Spaces and Extrapolations to Cosmic Ray Energies

(A. K. Kohara, E. Ferreira, T. Kodama) IF/UFRJ

EDS Blois Workshop 2013

09 September 2013

Summary

- Differential cross sections and t space amplitudes
- Regular behaviour with the energy
- b space analytical forms and eikonals
- Unitarity conditions
- High energy extrapolations
- Conclusions

$$\frac{d\sigma}{dt} = (\hbar c)^2 |T_R(s,t) + iT_I(s,t)|^2$$

$$\frac{d\sigma}{dt} = (\hbar c)^2 |T_R(s,t) + iT_I(s,t)|^2$$
$$T_R(s,t) = T_R^N(s,t) + \sqrt{\pi} F^C(t) \cos(\alpha \Phi)$$
$$T_I(s,t) = T_I^N(s,t) + \sqrt{\pi} F^C(t) \sin(\alpha \Phi)$$

$$\frac{d\sigma}{dt} = (\hbar c)^2 |T_R(s,t) + iT_I(s,t)|^2$$

$$T_R(s,t) = T_R^N(s,t) + \sqrt{\pi} F^C(t) \cos(\alpha \Phi)$$

$$T_I(s,t) = T_I^N(s,t) + \sqrt{\pi} F^C(t) \sin(\alpha \Phi)$$

$$F^C(s,t)e^{i\alpha \Phi(s,t)} = (-/+) \frac{2\alpha}{|t|}e^{i\alpha \Phi(s,t)} F_{\text{proton}}^2(t)$$

$$\frac{d\sigma}{dt} = (\hbar c)^2 |T_R(s,t) + iT_I(s,t)|^2$$

$$T_R(s,t) = T_R^N(s,t) + \sqrt{\pi} F^C(t) \cos(\alpha \Phi)$$

$$T_I(s,t) = T_I^N(s,t) + \sqrt{\pi} F^C(t) \sin(\alpha \Phi)$$

$$F^C(s,t)e^{i\alpha} \Phi(s,t) = (-/+) \frac{2\alpha}{|t|}e^{i\alpha} \Phi(s,t) F_{\text{proton}}^2(t)$$
Coulomb Phase
$$F_{\text{proton}}(t) = [0.71/(0.71+|t|)]^2$$

$$(\hbar c)^2 = 0.3894 \text{ mb GeV}^2.$$

 $T_K^N(s,t) = \alpha_K(s) e^{-\beta_K(s)|t|} + \lambda_K(s) \Psi_K(\gamma_K(s),t) \quad \text{Nuclear amplitudes}$

$$T_{K}^{N}(s,t) = \alpha_{K}(s)e^{-\beta_{K}(s)|t|} + \lambda_{K}(s)\Psi_{K}(\gamma_{K}(s),t) \quad \text{Nuclear amplitudes}$$

$$\Psi_{K}(\gamma_{K}(s),t) = 2 e^{\gamma_{K}} \left[\frac{e^{-\gamma_{K}\sqrt{1+a_{0}|t|}}}{\sqrt{1+a_{0}|t|}} - e^{\gamma_{K}} \frac{e^{-\gamma_{K}\sqrt{4+a_{0}|t|}}}{\sqrt{4+a_{0}|t|}} \right] \quad \text{Shape functions}$$

where K = R, K = I for real and imaginary amplitudes

$$T_{K}^{N}(s,t) = \alpha_{K}(s)e^{-\beta_{K}(s)|t|} + \lambda_{K}(s)\Psi_{K}(\gamma_{K}(s),t)$$
 Nuclear amplitudes
$$\Psi_{K}(\gamma_{K}(s),t) = 2 e^{\gamma_{K}} \left[\frac{e^{-\gamma_{K}\sqrt{1+a_{0}|t|}}}{\sqrt{1+a_{0}|t|}} - e^{\gamma_{K}} \frac{e^{-\gamma_{K}\sqrt{4+a_{0}|t|}}}{\sqrt{4+a_{0}|t|}} \right]$$
 Shape functions

where K = R, K = I for real and imaginary amplitudes

For |t|=0 we have the forward quantities...

Quantities in forward scattering

 $\sigma(s) = 4\sqrt{\pi} \left(\hbar c\right)^2 \left(\alpha_I(s) + \lambda_I(s)\right)$

Total cross section

Quantities in forward scattering

$$\sigma(s) = 4\sqrt{\pi} \left(\hbar c\right)^2 \left(\alpha_I(s) + \lambda_I(s)\right)$$

Total cross section

$$\rho(s) = \frac{T_R^N(s, t=0)}{T_I^N(s, t=0)} = \frac{\alpha_R(s) + \lambda_R(s)}{\alpha_I(s) + \lambda_I(s)}$$

