15th International Conference on Elastic \& Diffractive Scattering (15th "Blois Workshop")

FINLAND (SAARISELKÄ)
September, 09-13

Some problems of the determination of sigma_tot at LHC
O.V. Selyugin BLTPh, JINR

Contents

Introduction

* Do we need take into account the electromagnetic interaction?
* Extraction of the real part of scattering amplitude
* Non-exponential form of the imaginary part
* Additional normalization
* The Donachi-Landshoff Pomeron
* The new method of the determination real part and normalization
* Conclusion

Elastic scattering amplitude

$p p \rightarrow p p$ $p \bar{p} \rightarrow p \bar{p}$

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma}{\mathrm{dt}}=2 \pi\left|\Phi_{1}^{2}+\left|\Phi_{2}^{2}+\left|\Phi_{3}^{2}+\left|\Phi_{4}^{2}+4\right| \Phi_{5}^{2}\right]\right.\right. \\
& \Phi_{i}(s, t)=\Phi_{i}^{h}(s, t)+\Phi_{i}^{e}(t) e^{i \omega \varphi} \\
& \varphi(s, t)=\mp\left[\gamma+\ln (\mathrm{B}(\mathrm{~s}, \mathrm{t})|\mathrm{t}| / 2)+v_{1}+v_{2}\right]
\end{aligned}
$$

$\gamma=0,577 \ldots$.. (the Euler constant) $\quad v_{1}$ and v_{2} are small correction terms

$$
\begin{align*}
\frac{d N}{d t}= & \mathcal{L}\left[\frac{4 \pi \alpha^{2}}{|t|^{2}} G^{4}(t)-\frac{2 \alpha\left(\rho(s, t)+\phi_{C N}(s, t)\right) \sigma_{t o t} G^{2}(t) e^{-\frac{B(s, t)|t|}{2}}}{|t|}\right. \\
& \left.+\frac{\left.\sigma_{t o t}^{2}\left(1+\rho(s, t)^{2}\right) e^{-B(s, t)|t|}\right]}{16 \pi}\right]
\end{align*}
$$

Usual assumptions

$$
\operatorname{Im} F_{N}(s, t)=\sigma_{t o t} /(0.389 \square 4 \pi) e^{B t / 2}
$$

$\operatorname{Re} F_{N}(s, t) \square \sigma_{t o t} /(0.389 \square 4 \pi) e^{B t / 2} \quad B^{\mathrm{Re}}(s, t)=B^{\mathrm{Im}}(s, t)$

$$
\sigma_{t o t}\left(s_{j}\right)=f\left(s_{j}\right)_{\exp .}
$$

$\sigma_{\text {tot }}\left(s_{j}\right)-$ fix. from other experiment UA4/2

> TOTEM
or $\rho\left(s_{j}\right)-$ fix. from other experiments or - fix. from theory

Corrections: Form-factors; Coulomb-hadron phase
Problem: contribution of the spin-flip amplitude

$$
F_{1}^{e m}(t)=\alpha f_{1}^{2}(t) \frac{s-2 m^{2}}{t} ; \quad F_{3}^{e m}(t)=F_{1}^{e m}
$$

and for spin-flip amplitudes:

$$
\begin{aligned}
& F_{2}^{e m}(t)=\alpha \frac{f_{2}^{2}(t)}{4 m^{2}} s ; \quad F_{4}^{e m}(t)=-F_{2}^{e m}(t) \\
& F_{5}^{e m}(t)=\alpha \frac{s}{2 m \sqrt{|t|}} f_{1}(t) f_{2}(t)
\end{aligned}
$$

where the form factors are:

$$
\begin{array}{r}
f_{1}(t)=\frac{4 m_{p}^{2}-(1+k) t}{4 m_{p}^{2}-t} G_{d}(t) \\
f_{2}(t)=\frac{4 m_{p}^{2} k}{4 m_{p}^{2}-t} G_{d}(t)
\end{array}
$$

