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High-pT hadrons at RHIC
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neutral pions produced in central,0-5%, gold-gold collisions at√

s = 200 GeV.
[TRIANGLES - PHENIX Collaboration, A. Adare et al.; Phys. Rev. Lett. 101, 232301 (2008).]

[SQUARES - PHENIX Collaboration, M. L. Purschke et al.; J. Phys. G38, 124016 (2011).]
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High-pT hadrons at RHIC
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High-pT hadrons at RHIC
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High-pT hadrons at RHIC
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High-pT hadrons at LHC
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[TRIANGLES - ALICE Collaboration, B. Abelev et al.; Phys. Lett. B720, 52 (2013); J.

Otwinowski et al.; J. Phys. G38, 124112 (2011).]

[SQUARES - CMS Collaboration, Y.-J. Lee et al.; J. Phys. G38, 124015 (2011). A. S. Yoon et

al.; J. Phys. G38, 124116 (2011). ]
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LHC vs. RHIC data
LHC data expose novel features in comparison with
measurements at RHIC
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dissipate energy with a higher rate ⇐ FSI

Hydrodynamics vs perturbative QCD mechanism in production of hadrons in heavy ion collisions – p. 8/55



LHC vs. RHIC data
LHC data expose novel features in comparison with
measurements at RHIC

the nuclear suppression factorRAA reaches significantly
smaller values⇒ at the LHC energies hadrons originate
mainly from fragmentation of gluons with larger color
charge than quarks dominating at RHICandgluons

dissipate energy with a higher rate ⇐ FSI

RAA steeply rises withpT at LHC but exposes rather flat
pT -behavior at RHIC⇒ it is affected by restrictions
imposed by energy conservation⇐ ISI
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Final state interaction
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Final state interaction
Ingredients for calculation of suppression

time- dependenttransport coefficient̂q(t)

⇒ survival probability for q̄q dipole propagating

through a medium
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Final state interaction
Ingredients for calculation of suppression

time- dependenttransport coefficient̂q(t)

transverse sizerT(t)- evolution of aq̄q dipole

model for hadronization:〈lp〉 ∝ Ẽ(1 − zh)/〈κ(Q2)〉
⇒ several effects acting in opposite directions:
— the Lorentz factor makeslp LONGERwith energy
— the increasing virtuality gives rise to a more intensive
gluon radiation and E-loss in vacuum, leading to
SHORTERlp
— the Sudakov suppression , essential at largezh, also
SHORTENSlp

⇒ survival probability for q̄q dipole propagating

through a medium
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Final state interaction
Transport coefficient

FSI contribution to nuclear suppression is related to
properties of created medium.
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FSI contribution to nuclear suppression is related to
properties of created medium.

Such medium is described in terms of transport coefficient
q̂ - the magnitude of broadening experienced by a parton
through a path length 1 fm in the medium

Hydrodynamics vs perturbative QCD mechanism in production of hadrons in heavy ion collisions – p. 11/55



Final state interaction
Transport coefficient

FSI contribution to nuclear suppression is related to
properties of created medium.

Such medium is described in terms of transport coefficient
q̂ - the magnitude of broadening experienced by a parton
through a path length 1 fm in the medium

We rely on the usual assumption - initial medium density at
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npart and density is diluting with time as1/t
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Final state interaction
Transport coefficient

FSI contribution to nuclear suppression is related to
properties of created medium.

Such medium is described in terms of transport coefficient
q̂ - the magnitude of broadening experienced by a parton
through a path length 1 fm in the medium

We rely on the usual assumption - initial medium density at
time t = t0 is proportional to the number of participants
npart and density is diluting with time as1/t

Then the time dependent transport coefficient reads:

q̂(t,~b, ~τ ) =
q̂0 t0

t

npart(~b, ~τ )

npart(0, 0)
,

[X.F. Chen, C. Greiner, E. Wang, X.N. Wang, Z. Xu; Phys. Rev. C81, 064908 (2010)]Hydrodynamics vs perturbative QCD mechanism in production of hadrons in heavy ion collisions – p. 11/55



Final state interaction
Transport coefficient

the parameter̂q0 represents the maximal value ofq̂, for the
medium produced att = t0 in central collision at
b = τ = 0
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Final state interaction
Transport coefficient

the parameter̂q0 represents the maximal value ofq̂, for the
medium produced att = t0 in central collision at
b = τ = 0

variable~b - impact parameter of collision
variable~τ - impact parameter of position of the parton
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FSI: attenuation of a dipole
rT (t)- evolution of aq̄q dipole

during production timelp a q̄q dipole is created

Hydrodynamics vs perturbative QCD mechanism in production of hadrons in heavy ion collisions – p. 13/55