Real/Imaginary

Quantities in forward scattering

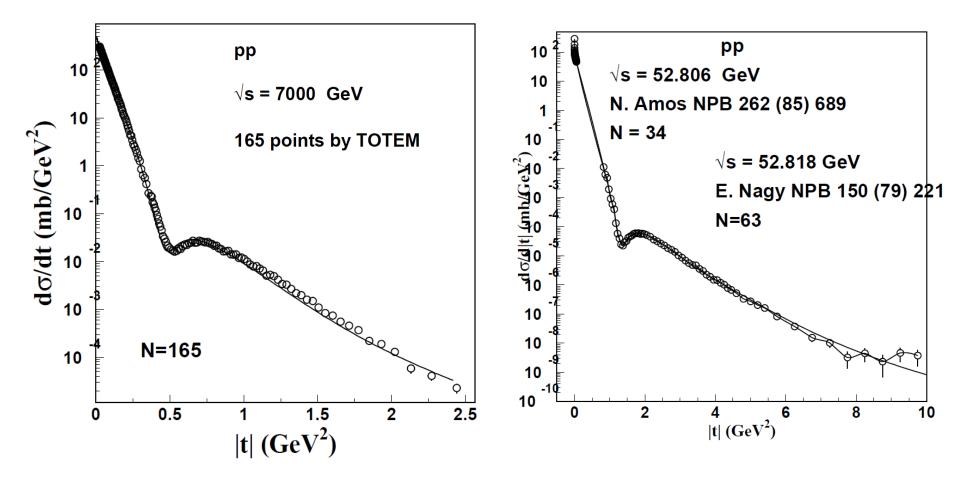
$$\sigma(s) = 4\sqrt{\pi} \left(\hbar c\right)^2 \left(\alpha_I(s) + \lambda_I(s)\right) \qquad \text{Tot}$$

Total cross section

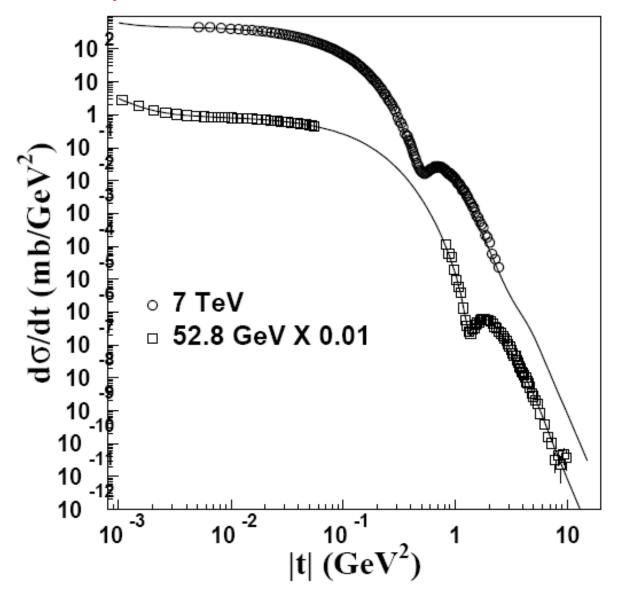
$$\rho(s) = \frac{T_R^N(s, t=0)}{T_I^N(s, t=0)} = \frac{\alpha_R(s) + \lambda_R(s)}{\alpha_I(s) + \lambda_I(s)} \quad \text{Real/Imaginary}$$

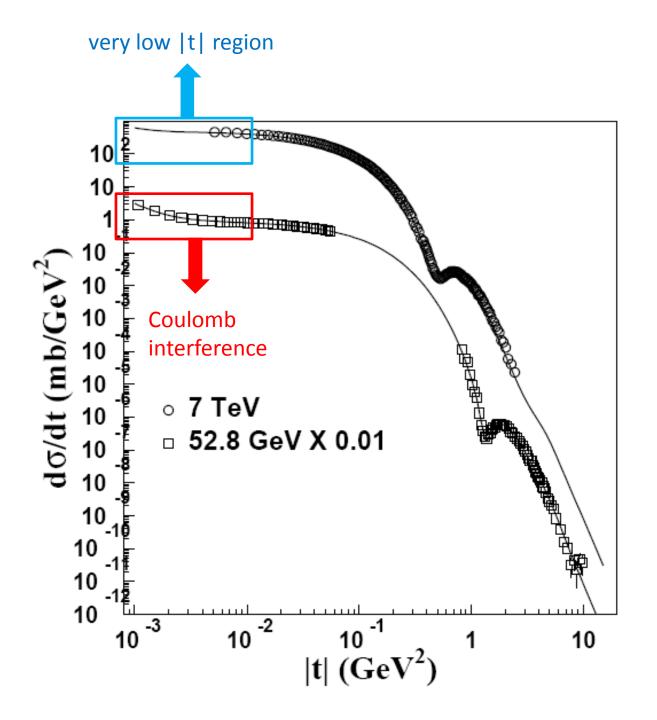
$$B_{K}(s) = \frac{2}{T_{K}^{N}(s,t)} \frac{dT_{K}^{N}(s,t)}{dt} \Big|_{t=0}$$
Real and Imaginary slopes
$$= \frac{1}{\alpha_{K}(s) + \lambda_{K}(s)} \Big[\alpha_{K}(s)\beta_{K}(s) + \frac{1}{8}\lambda_{K}(s)a_{0}\Big(6\gamma_{K}(s) + 7\Big) \Big]$$

