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Outline 

• Cosmic rays and Observatory  
– UHECR 

– FD (fluorescence detector) 
– SD (surface detector) 

 

• p-air (p-p@57 TeV) production cross-section measurement 
 
    Primary CR composition 

– Information in Xmax and RMS(Xmax) 
– Information in X μ 

max
 

– Other SD parameters  

     Hadronic interaction models 
– consistency in Xmax vs. RMS(Xmax)  
– muon component measurement  
– consistency in Xmax vs. #muons 
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Cosmic rays and Pierre Auger 
Observatory 

3 

Energies far from reach of accelerators 
Rare events - large observatory needed 
 
Note more than 125 000 events in the 
plot! 

Flux suppression@1019.5eV 
confirmed 3 

UHECR 



Cosmic rays and 
magnetic field 

Iron nuclei 

2.6 1019 eV 

 
2.6 1021 eV 
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Protons 

1018eV 
 

1020eV 

protons correlate?, heavy do not? 
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Observatory 

Extensive Air Shower: 
• Indirect measurement, 
• Shape and particle content of showers 
 
Hybrid Detector 
 
24 Fluorescence telescopes 
• 30°×30° FoV 
• UV light from excited N2 
• 13% duty cycle 
Good energy resolution 
 
Array of 1600 water  
Cherenkov detectors 
• On 3000 km2, 
• 100% duty cycle, 
Well-known aperture 

Were do UHECRs come from? 
What are they? 
How are they accelerated? 
Does their spectrum end? 
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Observatory 

FD - Fluorescence detector 
E>1018 eV 
• Loma Amarilla 
• Coihueco 
• Los Morados 
• Los Leones 
• HEAT: E>1017 eV 
 
SD - Surface detector array 
• 1500 m: E>1018.5 eV 
• 750 m (AMIGA): E>1017.5 
eV 
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Other detector systems (RADIO): AERA (MHz), AMBER (GHz), EASIER (MHz, GHz), MIDAS (GHz) 



Observatory – measurement principle 

7 FD SD 



Observatory – energy calibration 

Systematic uncertainty on the energy scale: 
14% (before update 22%) 
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Energy resolution: 7 - 8 % (FD), 17 - 12 % (SD) 



Observatory – atmospheric 
measurements 
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p-air cross-section @ Elab/eV = 1018-1018.5 

Method: 
- Xmax tail sensitive to σp-air  

 
dN/dX1 ≈ exp(-X1/Λint) 
σint = <mair>/Λint 

 
dN/dXmax ≈ exp(-Xmax/Λη) 
Λint  is related to Λη 
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Xmax distribution 

PXmax 

PX1 P(Xmax-X1) 

= 
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Problems: 
- unbiased Xmax dist. needed 
- RMS(X1) ≈ RMS(Xmax-X1) - model 
- Unknown composition 



Cross-section – tail of Xmax 

 
• proton contribution strongly  
enhanced in Xmax tail 
• protons should be in CR 
 at Elab/eV = 1018-1018.5 
 
 
 
  

 
• Xmax tail very sensitive to  
production cross-section 
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Xmax distribution - observation bias  

Range of the observable Xmax 
depends on shower direction 
and core location wrt.  FD 
 
Select those geometries that 
allow for large range of 
observable Xmax 

 
 
Fiducial volume cuts 
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Xmax distribution - unbiased 

-fiducial cuts - tail      
  optimized  
 
-keep as much events as  
  possible 
 
- 3082 events remain wrt.    
  1635 events with strict cuts  

Λη / g cm-2 = 55.8 ± 2.3stat ± 1.6sys 

@ 1018.24 ± 0.005stat eV => √s = 57 ± 0.3 TeV 
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p-air cross-section 

Convert Λη to σint – models needed 

MC resampling with modified σint  
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p-air cross-section 
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He 

gamma 

He γ 

Systematics σp-air 

17 



Conversion to σp-p 

- Glauber with diffractive 
intermediate states included 
 
- additional parameter λ: ratio 
of diffractive and elastic 
amplitudes 
 
- systematical errors of the 
conversion derived 
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Conversion to σp-p 
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Primary cosmic ray composition 
 
 

Hadronic interaction models 
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CR composition 
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 Mass sensitive variables: 
 
FD 
Xmax (<Xmax>,RMS(Xmax)):  
Light nuclei - deep showers  - 
high Xmax 
Heavy nuclei – shallow showers 
– low Xmax 
 
 
SD 
Xμ

max ,Asymmetry (θmax) 
 (<Xμ

max >,<θmax>>) 
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2013 preliminary (ICRC) results confirmed published data  
- note improved energy scale and reconstruction 

2013 preliminary update 

<Xmax>,RMS(XMAX) 



<Xmax>,RMS(XMAX) 
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<Xmax> slope changes at E≈1018.45 eV 
RMS(Xmax)  decreases at E≈1018.45 eV 
 
Explanations: 
• Composition gets heavier 
 
• Hadronic interactions “change” 
(eg. cross-section increases much 
faster with energy) 

E=1018.45 eV 

2013 preliminary update 



ln(A), σ2(lnA)  
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<ln(A)>=0 

<ln(A)>=2 

<ln(A)>=4 



ln(A), σ2(ln(A)) from Xmax 
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Shower direction 
Zenith angles ≈ 60 deg 
Muon arrival times from VEM traces in SD stations 
Production depth of individual muons from time delay 

Xμ
max - muon production depth (MPD) 
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Xμ
max - muon production depth (MPD) 

Real event 
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SD mass 
sensitive variable 
 



Xμ
max –muon production depth (MPD) 
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Larger differences between hadronic models compared to the Xmax 

2013 preliminary  



ln(A) from Xμ
max 

??? 

Model discrepancy – needs to be further investigated 
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2013 preliminary  



Muonic signals  

Hybrid events 
 
 
 
 
FADC time structure 
extraction of muonic 
component 
 
 
Inclined showers 
muon component 
dominates 
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How much  “artificially” increase muon signal in simulations to describe measured SD signals?  



μ - Hybrid events 

Rμ,RE 
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μ – FADC traces, inclined 
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Vertical, FADC traces 
analysis@1019eV 
Reference QGSJETII.04 (proton) 

Inclined events 
Reference QGSJETII.03 (proton) 

 

1.35 x 1.2 = 1.6 



Conclusions 1/2 

• Inelastic p-air cross-section measured @Elab=1018.24 eV 
• Inelastic p-p(Glauber) cross-section estimated @57 TeV 

 
• All composition related results - with increasing energy clear trend 

from light to heavier component at Elab>1018.4eV 
  
• μ – direct (indirect) results comparable with Fe-like prediction of 

current hadronic interaction models 
• EM – observed Xmax distribution not compatible 
     with Fe only 
 
• Hadronic interaction models cannot be consistently used to 

interpret all data in terms of CR composition 
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Conclusions 2/2 

Primary cosmic ray composition 
 
 

Hadronic interaction models 
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How to disentangle? Ever? 
 

- Test/tune models at LHC  
 

- Try to define beam of light (correlating) 
particles on the sky (highest energies 
needed) 

- simultaneous composition and 
anisotropy searches  
- large aperture needed (>= AUGER) 
- better muon detector on ground 

 


