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 Momentum Spectra 
 Hard: jets/hard probes 

 Intermediate: ?? 

 Soft (bulk): color glass (?),                    
npQCD, thermalization + hydro 

 

 Bulk (soft) time evolution 
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A Short Primer on URHICs 



 Nuclei/hadrons at asymptotically high energy: 
 Saturated gluon density ~ Qs

-2  scale Qs >> QCD 

 Probes interact with many quarks + gluons coherently. 

 Large occupation numbers  quasi-classical fields. 

 Large nuclei are better: Qs ~ A
1/3 

 

 Effective Theory a la McLerran & Venugopalan 
 Solve Yang-Mills equations for gluon field A(). Sources = light 

cone currents J (given by SU(3) charge distributions   = large-x 
partons).  

 

 

 Calculate observables O( ) from the gluon field A(). 

 Compute O event by event or the expectation value of O by 
sampling or averaging over .   given by arbitrary frozen 
fluctuations of a color-neutral object. 

 MV weight: 
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Color Glass  

  
 JFD ,

     


WOdO  
[L. McLerran, R. Venugopalan] 
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Colliding Nuclei  

[A. Kovner, L. McLerran, H. Weigert] 

 Yang-Mills equations: two sources  1, 2 
 Intersecting light cone currents J1, J2 (given by  1, 2) solve Yang-

Mills equations for gluon field A( 1, 2). 

 Forward light cone (3): free Yang-Mills equations for 
fields A, Ai

 
 

 

 

 

 

 

 Boundary conditions on the forward light cone: 
 

 

 MV setup is boost-invariant, but not symmetric 
between + and – direction. 
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Gluon Fields in The Forward Lightcone  

[RJF, J. Kapusta, Y. Li, 2006] 
[Fujii, Fukushima, Hidaka, 2009] 

 Goals:  
 Calculate fields and energy momentum tensor of early time gluon field as a function of 

space-time coordinates. 

 Analyze energy density and flow field. 

 Derive constraints for further hydrodynamic evolution of equilibrating QGP. 

 Small-time expansion 
 

 

 

 

 

 Results: recursive solution for gluon field: 
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Numerical solution 
[T. Lappi] 

 

 

 

 

 

 



 Before the collision: color glass = pulse of strictly transverse (color) electric 
and magnetic fields, mutually orthogonal, with random color orientations, in                                                                              
each nucleus. 
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Result: Fields 

  ii AxF 11

  

  ii AxF 22

  



 Before the collision: color glass = pulse of strictly transverse (color) electric 
and magnetic fields, mutually orthogonal, with random color orientations, in                                                                              
each nucleus. 

 Immediately after overlap (forward light                                                                    
cone,   0): strong longitudinal electric                                                                                   
& magnetic fields. Non-abelian effect! 
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Result: Fields 
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[L. McLerran, T. Lappi, 2006] 
[RJF, J.I. Kapusta, Y. Li, 2006] 



 Before the collision: color glass = pulse of strictly transverse (color) electric 
and magnetic fields, mutually orthogonal, with random color orientations, in                                                                              
each nucleus. 

 Immediately after overlap (forward light                                                                    
cone,   0): strong longitudinal electric                                                                                   
& magnetic fields. Non-abelian effect! 

 Transverse E, B fields start linearly in time  
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Result: Fields 

[RJF, J.I. Kapusta, Y. Li, 2006] 
[G. Chen, RJF, 2013] 
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 Initial ( = 0) structure of the energy-momentum tensor: 

 

 

 

 

 

 

 

 

 

 

 

 Toward equilibrium: pressure isotropization                                 
(in local rest frame) 
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Energy-Momentum Tensor 

Later: Ideal plasma  
(local rest frame) 
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Energy Momentum Tensor 

 General structure up to order 2: 

 

 

 

 

 

 

 Transverse Poynting vector gives transverse flow. 
 

 

 

 

 

 Example for second order: 
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[RJF, J.I. Kapusta, Y. Li, (2006)] 
[G. Chen, RJF (2013)] 
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Modelling Color Charges 

 So far everything written in terms of color charge densities  1, 2 

 MV: Gaussian distribution around color-neutral average 

 

 

 
 Sample distribution to obtain event-by-event observables. 

 Here: calculating expectation value as function of average color charge densities 1, 2. 

 

 MV:  = const. But flow comes from gradients in nuclear profiles! 
 Keep  approximately constant on length scales 1/Qs , allow variations on larger length 

scales:                                                                                      where m is an infrared mass scale m << Qs. 

 MV well-behaved: typical cancellation of singularities still go through: ( ~ <A+
covA+

cov> ) 

 

 

 

 Applicability: typically everywhere ~ 1 fm or more away from the surface of a large nucleus. 
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[G. Chen et al., in preparation] 
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Averaging 

 Take expectation values. 