Differential cross sections

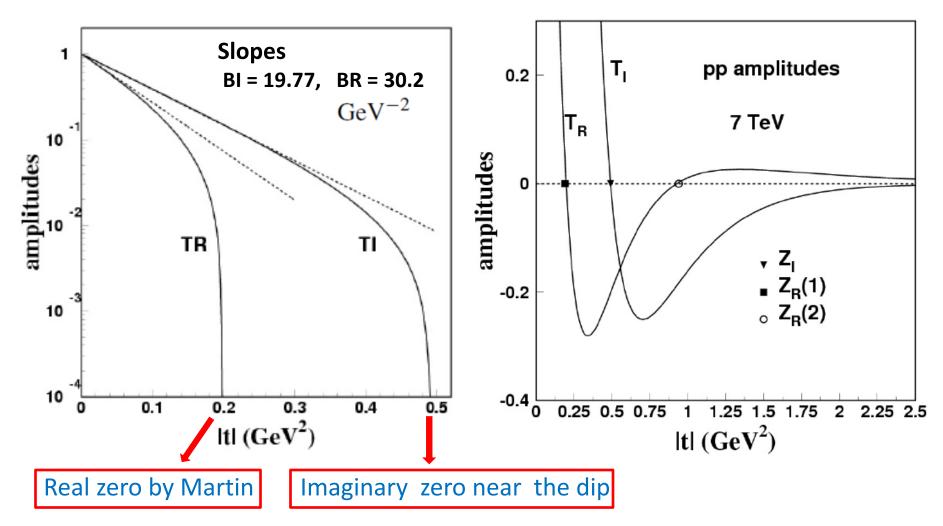


Differential cross-sections comparison of 52.8 GeV and 7 TeV

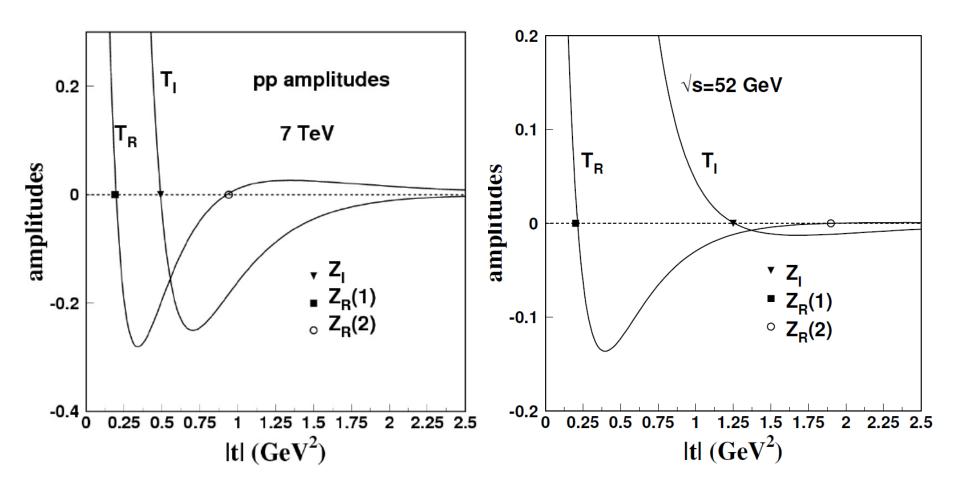




Amplitudes in t space



comparison of pp 7 TeV with 0.0528 TeV amplitudes



Prediction for the large |t| region

The amplitudes for the data up to $|t| = 2.5 \text{ GeV}^2$ are

 $T_K^N(s,t) = \alpha_K(s) \mathrm{e}^{-\beta_K(s)|t|} + \lambda_K(s) \Psi_K(\gamma_K(s),t) \quad \text{Nuclear amplitudes}$

$$\Psi_K(\gamma_K(s), t) = 2 e^{\gamma_K} \left[\frac{e^{-\gamma_K \sqrt{1 + a_0|t|}}}{\sqrt{1 + a_0|t|}} - e^{\gamma_K} \frac{e^{-\gamma_K \sqrt{4 + a_0|t|}}}{\sqrt{4 + a_0|t|}} \right]$$

Shape functions

Prediction for the large |t| region

The amplitudes for the data up to $|t| = 2.5 \text{ GeV}^2$ are

 $T_{\kappa}^{N}(s,t) = \alpha_{K}(s)e^{-\beta_{K}(s)|t|} + \lambda_{K}(s)\Psi_{K}(\gamma_{K}(s),t)$ Nuclear amplitudes

