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 Momentum Spectra 
 Hard: jets/hard probes 

 Intermediate: ?? 

 Soft (bulk): color glass (?),                    
npQCD, thermalization + hydro 

 

 Bulk (soft) time evolution 
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A Short Primer on URHICs 



 Nuclei/hadrons at asymptotically high energy: 
 Saturated gluon density ~ Qs

-2  scale Qs >> QCD 

 Probes interact with many quarks + gluons coherently. 

 Large occupation numbers  quasi-classical fields. 

 Large nuclei are better: Qs ~ A
1/3 

 

 Effective Theory a la McLerran & Venugopalan 
 Solve Yang-Mills equations for gluon field A(). Sources = light 

cone currents J (given by SU(3) charge distributions   = large-x 
partons).  

 

 

 Calculate observables O( ) from the gluon field A(). 

 Compute O event by event or the expectation value of O by 
sampling or averaging over .   given by arbitrary frozen 
fluctuations of a color-neutral object. 

 MV weight: 
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Color Glass  

  
 JFD ,

     


WOdO  
[L. McLerran, R. Venugopalan] 



Rainer Fries 4 EDS 2013 

Colliding Nuclei  

[A. Kovner, L. McLerran, H. Weigert] 

 Yang-Mills equations: two sources  1, 2 
 Intersecting light cone currents J1, J2 (given by  1, 2) solve Yang-

Mills equations for gluon field A( 1, 2). 

 Forward light cone (3): free Yang-Mills equations for 
fields A, Ai

 
 

 

 

 

 

 

 Boundary conditions on the forward light cone: 
 

 

 MV setup is boost-invariant, but not symmetric 
between + and – direction. 
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Gluon Fields in The Forward Lightcone  

[RJF, J. Kapusta, Y. Li, 2006] 
[Fujii, Fukushima, Hidaka, 2009] 

 Goals:  
 Calculate fields and energy momentum tensor of early time gluon field as a function of 

space-time coordinates. 

 Analyze energy density and flow field. 

 Derive constraints for further hydrodynamic evolution of equilibrating QGP. 

 Small-time expansion 
 

 

 

 

 

 Results: recursive solution for gluon field: 
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Numerical solution 
[T. Lappi] 

 

 

 

 

 

 



 Before the collision: color glass = pulse of strictly transverse (color) electric 
and magnetic fields, mutually orthogonal, with random color orientations, in                                                                              
each nucleus. 
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Result: Fields 

  ii AxF 11

  

  ii AxF 22

  



 Before the collision: color glass = pulse of strictly transverse (color) electric 
and magnetic fields, mutually orthogonal, with random color orientations, in                                                                              
each nucleus. 

 Immediately after overlap (forward light                                                                    
cone,   0): strong longitudinal electric                                                                                   
& magnetic fields. Non-abelian effect! 
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Result: Fields 
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[L. McLerran, T. Lappi, 2006] 
[RJF, J.I. Kapusta, Y. Li, 2006] 



 Before the collision: color glass = pulse of strictly transverse (color) electric 
and magnetic fields, mutually orthogonal, with random color orientations, in                                                                              
each nucleus. 

 Immediately after overlap (forward light                                                                    
cone,   0): strong longitudinal electric                                                                                   
& magnetic fields. Non-abelian effect! 

 Transverse E, B fields start linearly in time  
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Result: Fields 

[RJF, J.I. Kapusta, Y. Li, 2006] 
[G. Chen, RJF, 2013] 

 OEi ~

 OBi ~
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 Initial ( = 0) structure of the energy-momentum tensor: 

 

 

 

 

 

 

 

 

 

 

 

 Toward equilibrium: pressure isotropization                                 
(in local rest frame) 
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Energy-Momentum Tensor 

Later: Ideal plasma  
(local rest frame) 
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Energy Momentum Tensor 

 General structure up to order 2: 

 

 

 

 

 

 

 Transverse Poynting vector gives transverse flow. 
 

 

 

 

 

 Example for second order: 

   
   

   
    






























2

0

22112

222

0

222

1122

0

11

222112

0

f

coshsinhcoshsinh

coshsinhsinhcosh

coshsinhsinhcosh

sinhcoshsinhcosh











OO

OO

OO

OO

T

    0000

0

,,
2

2

BEDEBD jjiji

ii















 22

2

1
BE  BES




Like hydrodynamic flow, determined by gradient of  

transverse pressure PT = 0; even in rapidity. 

Non-hydro like; odd in rapidity ?? 

[RJF, J.I. Kapusta, Y. Li, (2006)] 
[G. Chen, RJF (2013)] 
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Depletion/increase of energy density due to transverse flow 

Due to longitudinal flow 
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Modelling Color Charges 

 So far everything written in terms of color charge densities  1, 2 

 MV: Gaussian distribution around color-neutral average 

 

 

 
 Sample distribution to obtain event-by-event observables. 

 Here: calculating expectation value as function of average color charge densities 1, 2. 

 

 MV:  = const. But flow comes from gradients in nuclear profiles! 
 Keep  approximately constant on length scales 1/Qs , allow variations on larger length 

scales:                                                                                      where m is an infrared mass scale m << Qs. 

 MV well-behaved: typical cancellation of singularities still go through: ( ~ <A+
covA+

cov> ) 

 

 

 

 Applicability: typically everywhere ~ 1 fm or more away from the surface of a large nucleus. 
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[G. Chen, RJF, 2013] 
[G. Chen et al., in preparation] 
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Averaging 

 Take expectation values. 

