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INTRODUCTION

s channel Unitarity screening considerations date back to the ISR epoch,

where they provided a simple way out of seemingly paradoxical traps.

1) Given that non screened σtot grows with energy, σel grows faster

(optical theorem). With no screening, σel will, eventually, be larger than σtot.

2) Even though elastic and diffractive scatterings are dynamically similar, the

energy dependence of diffractive cross sections is significantly more moderate.

3) The elastic amplitude is central in impact parameter b, peaking at b=0.

The diffractive amplitudes are peripheral, peaking at large b, which gets larger

with energy.

40 years latter, estimates of soft scatterings channels at the TeV-scale

require a unified analysis of elastic and diffractive scatterings, incorporating

the Good-Walker mechanism and s and t unitarity screenings.



S-CHANNEL UNITARITY

The simplest s-channel unitarity bound on ael(s, b) is obtained from

a diagonal re-scattering matrix, where repeated elastic re-scatterings

secure s-channel unitarity, 2Imael(s, b) = |ael(s, b)|
2 + Gin(s, b).

i.e. At a given (s,b), σtot = σel + σinel. Its general solution is:

ael(s, b) = i
(

1 − e−Ω(s,b)/2
)

, Gin(s, b) = 1 − e−Ω(s,b). Ω is arbitrary.

The output s-unitarity bound is | ael(s, b) |≤ 2, leading to very large total and

elastic LHC cross sections, which are not supported by LHC recent data.

In a Glauber/Gribov eikonal approximation, the input opacity Ω(s, b) is real.

It equals to the imaginary part of the input Born term, a Pomeron exchange

in our context. The output ael(s, b) is imaginary.

The consequent bound is | ael(s, b) |≤ 1, which is the black disc bound.

In a single channel eikonal model, the screened cross sections are:

σtot = 2
∫

d2b
(

1 − e−Ω(s,b)/2
)

, σel =
∫

d2b
(

1 − e−Ω(s,b)/2
)2

, σinel =
∫

d2b
(

1 − e−Ω(s,b)
)

.



The figure shows the s-channel black bound, and the analyticity/crossing

bound implied by the ln2(s) expanding amplitude radius. The consequent

Froissart-Martin bound is: σtot ≤ Cln2(s/s0), s0 = 1GeV 2, C ∝ 1/2m2
π ≃ 30mb.

C is far too large to be relevant at the TeV-scale.

s-unitarity implies: σel ≤
1
2σtot and σinel ≥

1
2σtot. At saturation, σel = σinel = 1

2σtot.

Introducing diffraction, significantly changes the features of s-unitarity.

However, the saturation signatures remain valid.



GOOD-WALKER DECOMPOSITION

Consider a system of two orthonormal states, a hadron Ψh and a diffractive

state ΨD. ΨD replaces the continuous diffractive Fock states. Good-Walker

(GW) noted that Ψh and ΨD do not diagonalize the 2x2 interaction matrix T.

Let Ψ1 and Ψ2 be eigen states of T.

Ψh = αΨ1 + βΨ2, ΨD = −βΨ1 + αΨ2, α2 + β2 = 1.

The eigen states initiate 4 Ai,k elastic GW amplitudes (ψi+ψk → ψi+ψk). i,k=1,2.

For initial p(p̄)−p we have A1,2 = A2,1. I shall follow the GLM definition, in which

the mass distribution of ΨD is not defined and requires a specification.

The elastic, SD and DD amplitudes in a 2 channel screened GW model are:

ael(s, b) = i{α4A1,1 + 2α2β2A1,2 + β4A2,2},

asd(s, b) = iαβ{−α2A1,1 + (α2 − β2)A1,2 + β2A2,2},

add(s, b) = iα2β2{A1,1 − 2A1,2 + A2,2},

Ai,k(s, b) =
(

1 − e
1

2
Ωi,k(s,b)

)

≤ 1.



Introducing t-channel screening results in a distinction between GW and

non GW diffraction. In the GW sector:

• We obtain the Pumplin bound: σel + σGW
diff ≤ 1

2σtot.

σGW
diff is the sum of the GW soft diffractive cross sections.

• Below saturation, σel ≤
1
2σtot − σGW

diff and σinel ≥
1
2σtot + σGW

diff .

• ael(s, b) = 1, when and only when, A1,1(s, b) = A1,2(s, b) = A2,2(s, b) = 1.

• When ael(s, b) = 1, all diffractive amplitudes at the same (s,b) vanish.

• GW saturation signatures are valid also in the non GW sector.

• The saturation signature, σel = σinel = 1
2σtot, in a multi channel calculation

is coupled to σdiff = 0. Consequently, prior to saturation the diffractive

cross sections stop growing and start to decrease with energy.

This is a clear signature preceding saturation.