The hadron spin non-flip amplitude was chosen in the form

$$
F^{h}(s, t)=(i+\rho) \frac{\sigma_{t o t}}{4 \pi 0.38938} e^{\left.B t / 2+C\left(\sqrt{4 \mu^{2}-t}-2 \mu\right)\right]}
$$

$$
0.005 \leq|t| \leq 0.31 G e V^{2} ; \quad N=86 .
$$

i	N	$\sum_{i=1}^{N} \chi_{i}^{2}$	ρ	B	C	$\sigma_{t o t}, m b$
1	86	287.	0.14 fix	20.	0. fix	98.87 ± 0.1
2	86	287	0.05 fix	20.	0. fix	99.7 ± 0.1
3	86	287	0.146 ± 0.3	20.	0. fix	98.8 ± 0.4
4	86	220.5	0.14 fix	21.7	-1.4 ± 0.2	97.9 ± 0.2
5	86	220.	0.05 ± 0.4	21.8	-1.4 ± 0.2	98.76 ± 4.

Table 1: The basic parameters of the model are determined by fitting experimental data without the electromagnetic contributions and with free $\sigma_{t o t}$.

$$
0.005 \leq|t| \leq 0.1 \mathrm{GeV}^{2} ; \quad N=47 .
$$

i	N	$\sum_{i=1}^{N} \chi_{i}^{2}$	ρ	B	C	$\sigma_{t o t}, m b$
1	47	64.96	0.176 ± 0.2	19.9	0.fix	98.05 ± 1.7
2	47	64.96	0.15 fixed	19.9	0. fix	98.47 ± 0.1
3	47	64.96	0.14 fixed	19.9	0. fix	98.6 ± 0.1
4	47	64.96	0.1 fix	19.9	0. fix	99.1 ± 0.1
5	47	64.96	0.05 fix	19.9	0. fix	99.44 ± 0.1
6	47	64.96	0.0 fix	19.9	0.fix	99.57 ± 0.1
7	47	64.96	-0.05 fix	19.9	0. fix	99.44 ± 0.1
8	47	61.09	0.14 fix	18.5	1.05 ± 0.54	98.99 ± 0.2
9	47	61.09	0.1 fix	18.5	1.06 ± 0.54	99.47 ± 0.2
10	47	61.09	0.0 fix	18.5	1.07 ± 0.54	99.97 ± 0.2
11	47	60.08	-0.03 ± 0.1	18.4	1.07 ± 0.54	99.94 ± 0.4

Table 2: The basic parameters of the model are determined by fitting experimental data without the electromagnetic contributions and with free $\sigma_{t o t}$.

N	$\sum_{i=1}^{N} \chi_{i}^{2}$	ρ	B	C	$\sigma_{t o t}, m b$
86	281.	0.14fixed	20.	0.fix	99.4 ± 0.1
86	281.	0.1 fix	20.	0.fix	99.7 ± 0.1
86	288.	0.fix	20.	0.fix	99.8 ± 0.1
86	245.	0.14 fix	21.3	-1.03 ± 0.2	98.6 ± 0.2
86	215.	0.0 fix	21.8	-1.2 ± 0.2	98.7 ± 0.2
86	175.	-0.41 ± 0.1	23.2	-2.77 ± 0.2	89.1 ± 3.

Table 3: The basic parameters of the model are determined by fitting experimental data with free $\sigma_{t o t}$.

N	$\sum_{i=1}^{N} \chi_{i}^{2}$	ρ	B	C	$\sigma_{\text {tot }, ~}, m b$
47	87.1	0.2fixed	20.1	0.fix	98.5 ± 0.1
47	77.1	0.14fixed	20.	0.fix	99.2 ± 0.1
47	71.6	0.1 fix	20	0.fix	99.5 ± 0.1
47	61.1	-0.069 ± 0.05	19.8	0. fix	98.93 ± 0.8
47	61.2	0.1 fix	17.7	1.66 ± 0.54	100.1 ± 0.2
47	60.6	0.0 fix	18.8	0.82 ± 0.54	99.8 ± 0.2
47	60.6	0.01 ± 0.1	18.9	0.74 ± 0.8	99.7 ± 0.8

Table 4: The basic parameters of the model are determined by fitting experimental data with free $\sigma_{t o t}$.