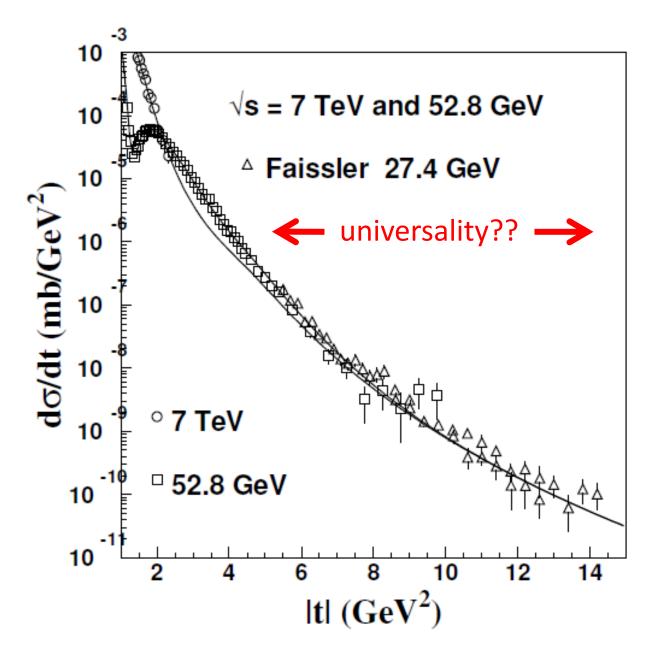
$$\Psi_{K}(\gamma_{K}(s),t) = 2 e^{\gamma_{K}} \left[\frac{e^{-\gamma_{K}\sqrt{1+a_{0}|t|}}}{\sqrt{1+a_{0}|t|}} - e^{\gamma_{K}} \frac{e^{-\gamma_{K}\sqrt{4+a_{0}|t|}}}{\sqrt{4+a_{0}|t|}} \right]$$
Shape functions

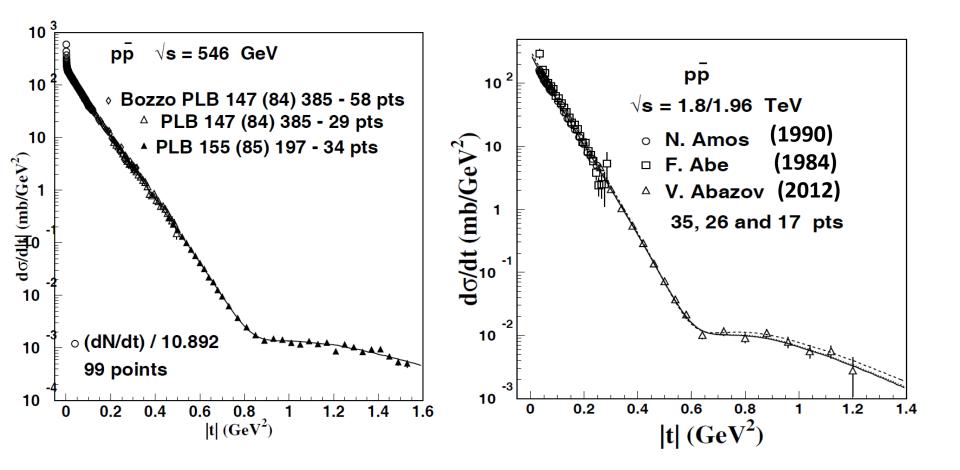
For large |t| we add a perturbative tri-gluon exchange Rggg A. Donnachie, P. V. Landshoff, Zeit. Phys. C 2, 55 (1979)

 $T_{R(\text{tail})}(s,t) = T_K^N(s,t) + R_{qqq}(t)$ $R_{aaa}(t) \equiv \pm 0.45 \ t^{-4} (1 - e^{-0.005|t|^4}) (1 - e^{-0.1|t|^2})$ For large |t|

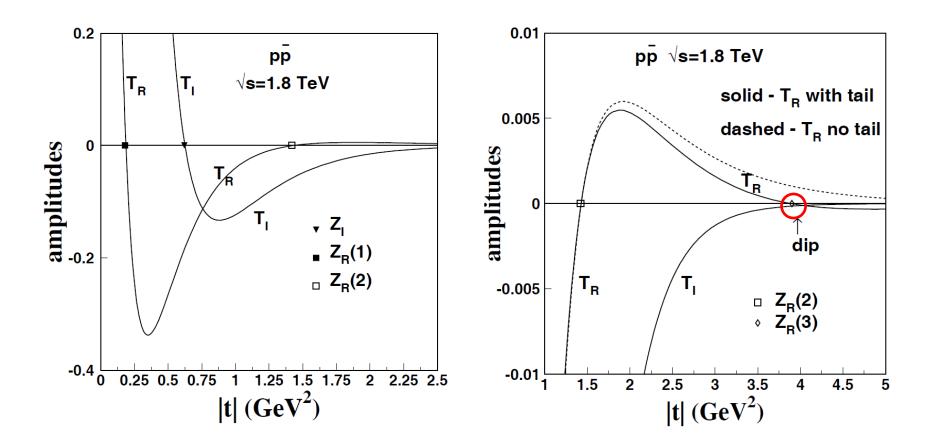
 $d\sigma/dt \approx (\hbar c)^2 \ [T_{R(\text{tail})}(t)]^2 \approx 0.08 \ t^{-8} \ (\text{mb}/\text{GeV}^2)$ energy independent !!!!