FSI: attenuation of a dipole
rT (t)- evolution of aq̄q dipole

during production timelp a q̄q dipole is created

this dipole propagating in a medium attenuates with the
cross section∝ r2

T , wherer2
T is rising with time.
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during production timelp a q̄q dipole is created

this dipole propagating in a medium attenuates with the
cross section∝ r2

T , wherer2
T is rising with time.

at low energies -dipole quickly expands to the hadronic size
at high energies -Lorentz time dilation freezes the initial
small size of the dipole for the time of propagation
⇒ the medium becomes more transparent with rising
energy of the dipole,̃E
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FSI: attenuation of a dipole
rT (t)- evolution of aq̄q dipole

during production timelp a q̄q dipole is created

this dipole propagating in a medium attenuates with the
cross section∝ r2

T , wherer2
T is rising with time.

at low energies -dipole quickly expands to the hadronic size
at high energies -Lorentz time dilation freezes the initial
small size of the dipole for the time of propagation
⇒ the medium becomes more transparent with rising
energy of the dipole,̃E

the transverse expansion of aq̄q dipole reads:

drT

dt
=

kT(t)

α(1 − α) Ẽ

α - fractional light-cone momentum of the parton.
[ B.Z. Kopeliovich, J. Nemchik; J. Phys. G38, 043101 (2011) ]
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FSI: attenuation of a dipole
rT (t)- evolution of aq̄q dipole

applying the uncertainty relationkT(t) ∼ 1/rT , we get,

r2
T(t) =

2 t

α(1 − α) Ẽ
+ r2

0,
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FSI: attenuation of a dipole
rT (t)- evolution of aq̄q dipole

applying the uncertainty relationkT(t) ∼ 1/rT , we get,

r2
T(t) =

2 t

α(1 − α) Ẽ
+ r2

0,

r0 ∼ 1/pT - the initial dipole separation
Ẽ = pT - is the dipole energy in the c.m. of the collision
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FSI: attenuation of a dipole
rT (t)- evolution of aq̄q dipole

applying the uncertainty relationkT(t) ∼ 1/rT , we get,

r2
T(t) =

2 t

α(1 − α) Ẽ
+ r2

0,

r0 ∼ 1/pT - the initial dipole separation
Ẽ = pT - is the dipole energy in the c.m. of the collision

such a behavior of the mean separation can be also obtained
within the more rigorous path integral technique for the
early stage of expansion, whilerT < rh [ B.Z. Kopeliovich, B.G.

Zakharov; Phys. Rev. D44, 3466 (1991), B.Z. Kopeliovich, A.Schäfer, A.V. Tarasov;

Phys. Rev. D62, 054022 (2000), J. Nemchik; Phys. Rev. C68, 035206 (2003) ]
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FSI: attenuation of a dipole
Production length of āqq dipole

we rely on the model[ B.Z. Kopeliovich, at al.; Phys. Lett. B662, 117 (2008) ]

for lp- distribution of leading hadrons in a jet produced at
the mid rapidity, where the initial parton energy and
virtuality are equal:E = Q = kT = pT/zh = Ẽ/zh
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FSI: attenuation of a dipole
Production length of āqq dipole

we rely on the model[ B.Z. Kopeliovich, at al.; Phys. Lett. B662, 117 (2008) ]

for lp- distribution of leading hadrons in a jet produced at
the mid rapidity, where the initial parton energy and
virtuality are equal:E = Q = kT = pT/zh = Ẽ/zh

evaluation of〈lp〉 in vacuum -for the quark and gluon jet
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FSI: attenuation of a dipole
Survival probability

survival probability characterizing a propagation of a dipole
over path lengthL in a medium reads:

S(L) = exp

[

−
L

∫

0

dl σ[rT(l)] ρA(l)

]

(dipole cross sectionσ(rT) times the medium density
ρA) ≡ theattenuation rate of the dipole
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FSI: attenuation of a dipole
Survival probability

survival probability characterizing a propagation of a dipole
over path lengthL in a medium reads:

S(L) = exp

[

−
L

∫

0

dl σ[rT(l)] ρA(l)

]

(dipole cross sectionσ(rT) times the medium density
ρA) ≡ theattenuation rate of the dipole

the dipole cross section for small dipoles:σ(rT) = C r2
T ,

where the factorC for dipole-proton interaction is fixed
from DIS data
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FSI: attenuation of a dipole
Survival probability

survival probability characterizing a propagation of a dipole
over path lengthL in a medium reads:

S(L) = exp

[

−
L

∫

0

dl σ[rT(l)] ρA(l)

]