N	$\sum_{i=1}^{N} \chi_{i}^{2}$	ρ	B	C	$\sigma_{\text {tot }}, m b$
40	78.8	0.2 fix	20.1	0.fix	98.6 ± 0.12
40	70.4	0.14 fix	20.	0. fix	99.29
40	65.8	0.1 fix	20	0. fix	99.55 ± 0.12
40	56.6	-0.076 ± 0.06	19.8	0. fix	98.83 ± 0.12
40	54.7	0.1 fix	16.3	2.63 ± 0.8	100.3 ± 0.27
40	54.9	0.0 fix	17.8	1.47 ± 0.8	99.96 ± 0.26
40	54.6	0.06 ± 0.01	16.9	2.17 ± 1.4	100.3 ± 0.3

Table 5: The basic parameters of the model are determined by fitting experimental data with free $\sigma_{t o t}$.

Figure 1: Size of $\sigma_{\text {tot }}$ a)(left) over ρ and b) (right) over C (hard line - without electromagnetic interaction and dashed line with electromagnetic interaction).

O.S. - J. Nucl.Phys. (Yad.Phys.) v. 55 (1992)

$$
\begin{align*}
\operatorname{Re} F^{h}(t) & =-\operatorname{Re} F_{c}(t) \tag{9}\\
& +\left[\left[\left.\frac{d \sigma}{d t}\right|_{\text {exp. }}-k \pi *\left(\operatorname{Im} F_{c}+\operatorname{Im} F_{h}\right)^{2}\right] /(k \pi)\right]^{1 / 2}
\end{align*}
$$

let us take the imaginary part of the hadron scattering amplitude in the simple exponential form with the parameters obtained by the TOTEM Collaboration

$$
\begin{equation*}
\operatorname{Im} F^{h}(t)=\sigma_{t o t} /(4 k \pi) e^{B t / 2}, \tag{10}
\end{equation*}
$$

Figure 2: Real part of the hadronic amplitude calculated by (eq.9)(triangles and squared without and with F_{c}; solid and empty represent real and imaginary parts of (eq.9) see text). (long dashed line - the calculations by (eq.11)).

N	$\sum_{i=1}^{N} \chi_{i}^{2}$	ρ	B	C	$\sigma_{t o t}, m b$
47	134.5	0.14fixed	19.8	0.- fixed	98.4
47	174.7	0.1 fix	19.7	0.fix	98.4
47	88.1	0.203 ± 0.01	20.1	0.fixed	98.4
47	105.3	0.14 fixed	22.9	-2.3 ± 0.3 fixed	98.4
47	61.4	-0.105 ± 0.02	20.	-0.14 ± 0.4	98.4

Table 6: The basic parameters of the model are determined by fitting experimental data with fixed $\sigma_{t o t}$.

N	$\sum_{i=1}^{N} \chi_{i}^{2}$	ρ	B	C	$\sigma_{\text {tot }}, m b$
40	88.17	0.203 ± 0.007	20.1	$0 .-$ fixed	98.4
40	88.2	0.2 fixed	20.	0. - fixed	98.4
40	125.6	0.14fixed	19.7	$0 .-$ fixed	98.4
40	157.7	0.1 fix	19.6	0. fix	98.4
40	102.4	0.14 fix	22.4	-1.75 ± 0.4	98.4
40	56.9	-0.106 ± 0.01	19.8	0. fix	98.4
40	56.8	-0.11 ± 0.02	19.7	0.1 ± 0.7	98.4

Table 7: The basic parameters of the model are determined by fitting experimental data with fixed $\sigma_{t o t}$.