Long t region (compare with 52.8 GeV)

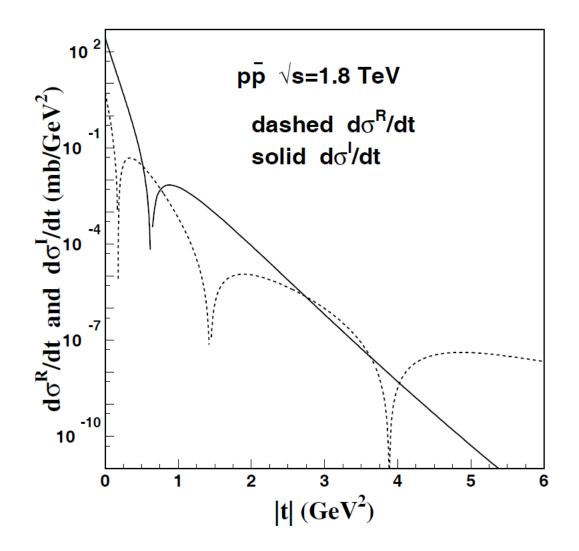




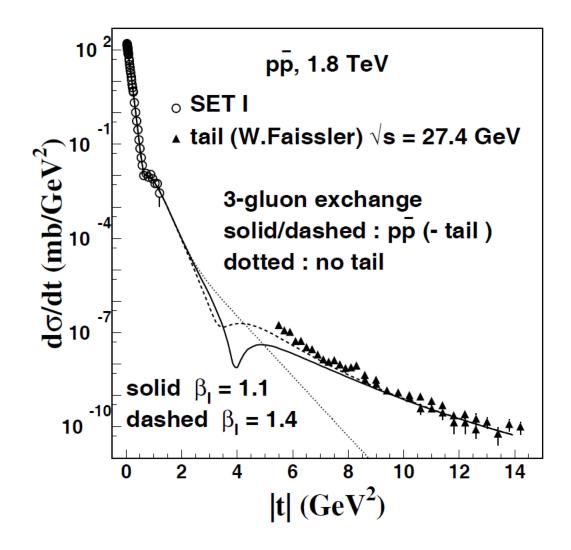
Amplitudes



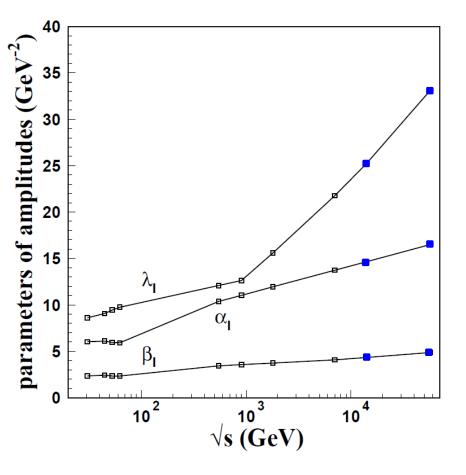
Partial cross sections : dip formation



Prediction of dip for large |t|

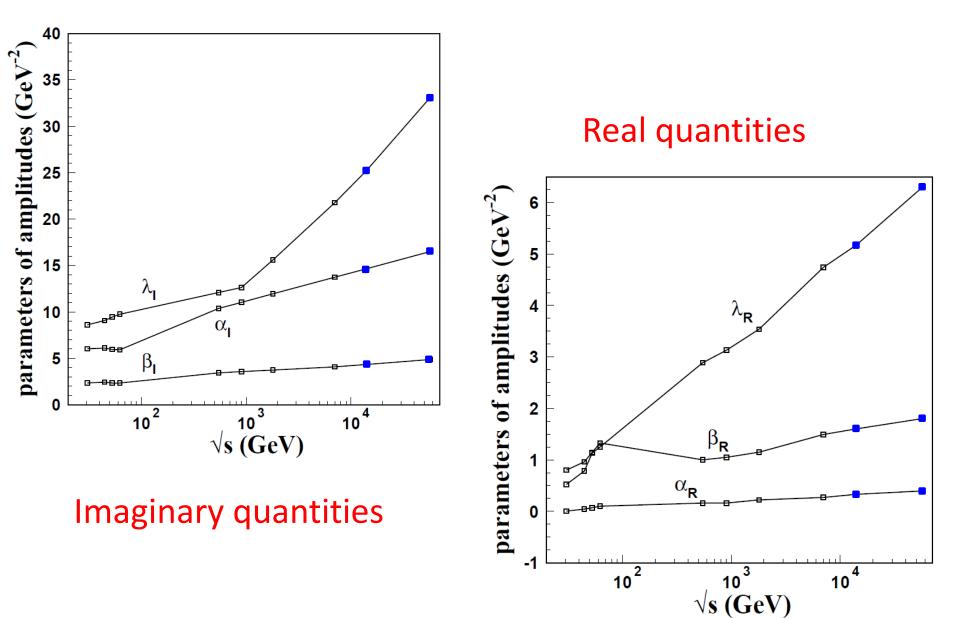


Energy dependence of the parameters



Imaginary quantities

Energy dependence of the parameters



b space amplitudes

Fourier Transform

$$\tilde{T}_{K}(s,b) = \frac{1}{2\pi} \int d^{2}\vec{q} \ e^{-i\vec{q}.\vec{b}} \ T_{K}^{N}(s,t=-q^{2})$$
we have analytical forms
$$\tilde{T}_{K}(s,b) = \frac{\alpha_{K}}{2\beta_{K}} e^{-\frac{b^{2}}{4\beta_{K}}} + \lambda_{K} \ \tilde{\psi}_{K}(s,b)$$

b space amplitudes

Fourier Transform

$$\tilde{T}_{K}(s,b) = \frac{1}{2\pi} \int d^{2}\vec{q} \ e^{-i\vec{q}.\vec{b}} \ T_{K}^{N}(s,t=-q^{2})$$

we have analytical forms

$$\tilde{T}_K(s,b) = \frac{\alpha_K}{2 \beta_K} e^{-\frac{b^2}{4\beta_K}} + \lambda_K \tilde{\Psi}_K(s,b)$$