(dipole cross sectionσ(rT) times the medium density
ρA) ≡ theattenuation rate of the dipole

the dipole cross section for small dipoles:σ(rT) = C r2
T ,

where the factorC for dipole-proton interaction is fixed
from DIS data

the factorC is unknown for a hot medium⇒ it is
convenient to express it in terms of the transport coefficient
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FSI: attenuation of a dipole
Survival probability

the factorC is related to the transport coefficientq̂, which
is broadening per unit of length:

C =
q̂

2ρA

[ R. Baier, Yu. Dokshitzer, S. Peigne, D. Schiff; Phys. Lett.B345, 277 (1995) ]
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FSI: attenuation of a dipole
Survival probability

the factorC is related to the transport coefficientq̂, which
is broadening per unit of length:

C =
q̂

2ρA

[ R. Baier, Yu. Dokshitzer, S. Peigne, D. Schiff; Phys. Lett.B345, 277 (1995) ]

it was demonstrated that the same factorC controls both
dipole cross section andbroadening

[ M.B. Johnson, B.Z. Kopeliovich, A.V. Tarasov; Phys. Rev. C63, 035203 (2001) ]
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FSI: attenuation of a dipole
Survival probability

the factorC is related to the transport coefficientq̂, which
is broadening per unit of length:

C =
q̂

2ρA

[ R. Baier, Yu. Dokshitzer, S. Peigne, D. Schiff; Phys. Lett.B345, 277 (1995) ]

it was demonstrated that the same factorC controls both
dipole cross section andbroadening

[ M.B. Johnson, B.Z. Kopeliovich, A.V. Tarasov; Phys. Rev. C63, 035203 (2001) ]

then the survival probability of the dipole in a medium
reads:

S(L) = exp

[

−1

2

L
∫

0

dl q̂(l) r2
T(l)

]
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FSI: attenuation of a dipole
Survival probability

using above mentioned expression forrT

r2
T(l) =

2 l

α(1 − α) Ẽ
+ r2

0
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FSI: attenuation of a dipole
Survival probability

using above mentioned expression forrT

r2
T(l) =

2 l

α(1 − α) Ẽ
+ r2

0

and neglectingr2
0 ∼ 1/p2

T at largepT , we get the final
expression for the survival probability of the dipole in a
medium

S(L) = exp

[

− 1

α(1 − α)pT

L
∫

0

dl q̂(l) l

]
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High-pT hadrons in p + p collisions

cross section of the reaction,p + p → h + X, is calculated
using standard convolution expression based on QCD
factorization:

p

σ

x  = k  exp(+y)/  s

x  = k  exp(−y)/  s

1 T
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2
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2
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p
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F   (x ,Q )

F   (x ,Q )

(ij −> kl)σ̂i/p j/pF
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High-pT hadrons in A + B collisions

the cross section of the reaction,A + B → h + X, at
given impact parameterb reads

σAB(b, pT) =

∫ ∞

0

d2τTA(τ )TB(~b − ~τ ) ×
∑

i,j,k,l

Fi/A ⊗ Fj/B ⊗ σ̂ij→kl ⊗ D̃h/k Rk
AB(~b, ~τ , pT)
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High-pT hadrons in A + B collisions

the factorRk
AB(~b, ~τ , pT) in expression forσAB(b, pT) -

corresponds to a survival probability of āqq -
the nuclear suppression factor in a collision of two heavy
nuclei at given impact parameter~b corresponding to
production of a high-kT parton of speciesk at impact
parameter~τ , propagating then over a path length〈lp〉,
radiating gluons and losing energy, and eventually
producing a colorless dipole pre-hadron with transverse
momentum~pT = ~kT zh (zh is a fraction of the jet
momentum carried by the produced hadron), which
propagates through the nucleus evolving its size according
to r2

T(t)
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High-pT hadrons in A + B collisions

the suppression factorRk
AB(~b, ~τ , pT) has the form,

Rk
AB(~b, ~τ , pT) =

π
∫

0

dφ

π
exp

[

− 1

α (1 − α) pT

∞
∫

lkmax(pT ,zh)

dl l q̂(l,~b, ~τ +~l)

]

Hydrodynamics vs perturbative QCD mechanism in production of hadrons in heavy ion collisions – p. 22/55



High-pT hadrons in A + B collisions

the suppression factorRk
AB(~b, ~τ , pT) has the form,

Rk
AB(~b, ~τ , pT) =

π
∫

0

dφ

π
exp

[

− 1

α (1 − α) pT

∞
∫

lkmax(pT ,zh)

dl l q̂(l,~b, ~τ +~l)

]

lkmax(pT , zh) = max{〈lkp(pT , zh)〉, l0} and
t0 = l0 ∼ 1 fm is the time scale of creation of the medium
resulted from gluon radiation at mid rapidities in HIC
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High-pT hadrons in A + B collisions

the suppression factorRk
AB(~b, ~τ , pT) has the form,

Rk
AB(~b, ~τ , pT) =

π
∫

0

dφ

π
exp

[

− 1

α (1 − α) pT

∞
∫

lkmax(pT ,zh)

dl l q̂(l,~b, ~τ +~l)