N	$\sum_{i=1}^{N} \chi_{i}^{2}$	ρ	B	C	n	$\sigma_{\text {tot }, m b}$
47	77.1	0.14 fixed	20.	0. - fixed	1.017 ± 0.002	98.4
47	71.6	0.1 fix	20.	0. fix	1.022 ± 0.002	98.4
47	63.1	0.14 fix	17.2	2.1 ± 0.5	1.034 ± 0.012	98.4
47	61.1	-0.071 ± 0.05	19.8	0. fix	1.01 ± 0.013	98.4
47	60.6	-0.01 ± 0.09	18.9	0.72 ± 0.9	1.02 ± 0.02	98.4

Table 8: The basic parameters of the model are determined by fitting experimental data with fixed $\sigma_{t o t}$ and with additional normalization coefficient n.

N	$\sum_{i=1}^{N} \chi_{i}^{2}$	ρ	B	C	n	$\sigma_{t o t}, m b$
40	70.4	0.14fixed	20.	0.-fixed	1.018 ± 0.0025	98.4
40	65.8	0.1fix	20.	0.fix	1.024 ± 0.0025	98.4
40	55.1	0.14 fix	15.7	3.1 ± 0.77	1.037 ± 0.005	98.4
40	56.6	-0.077 ± 0.06	19.8	0. fix	1.009 ± 0.015	98.4
40	54.6	0.06 ± 0.08	16.9	2.18 ± 0.4	1.044 ± 0.02	98.4

Table 9: The basic parameters of the model are determined by fitting experimental data with fixed $\sigma_{t o t}$ and with additional normalization coefficient n.

N	$\sum_{i=1}^{N} \chi_{i}^{2}$	ρ	B	C	n	$\sigma_{\text {tot }}, m b$
47	77.84	0.14fixed	20.0	$0 .-$ fix	1.05	96.8 ± 0.1
47	71.65	0.1 ffix	20.	0. fix	1.05	97.1 ± 0.1
47	66.3	0.05 fix	20	0. fix	1.05	97.2 ± 0.1
47	62.8	0. fix	19.4	0. fix	1.05	97.1 ± 0.1
47	63.1	0.14 fixed	17.2	2.1 ± 0.5	1.05	97.56 ± 0.2
47	61.9	0.1 fix	17.7	1.87 ± 0.5	1.05	97.7 ± 0.2
47	61.0	0.05 fix	18.2	1.24 ± 0.5	1.05	97.7 ± 0.2
47	60.6	0. fix	18.8	0.8 ± 0.5	1.05	97.4 ± 0.2
47	60.8	-0.05 fix	19.3	0.4 ± 0.5	1.05	96.9 ± 0.3
47	61.1	-0.064 ± 0.05	19.8	$0 . f i x$	1.05	96.57 ± 0.58
47	60.6	-0.011 ± 0.09	18.9	0.7 ± 0.9	1.05	97.3 ± 0.9

Table 10: The basic parameters of the model are determined by fitting experimental data.

Figure 3: Size of $\sigma_{\text {tot }}$ over n in two variants a) (hard line) - with free slope C and b) (dashed line) with $C=0$.

F_{C}	$\sum_{i=1}^{N} \chi_{i}^{2}$	ρ	B	C	n	$\sigma_{t o t}, m b$
-	64.96	0.15 fix	19.9	0. fix	1.	98.47 ± 0.1
-	61.1	0.002 ± 0.2	18.4	1.07 ± 0.5	1.	99.9 ± 1.4
+	60.6	-0.01 ± 0.09	18.9	0.74 ± 0.8	1.	99.7 ± 0.8
+	60.6	-0.01 ± 0.09	18.9	0.72 ± 0.9	1.02 ± 0.004	98.4 fix
+	60.6	-0.01 ± 0.09	18.9	0.7 ± 0.9	1.05 fix	97.3 ± 0.9

Table 12: The basic parameters of the model are determined by fitting experimental data.

$$
F^{h}(s, t)=i h \hat{s}^{\Delta} f_{1}(t)^{2} \frac{\sigma_{t o t}}{4 \pi 0.38938} e^{\alpha t+\alpha_{2}\left(\sqrt{4 \mu^{2}-t}-2 \mu\right) L n(\hat{s})}
$$

$h \operatorname{Re} \widehat{s}=1$
with the electromagnetic form factor $f_{1}(t)(7)$ and $\hat{s}=s e^{-i * \pi / 2} ; \mu$ is the pion mass.