With the shape functions

$$\tilde{\psi}_{K}(s,b) = \frac{2 e^{\gamma_{K}}}{a_{0}} \frac{e^{-\sqrt{\gamma_{K}^{2} + \frac{b^{2}}{a_{0}}}}}{\sqrt{\gamma_{K}^{2} + \frac{b^{2}}{a_{0}}}} \left[1 - e^{\gamma_{K}} e^{-\sqrt{\gamma_{K}^{2} + \frac{b^{2}}{a_{0}}}}\right]$$

b space amplitudes

Fourier Transform

$$\tilde{T}_{K}(s,b) = \frac{1}{2\pi} \int d^{2}\vec{q} \ e^{-i\vec{q}.\vec{b}} \ T_{K}^{N}(s,t=-q^{2})$$

we have analytical forms

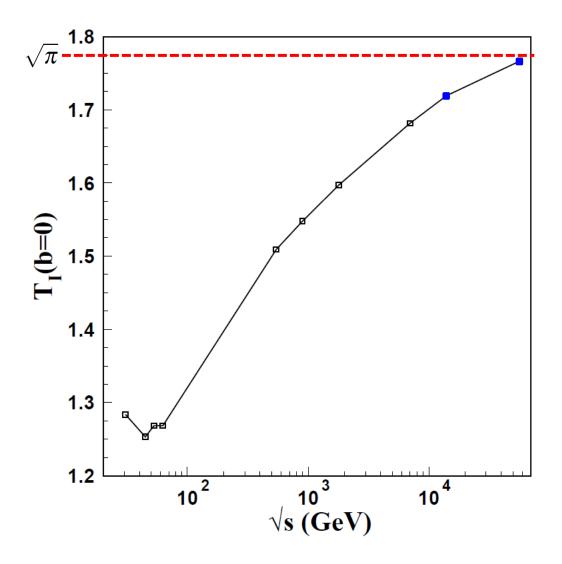
$$\tilde{T}_K(s,b) = \frac{\alpha_K}{2 \beta_K} e^{-\frac{b^2}{4\beta_K}} + \lambda_K \tilde{\Psi}_K(s,b)$$

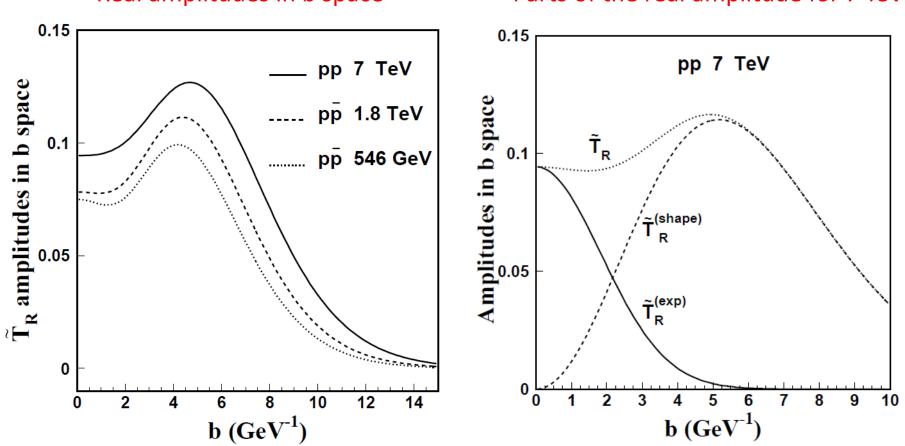
With the shape functions

$$\tilde{\psi}_{K}(s,b) = \frac{2 e^{\gamma_{K}}}{a_{0}} \frac{e^{-\sqrt{\gamma_{K}^{2} + \frac{b^{2}}{a_{0}}}}}{\sqrt{\gamma_{K}^{2} + \frac{b^{2}}{a_{0}}}} \left[1 - e^{\gamma_{K}} e^{-\sqrt{\gamma_{K}^{2} + \frac{b^{2}}{a_{0}}}}\right]$$