CROSSED CHANNELED UNITARITY

Translating the concepts presented into a viable phenomenology requires a

specification of Ω(s, b), for which Regge Pomeron (IP ) theory is a powerful tool.

Mueller(1971) applied 3 body unitarity to equate the cross section of

a + b → M 2
sd + b to the triple Regge diagram a + b + b̄ → a + b + b̄, with a leading

3IP vertex term.

The 3IP approximation is valid when
m2

p

M2
sd

<< 1 and
M2

sd
s << 1.

The leading energy/mass dependences are dσ3IP

dt dM2
sd

∝ s2∆IP ( 1
M2

sd

)1+∆IP .



a) b)

Mueller’s 3IP approximation for non GW diffraction is the lowest order

of t-channel multi IP interactions, compatible with t-channel unitarity.

Recall that unitarity screening of GW (”low mass”) diffraction is carried out

explicitly by eikonalization, while the screening of non GW (”high mass”)

diffraction is carried out by the survival probability (to be discussed).

The figure shows the IP Green function. Multi IP interactions are summed

differently in the various IP models. Note the analogy with QED:

a) Enhanced diagrams, present the renormalization of the propagator.

b) Semi enhanced diagrams, present the pIPp vertex renormalization.



SURVIVAL PROBABILITY

The experimental signature of a IP exchanged reaction is a large rapidity gap

(LRG), devoid of hadrons in the η − φ Lego plot, η = −ln(tanθ
2).

S2, the LRG survival probability, is a unitarity induced suppression factor of

non GW diffraction, soft or hard: S2 = σscreened
diff /σnonscreened

diff .

It is the probability that the LRG signature will not be filled by debris

(partons and/or hadrons) originating from either the s-channel re-scatterings

of the spectator partons, or by the t-channel multi IP interactions.

Denote the gap survival factor initiated by s-channel eikonalization S2
eik,

and the one initiated by t-channel multi IP interactions, S2
mIP .

The incoming projectiles are summed over (i,k).

S2 is obtained from a convolution of S2
eik and S2

mIP .

A simpler, reasonable approximation, is S2 = S2
eik · S

2
mIP .



INCORPORATING GOOD-WALKER AND MUELLER DIFFRACTIONS

Both the experimental and theoretical studies of soft diffraction are hindered

by conflicting definitions of signatures and bounds.

In our context, I wish to discuss the relationship between GW and non GW

diffraction versus Mueller’s low and high diffractive mass.

Kaidalov, at the time, equated (without a proof) Mueller’s low diffractive mass

with GW diffraction, and high diffractive mass with non GW diffraction.

The problem is how do we define the bounds of these diffractive mass domains.

Following Kaidalov, GW low mass upper bound and Mueller’s high mass lower

bound, which is 4-5 GeV, coincide.

i.e. there is no overlap of low and high mass diffraction.

This point of view is shared by KMR, Ostapchenko and Poghosyan.

I find this assumption problematic, as it has no procedure which secures

a smooth behaviour of the diffractive mass through this transition.



In the GLM model the GW diffractive mass is not defined. We presume

(also without a proof) that GW and non GW (high mass) diffraction have

the same upper bound, comonly taken to be 0.05s.

As we saw, The main difference between the 2 diffractive modes is that GW

is suppressed by eikonal screenings, while non GW is suppressed by the

survival prrobability which has an s-chanel eikonal component initiated by the

re-scattering of the initial projectiles and a t-channel screening induced by the

multi IP interactions.

In GLM most of the diffraction is GW, while in KMR it is non GW high mass.

Originally, GLM did not define a diffractive mass distribution. This has been

amended in our recent paper, where we consider the Pomeron as a partonic

probe. In this model:

IP -q interactions contribute to GW mass distribution.

IP -g interactions contribute to non GW, the high mass distribution.



THE PARTONIC POMERON

Current IP models differ in details, but have in common a relatively large

adjusted input ∆IP and a diminishing α′
IP .

Recall that, traditionally, ∆IP determines the energy dependence of the total,

elastic and diffractive cross sections while α′
IP determines the forward slopes.

This picture is modified in updated IP models in which s and t unitarity

screenings induce a much smaller IP intercept at t=0, denoted ∆eff
IP , which gets

smaller with energy. The exceedingly small fitted α′
IP implies a partonic

description of the IP which leads to a pQCD interpretation.

Gribov’s partonic Regge theory provides the microscopic sub structure of the

IP where the slope of the IP trajectory is related to the mean transverse

momentum of the partonic dipoles constructing the Pomeron.

α′
IP ∝ 1/ < pt >2, accordingly: αS ∝ π/ln

(

< p2
t > /Λ2

QCD

)

<< 1.



We obtain a IP with hardness changing continuesly from hard (BFKL like) to

soft (Regge like). This is a non trivial relation as the soft IP is a simple moving

pole in J-plane, while, the BFKL hard IP is a branch cut, approximated, though,

as a simple pole with ∆IP = 0.2 − 0.3, α′
IP ≃ 0.