	$\Delta=0.1$	$\rho(\sqrt{s}=7 \mathrm{TeV}, t=0)=0.156$		
N	$\sum_{i=1}^{N} \chi_{i}^{2}$	α_{1}^{\prime}	α_{2}^{\prime}	$\sigma_{\text {tot }}, m b$
47	65.2	0.325	0. fix	99.7 ± 0.15
47	65.1	0.328	-0.002 ± 0.015	99.6 ± 0.2
40	58.1	0.324	$0 . f i x$	99.6 ± 0.05
40	55.8	0.276	0.037 ± 0.02	99.9 ± 0.26
47	204	0.314	$0 . f i x$	98.4 fix
47	95.3	0.427	-0.075 ± 0.008	98.4 fix
40	154	0.312	$0 . f i x$	98.4 fix
40	90.1	0.437	-0.08 ± 0.01	98.4 fix

Table 13: The basic parameters of the Regge amplitude are determined by fitting experimental data with free $\sigma_{\text {tot }}$.

$\Delta=0.08$				$\rho(\sqrt{s}=7 \mathrm{TeV}, t=0)=0.128$		
N	$\sum_{i=1}^{N} \chi_{i}^{2}$	α_{1}^{\prime}	α_{2}^{\prime}	$\sigma_{\text {tot }}, m b$		
47	64.4	0.325	0. fix	100.0 ± 0.1		
47	64.3	0.338	0.008 ± 0.003	99.9 ± 0.1		
40	56.4	0.323	$0 . f$ ix	99.9 ± 0.12		
40	55.3	0.299	0.005 ± 0.004	100.2 ± 0.3		
47	285	0.310	0. fix	98.4 fix		
47	106.7	0.455	-0.096 ± 0.008	98.4 fix		
40	211	0.307	0. fix	98.4 fix		
40	99.6	0.473	-0.108 ± 0.011	98.4 fix		

Table 14: The basic parameters of the model are determined by fitting experimental data with free $\sigma_{t o t}$.
D.S. - New methods for calculating parameters of the diffraction scattering amplitude, "VI Intern. Conf. On Diffraction...", Blois, France,(1995).
D.S. "Additional ways to determination of structure of high energy elastic scattering amplitude" arxiv.org:[hep-ph/0104295]
P. Gauron, B. Nicolescu, O.S. "A New Method for the Determination of the Real Part of the Hadron Elastic Scattering Amplitude at Small Angles and High Energies"

Phys.Lett. B629 (2005) 83-92

$$
\Delta_{R}(t)=\left[\operatorname{Re} F^{h}(t)+\operatorname{Re} F^{\tilde{N}}(t)\right]^{2}=\left[\left.\frac{d \sigma}{d t}\right|_{\text {exp. }}-k \pi\left(\operatorname{Im} F^{h}(t)+\operatorname{Im} F^{C}(t)\right] /(k \pi)\right.
$$

O.S. - Talk on X-th Blois Workshop (Xelsinki-2003)-hep-ph: hep-ph/0306256

$$
\mathrm{pp}-4 \mathrm{TeV}
$$

- TOTEM parameters
- - $\quad=96.4 \mathrm{mb} \quad \mathrm{B}=20.3 \mathrm{GeV}-2 ; \mathrm{C}=-0.05 ; \mathrm{n}=1.08$
—— TOTEM parameters; $\square=0.141$
$---\quad$-tot=96.4 mb; B=19.9 GeV-2; $\square=0.1 \quad-----$
$\square=$
0
;
-tot $=96.4 \mathrm{mb} ; \quad B=19.9 \mathrm{GeV}-2 ; \quad \square=-0.05$;