At b=0 $\tilde{T}_K(s,0)$ $\frac{\alpha_K}{2 \beta_K}$

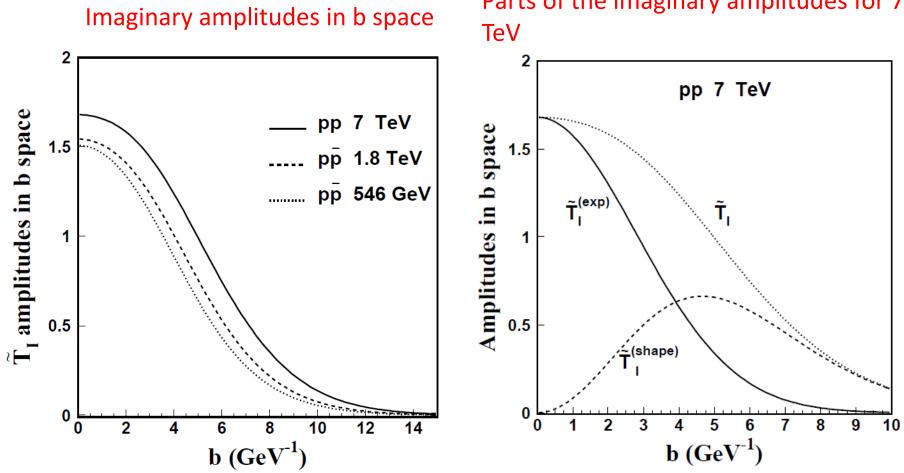
Yukawa like





Real amplitudes in b space

Parts of the real amplitude for 7 TeV



Parts of the imaginary amplitudes for 7

The amplitudes in the b space are

$$\tilde{T}_R\left(s,\vec{b}\right) = \tilde{T}_R\left(s,\vec{b}\right) + i\tilde{T}_I\left(s,\vec{b}\right) \equiv i\sqrt{\pi}\left(1 - e^{i\chi(s,b)}\right)$$

with the complex eikonal $\chi = \chi_R + i \chi_I$

The amplitudes in the b space are

$$\tilde{T}_R\left(s,\vec{b}\right) = \tilde{T}_R\left(s,\vec{b}\right) + i\tilde{T}_I\left(s,\vec{b}\right) \equiv i\sqrt{\pi}\left(1 - e^{i\chi(s,b)}\right)$$

with the complex eikonal $\chi = \chi_R + i \chi_I$

and the real and imaginary parts are

$$\chi_R = \tan^{-1}\left(\frac{\tilde{T}_R}{\sqrt{\pi} - \tilde{T}_I}\right)$$

$$\chi_I = -\ln\sqrt{\left(\frac{1}{\sqrt{\pi}}\tilde{T}_R\right)^2 + \left(1 - \frac{1}{\sqrt{\pi}}\tilde{T}_I\right)^2}$$

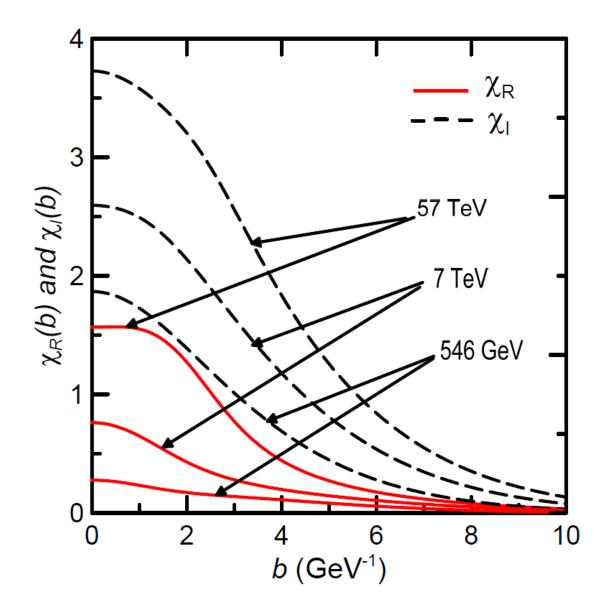
The amplitudes in the b space are

$$\tilde{T}_R\left(s,\vec{b}\right) = \tilde{T}_R\left(s,\vec{b}\right) + i\tilde{T}_I\left(s,\vec{b}\right) \equiv i\sqrt{\pi}\left(1 - e^{i\chi(s,b)}\right)$$

with the complex eikonal $\chi = \chi_R + i \chi_I$

and the real and imaginary parts are

$$\chi_R = \tan^{-1} \left(\frac{\tilde{T}_R}{\sqrt{\pi} - \tilde{T}_I} \right) \qquad \chi_I = -\ln \sqrt{\left(\frac{1}{\sqrt{\pi}} \tilde{T}_R \right)^2 + \left(1 - \frac{1}{\sqrt{\pi}} \tilde{T}_I \right)^2}$$
To avoid this pole we expect $\tilde{T}_I(s, b) < \sqrt{\pi}$