GLM and KMR models are rooted in Gribov’s partonic IP theory with a hard

pQCD IP input. It is softened by unitarity screening (GLM), or the decrease of

its partons’ transverse momentum (KMR). The two definitions are correlated.

GLM and KMR have a bound of validity, at 60(GLM) and 100(KMR) TeV,

implied by their approximations. Consequently, as attractive as updated IP

models are, we can not utilize them above 100 TeV.

To this end, the only relevant models are single channeled, most of which have

a logarithmic parametrization input. As noted, the main deficiency of these

models is that they ignore the diffractive channels and their handling of

unitarity screening is partial at best.



DIS: FROM SOFT TO HARD

The single IP picture suggested by the updated IP models implies a smooth

transition from the input hard IP to a soft IP . This picture is supported by the

the HERA dependence of λ = ∆IP on Q2 shown in the figure above.

Note though, that a smooth transition from a soft to hard IP can be reproduced

also by a 2 IP s (soft and hard) model such as Ostapchenco’s.



UNITARITY SATURATION

As we saw, unitarity saturation is coupled to 3 experimental signatures:

σinel
σtot

= σel
σtot

= 0.5, σtot
Bel

= 9π, σdiff = 0.

Following is p-p TeV-scale data relevant to the assessment of saturation:

CDF(1.8 TeV): σtot = 80.03 ± 2.24mb, σel = 19.70 ± 0.85mb, Bel = 16.98 ± 0.25GeV −2.

TOTEM(7 TeV): σtot = 98.3±0.2(stat)±2.8(sys)mb, σel = 24.8±0.2(stat)±2.8(sys)mb,

Bel = 20.1 ± 0.2(stat) ± 0.3(sys)GeV −2.

AUGER(57 TeV): σtot = 133 ± 13(stat)±17
20sys ± 16(Glauber)mb,

σinel = 92 ± 7(stat) ±9
11 (sys) ± 16(Glauber)mb.

Note that AUGER margin of error of σinel and σtot output is 20%!

Consequently: σinel/σtot=0.754(CDF), 0.748(TOTEM), 0.692(AUGER).

The numbers above suggest a very slow approach toward saturation, well

above the TeV-scale. Consequently, the study of p-p saturation depends on

information above the TeV-scale.



There are 2 sources from which we may obtain the desired information:

• Cosmic Rays data. Recall that p-p cross sections obtained from p-Air data

have relatively large margin of errore. AUGER p-p cross sections are a

good example.

• Since updated IP models are confined to the TeV-scale, p-p cross sections

at higher energies can be calculated only in single channeled models, the

deficiencyies of which have been specified before.

Out of quite a few single channeled nodels, I shall quote Block and Halzen,

which reproduces well the inelastic and total cross sections at the TeV-scale.

The BH model can be applied at exceedingly high energies.

The prediction of BH at the Planck-scale (1.22·1016TeV ) is:

σinel/σtot = 1131mb/2067mb = 0.547.

It indicates that saturation will be attained, if at all, at non realistic energies.



The predicted vanishing of the diffractive cross sections at saturation

implies that σsd, which up to the TEVATRON grows slowly with energy,

will eventually start to reduce.

This may serve as an early signature that saturation is being approached.

Specifically, the preliminary TOTEM measurement of

σsd = 6.5 ± 1.3mb

3.4 < Msd < 1100GeV

2.4 · 10−7 < ξ < 0.025

suggests a radical change in the energy dependence of σsd, which is considerably

smaller than its value at CDF.

σsd/σinel = 0.151(CDF), 0.088(TOTEM).

This feature, if correct, is, presently, particular to diffraction. It suggests

a much faster approach toward unitarity saturation than suggested by σinel
σtot

.
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TOTEM diffractive data is very preliminary. Regardless, the compatibility

between the information derived from different channels of soft scattering

deserves a very careful study!

The figures above show the GLM elastic, SD and DD b-amplitudes at

1.8, 7 and 14 TeV. The difference between our output and competing models

is not dramatic. The GLM SD cross sections (in mb) are:

σsd(W ) = σGW
sd + σnonGW

sd == 8.2 + 2.07(1.8), 10.7 + 4.18(7), 11.5 + 5.81(14).



Recall that, EL, SD and DD cross section values are obtained from a b2

integration of the corresponding amplitude square. The growth of σsd, as a

function of W, is mainly a consequence of asd(s, b) slow movement toward higher

b values. The net result is a continuation of SD moderate increase with energy.

As a result, we do not expect a suppression of σsd at an energy as low as 7 TeV.

The mechanism I have jusr described, is straight forward. An explanation of

an early reduction of the diffractive channels at relatively low energies, will

require, thus, a fundamental change in our understanding of soft scattering at

the TeV-scale.