Summary

* The analysis of the new experimental data (TOTEM) shows there are some additional specific moments which are to be taken into account to determine the size of the total cross sections
I. we can not neglect the electromagnetic interaction;

2. the deviation of the form of the scattering amplitude at small t can be taken into account by the part of the slope proportional q;
3. the errors of the luminocity can be taken into account by an additional normalization coefficient;
4. it is need to check out the obtained, during the fitting procedure, the real part by using the t -dependence of extracted

$$
\text { R }=(\text { ReF_h+ReF_c })^{\wedge} 2 .
$$

5. Our analysis of the TOTEM data at 7 TeV shows that the size of \square 㶾 $\mathrm{t} \square$ (D) , very likely, near zero or -0.05 .

It is most likely that there is or some problems with normalization or there is some problems with the form of scattering amplitude
(for example, the oscillation term)

* The best way to decrease the impact of the different assumption consist in the determination of the sizes of and \square simultaneously in one experiment.

END

THANKS
 FOR YOUR ATTENTION

N	$\sum_{i=1}^{N} \chi_{i}^{2}$	ρ	B	C	n	$\sigma_{\text {tot }}, m b$
47	77.35	0.14fixed	20.03	$0 .-$ fix	1.08	95.49 ± 0.1
47	71.6	0.1 fix	20.	0. fix	1.08	95.76 ± 0.1
47	62.75	0. fix	19.4	0. fix	1.08	95.74 ± 0.1
47	60.89	0.14 fixed	19.0	0.45 ± 0.11	1.08	97.69 ± 0.1
47	60.56	0.1 fix	19.15	0.37 ± 0.11	1.08	97.57 ± 0.1
47	60.49	0. fix	19.52	0.17 ± 0.11	1.08	96.54 ± 0.1
47	60.9	-0.05 fix	19.7	0.07 ± 0.11	1.08	95.71 ± 0.1
47	61.14	-0.064 ± 0.05	19.8	0. fix	1.08	97.18 ± 0.2
47	60.6	-0.007 ± 0.09	18.9	0.73 ± 0.9	1.08	96.0 ± 0.8

Table 11: The basic parameters of the model are determined by fitting experimental data.

$$
\begin{aligned}
\frac{d N}{d t}= & \mathcal{L}\left[\frac{4 \pi \alpha^{2}}{|t|^{2}} G^{4}(t)-\frac{2 \alpha\left(\rho(s, t)+\phi_{C N}(s, t)\right) \sigma_{t o t} G^{2}(t) e^{-\frac{B(s, t)|t|}{2}}}{|t|}\right. \\
& \left.+\frac{\left.\sigma_{t o t}^{2}\left(1+\rho(s, t)^{2}\right) e^{-B(s, t)|t|}\right]}{16 \pi}\right]
\end{aligned}
$$

$I m F^{h}(t)=\sigma_{t o t} /(4 k \pi) e^{B t / 2}$,
$\operatorname{Re} F^{h}(t)=\rho \sigma_{t o t} /(4 k \pi) e^{B t / 2}$,

Standard definitions

$$
\begin{aligned}
& G_{E p}(0)=1 ; G_{E n}(0)=0 ; \quad G_{M}(0)=\left(G_{E}(0)+k\right)=\mu ; \\
& \mu_{p}=(1+1.79) \frac{e}{2 M} ; \quad k_{p}=1.79 ; \\
& F_{1}^{D}(t)=\frac{4 M_{p}^{2}-t \mu_{p}}{4 M_{p}^{2}-t} G_{D}(t) ; \quad F_{2}^{P}(t)=\frac{1}{1-t / 4 M_{p}^{2}} G_{D}(t) ; \\
& \quad G_{D}(t)=\frac{\Lambda^{2}}{(\Lambda-t)^{2}} ; \quad \Lambda=0.71 G e V^{2} ;
\end{aligned}
$$