Unitarity

The unitarity condition of the scattering amplitude can be expressed as

$$\left|e^{i\chi(s,b)}\right| \leq 1$$

which is equivalent to say $\chi_I(s,b) \geq 0$.

In terms of amplitudes this corresponds to

$$e^{-2\Im\chi} = \left(1 - \frac{1}{\sqrt{\pi}}\tilde{T}_I\right)^2 + \left(\frac{1}{\sqrt{\pi}}\tilde{T}_R\right)^2 \le 1$$

for all s and b.

These are satisfied by our representations.

We write elastic, total and inelastic differential cross sections in b space

$$\sigma_{el} = \int d^2 \vec{b} \; \frac{d \bar{\sigma}_{el}}{d^2 \vec{b}}$$
, $\sigma_{Tot} = \int d^2 \vec{b} \; \frac{d \bar{\sigma}_{Tot}}{d^2 \vec{b}}$, $\sigma_{inel} = \int d^2 \vec{b} \; \frac{d \bar{\sigma}_{inel}}{d^2 \vec{b}}$

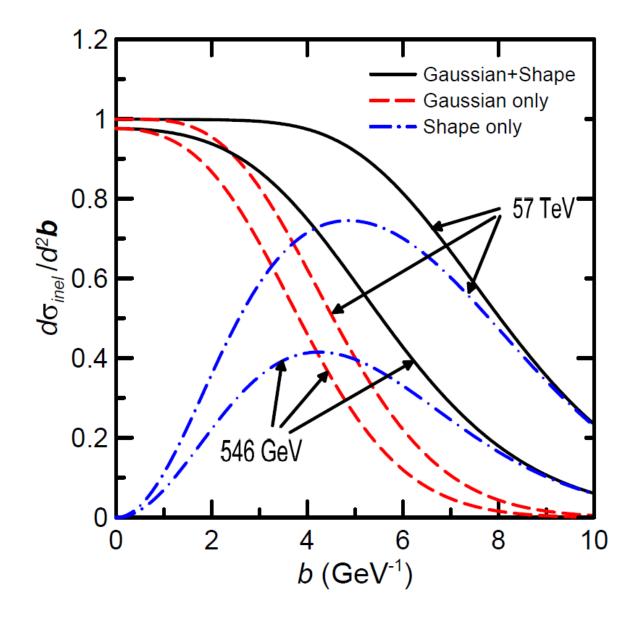
and identify adimensional differential cross sections

$$\frac{d\bar{\sigma}_{el}}{d^2\bar{b}} = 1 - 2\cos\left(\chi_R\right)e^{-\chi_I} + e^{-2\chi_I}$$

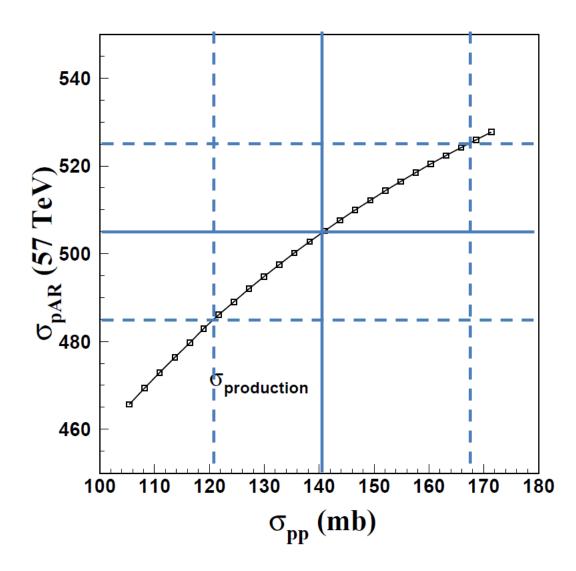
$$\frac{d\bar{\sigma}_{Tot}}{d^2\vec{b}} = 2\left\{1 - \cos\left(\chi_R\right)e^{-\chi_I}\right\}$$

$$\frac{d\,\bar{\sigma}_{inel}}{d^2\vec{b}} = 1 - e^{-2\chi_l}$$

Inelastic cross sections



Cosmic ray



Conclusion

At low energies the growth of the total cross section is dominated by the gaussian distribution, on the other hand for large energies the increase is due to the shape function of the form $\sim e^{-\gamma b}/b$. A physical interpretation is that when the energy increases the partonic density starts to saturate in the center of the proton but increases in the periphery due the shape function.

Thanks