 Energy density ~ product of nuclear gluon distributions ~ product of color 
source densities 

 

 

 

 “Hydro” flow: 
 

 

 

 Odd flow term: 
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[RJF, Kapusta, Li, 2006]  

[Fujii, Fukushima, Hidaka, 2009]  
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[G. Chen et al., in preparation] 



EDS 2013 13 Rainer Fries 

Transverse Field: Abelian Arguments 

    

    00

00

,sinh, cosh
2

, cosh,sinh
2

BDEDB

BDEDE

ijiji

jijii











[Guangyao Chen, RJF] 

 Once the (non-abelian) longitudinal fields E0, B0 are seeded, the averaged 
transverse flow field is an abelian effect.  

 Can be understood in terms of Ampere’s, Faraday’s and Gauss’ Law.  
 Longitudinal fields E0, B0 decrease in both z and t away from the light cone 

 Gauss at fixed time t:  
 Long. flux imbalance compensated by transverse flux 

 Gauss: rapidity-odd radial field 

 Ampere/Faraday as function of t:  
 Decreasing long. flux induces transverse field 

 Ampere/Faraday: rapidity-even curling field 

 

 Full classical QCD: 
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Averaging: From Fields To Flow 

 Calculating the Poynting vector to first order in  : 

 

 

 

 

 Averaging over source configurations: what are                 and                  ? 

 

 With                                                                   we have 

 

  Lorentz symmetry and dimensionality dictate  
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 Transverse fields for randomly seeded 
longitudinal fields. 
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Transverse Field: Visualization 
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 Transverse Poynting vector for 
randomly seeded longitudinal fields. 
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Transverse Flow: Visualization 
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Phenomenology: b  0 
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 Odd flow needs an asymmetry: e.g. finite impact parameter 

 Flow field for Au+Au collision, b = 4 fm. 

 

 

 

 

 

 

 

 

 Radial flow following gradients in the fireball at  = 0. 

 Clearly: directed flow away from  = 0. 

 Fireball tilted, angular momentum. 

 Careful: time  ~ 0.1-0.2 fm/c 
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Phenomenology: b  0 

 Angular momentum is natural: some old 
models have it, most modern hydro 
calculations don’t. 
 Do we underestimate flow by factors of cos ? 

 

 

 

 Note that boost-invariance is not broken. 

 Directed flow v1: 
 Hydro needs tilted initial conditions or initial flow. 

 

 

 

 

 

[Gosset, Kapusta, Westfall (1978)] 

 

MV only, no hydro 



 Odd flow needs an asymmetry: e.g. asymmetric system 

 Flow field for Cu+Au collision: 

 

 

 

 

 

 

 

 

 

 Odd flow increases expansion in the wake of the 
larger nucleus, suppresses flow on the other side. 

 Should lead to very characteristic flow patterns in 
asymmetric systems. 
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Phenomenology: A  B 
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Event-By-Event Picture 

 Numerical simulation of  in Au+Au, sampling charge distributions in the 
nuclei. 

 

 

 

 

 

 

 

 

 

 Individual events dominated by fluctuations. 

 Averaging N > 100 events: recover directed flow. 

1N 100N

PRELIMINARY 



 No equilibration in clQCD; thermalization = difficult problem. 

 Pragmatic solution: extrapolate from both sides (r() = interpolating fct.) 

                   , enforce  

      and other conservation laws. 

 

 Fast equilibration:  

 

 Analytic solution available for matching ideal hydro. 
 4 equations + EOS to determine 5 fields in ideal hydro. 

 

 

 

 

 

 

 Odd flow  drops out: we are missing angular momentum. 
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Matching to Hydrodynamics 

      rTrTT  1plf
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 Instantaneous matching to viscous hydrodynamics using in addition 

 

 
 

 

 Mathematically equivalent to imposing smoothness condition on all components of T. 

 Numerical solution of the matching: 

 

 

 

 

 

 

 

 Tilting and odd flow terms translate into hydrodynamics fields. 

 

 

 

 

 

 

Rainer Fries 22 EDS 2013 

Matching to Hydrodynamics 



 TxTxMM                0

 0yvz  001 y 0yvx



 Need to run viscous 3+1-D hydro with large viscous corrections. 

 Viscous freeze-out. 

 

 Nothing to show yet, but work in progress. 
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Effect on Particle Spectra 



 We can calculate the fields and energy momentum tensor in the clQCD 
approximation for the early stage of high energy nuclear collisions. 

 

 Transverse energy flow shows interesting and unique (?) features: directed 
flow, A+B asymmetries. 

 

 These features are usually not included in hydrodynamic simulations. We 
find that key features easily translate into hydrodynamic fields in simple 
thermalization models. 

 

 Phenomenology needs hydrodynamics with large dissipative corrections. 

 

 

 

 

Rainer Fries 24 EDS 2013 

Summary 
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Backup 
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Space-Time Picture 

 Finally: field has decayed into plasma at  = 0 

 

 

 

 

 

 

 

 

 Energy is taken from deceleration of the nuclei in the color field. 
 

 Full energy momentum conservation: 
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Space-Time Picture 

 Deceleration: obtain positions * and rapidities y* of the                                        
baryons at  = 0 

 

 

 

 For given initial beam rapidity y0 , mass area density m. 

 

 BRAHMS:  
 dy = 2.0  0.4 

 Nucleon: 100 GeV  27 GeV 

 We conclude: 
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