 Energy density ~ product of nuclear gluon distributions ~ product of color 
source densities 

 

 

 

 “Hydro” flow: 
 

 

 

 Odd flow term: 
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[T. Lappi, 2006] 

[RJF, Kapusta, Li, 2006]  

[Fujii, Fukushima, Hidaka, 2009]  
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[G. Chen, RJF, 2013] 
[G. Chen et al., in preparation] 
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Transverse Field: Abelian Arguments 
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[Guangyao Chen, RJF] 

 Once the (non-abelian) longitudinal fields E0, B0 are seeded, the averaged 
transverse flow field is an abelian effect.  

 Can be understood in terms of Ampere’s, Faraday’s and Gauss’ Law.  
 Longitudinal fields E0, B0 decrease in both z and t away from the light cone 

 Gauss at fixed time t:  
 Long. flux imbalance compensated by transverse flux 

 Gauss: rapidity-odd radial field 

 Ampere/Faraday as function of t:  
 Decreasing long. flux induces transverse field 

 Ampere/Faraday: rapidity-even curling field 

 

 Full classical QCD: 
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Averaging: From Fields To Flow 

 Calculating the Poynting vector to first order in  : 

 

 

 

 

 Averaging over source configurations: what are                 and                  ? 

 

 With                                                                   we have 

 

  Lorentz symmetry and dimensionality dictate  
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[G. Chen, RJF, 2013] 
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 Transverse fields for randomly seeded 
longitudinal fields. 
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Transverse Field: Visualization 

) d(backgroun 0BE i
) d(backgroun 0EB i

flow) odd (no
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 Transverse Poynting vector for 
randomly seeded longitudinal fields. 
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Transverse Flow: Visualization 
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Phenomenology: b  0 
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 Odd flow needs an asymmetry: e.g. finite impact parameter 

 Flow field for Au+Au collision, b = 4 fm. 

 

 

 

 

 

 

 

 

 Radial flow following gradients in the fireball at  = 0. 

 Clearly: directed flow away from  = 0. 

 Fireball tilted, angular momentum. 

 Careful: time  ~ 0.1-0.2 fm/c 

 

 

 

 

 

 

00T

xT 0



EDS 2013 18 Rainer Fries 

Phenomenology: b  0 

 Angular momentum is natural: some old 
models have it, most modern hydro 
calculations don’t. 
 Do we underestimate flow by factors of cos ? 

 

 

 

 Note that boost-invariance is not broken. 

 Directed flow v1: 
 Hydro needs tilted initial conditions or initial flow. 

 

 

 

 

 

[Gosset, Kapusta, Westfall (1978)] 

 

MV only, no hydro 



 Odd flow needs an asymmetry: e.g. asymmetric system 

 Flow field for Cu+Au collision: 

 

 

 

 

 

 

 

 

 

 Odd flow increases expansion in the wake of the 
larger nucleus, suppresses flow on the other side. 

 Should lead to very characteristic flow patterns in 
asymmetric systems. 
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Phenomenology: A  B 
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asymmetries. Here: p+Pb 
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Event-By-Event Picture 

 Numerical simulation of  in Au+Au, sampling charge distributions in the 
nuclei. 

 

 

 

 

 

 

 

 

 

 Individual events dominated by fluctuations. 

 Averaging N > 100 events: recover directed flow. 

1N 100N

PRELIMINARY 



 No equilibration in clQCD; thermalization = difficult problem. 

 Pragmatic solution: extrapolate from both sides (r() = interpolating fct.) 

                   , enforce  

      and other conservation laws. 

 

 Fast equilibration:  

 

 Analytic solution available for matching ideal hydro. 
 4 equations + EOS to determine 5 fields in ideal hydro. 

 

 

 

 

 

 

 Odd flow  drops out: we are missing angular momentum. 
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Matching to Hydrodynamics 
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 Instantaneous matching to viscous hydrodynamics using in addition 

 

 
 

 

 Mathematically equivalent to imposing smoothness condition on all components of T. 

 Numerical solution of the matching: 

 

 

 

 

 

 

 

 Tilting and odd flow terms translate into hydrodynamics fields. 
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Matching to Hydrodynamics 



 TxTxMM                0

 0yvz  001 y 0yvx



 Need to run viscous 3+1-D hydro with large viscous corrections. 

 Viscous freeze-out. 

 

 Nothing to show yet, but work in progress. 
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Effect on Particle Spectra 



 We can calculate the fields and energy momentum tensor in the clQCD 
approximation for the early stage of high energy nuclear collisions. 

 

 Transverse energy flow shows interesting and unique (?) features: directed 
flow, A+B asymmetries. 

 

 These features are usually not included in hydrodynamic simulations. We 
find that key features easily translate into hydrodynamic fields in simple 
thermalization models. 

 

 Phenomenology needs hydrodynamics with large dissipative corrections. 
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Summary 
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Backup 
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Space-Time Picture 

 Finally: field has decayed into plasma at  = 0 

 

 

 

 

 

 

 

 

 Energy is taken from deceleration of the nuclei in the color field. 
 

 Full energy momentum conservation: 

 





fTf 
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Space-Time Picture 

 Deceleration: obtain positions * and rapidities y* of the                                        
baryons at  = 0 

 

 

 

 For given initial beam rapidity y0 , mass area density m. 

 

 BRAHMS:  
 dy = 2.0  0.4 

 Nucleon: 100 GeV  27 GeV 

 We conclude: 

 

 

 

 

  aavayy  121coshcosh 00

*

m

f
a



 0


[Kapusta, Mishustin] 

2

0 GeV/fm 9f

[RF] 