]

lkmax(pT , zh) = max{〈lkp(pT , zh)〉, l0} and
t0 = l0 ∼ 1 fm is the time scale of creation of the medium
resulted from gluon radiation at mid rapidities in HIC

the production length for a gluon jet(k = g) is short,
〈lgp〉 ∼< l0 ⇒ its actual value is not important at LHC
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High-pT hadrons in A + B collisions

the suppression factorRk
AB(~b, ~τ , pT) has the form,

Rk
AB(~b, ~τ , pT) =

π
∫

0

dφ

π
exp

[

− 1

α (1 − α) pT

∞
∫

lkmax(pT ,zh)

dl l q̂(l,~b, ~τ +~l)

]

lkmax(pT , zh) = max{〈lkp(pT , zh)〉, l0} and
t0 = l0 ∼ 1 fm is the time scale of creation of the medium
resulted from gluon radiation at mid rapidities in HIC

the production length for a gluon jet(k = g) is short,
〈lgp〉 ∼< l0 ⇒ its actual value is not important at LHC

a dominance of quarks at RHIC energies corresponds to
much higher〈lqp〉 > l0 in a broad range ofpT - andzh-
values⇒ this causes a weaker nuclear suppression in
comparison with the LHC kinematic region
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High-pT hadrons in A + B collisions

although above evaluation of〈lkp〉 in vacuum gives a
dominant contribution to nuclear suppression we include
also the medium-induced E-loss during propagation of a
parton speciesk corresponding to mean production length,
〈lkp〉.
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High-pT hadrons in A + B collisions

although above evaluation of〈lkp〉 in vacuum gives a
dominant contribution to nuclear suppression we include
also the medium-induced E-loss during propagation of a
parton speciesk corresponding to mean production length,
〈lkp〉.

this was realized via modification of the fragmentation
functionDh/k ⇒ D̂h/k shiftingzh to
z̃h = zh E/(E − ∆Ein)
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High-pT hadrons in A + B collisions

although above evaluation of〈lkp〉 in vacuum gives a
dominant contribution to nuclear suppression we include
also the medium-induced E-loss during propagation of a
parton speciesk corresponding to mean production length,
〈lkp〉.

this was realized via modification of the fragmentation
functionDh/k ⇒ D̂h/k shiftingzh to
z̃h = zh E/(E − ∆Ein)

the medium-induced energy loss
∆Ein = κin (lkp − l0) Θ(lkp − l0), whereΘ(l)

represents the step function and the rate of energy lossκin

was evaluated in[ R. Baier, Yu. Dokshitzer, A. Mueller, S. Peigne, D. Schiff;

Nucl. Phys. B484, 265 (1997) ]

Hydrodynamics vs perturbative QCD mechanism in production of hadrons in heavy ion collisions – p. 23/55



High-pT hadrons in A + B collisions

the rateκin corresponding to〈lkp〉 reads,

κin =
αS NC

8
q̂(lkp,~b, ~τ ) lkp
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High-pT hadrons in A + B collisions

the rateκin corresponding to〈lkp〉 reads,

κin =
αS NC

8
q̂(lkp,~b, ~τ ) lkp

in the LHC kinematic region an inclusion of the medium-
induced E-loss is irrelevant due to a dominance of gluon jets
(k = g) and consequent shortness of the mean〈lgp〉 ∼< l0
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Green function approach
the corresponding suppression factor

Rk
AB(~b, ~τ , pT) =

2π
∫

0

dφ
2π

∣

∣

∣

∣

1
∫

0

dα
∫

d2r1d
2r2 Ψ†

h(~r2, α)Gq̄q(~b, ~τ ; l1, ~r1; l2, ~r2)Ψin(~r1, α)

∣

∣

∣

∣

2

∣

∣

∣

∣

1
∫

0

dα
∫

d2r1d2r2 Ψ†
h(~r2, α)Ψin(~r1, α)

∣

∣

∣

∣

2

[ B.Z. Kopeliovich, J.N., I.K. Potashnikova, I. Schmidt, Phys. Rev. C86, 054904 (2012)]
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Green function approach
the corresponding suppression factor

Rk
AB(~b, ~τ , pT) =

2π
∫

0

dφ
2π

∣

∣

∣

∣

1
∫

0

dα
∫

d2r1d
2r2 Ψ†

h(~r2, α)Gq̄q(~b, ~τ ; l1, ~r1; l2, ~r2)Ψin(~r1, α)

∣

∣

∣

∣

2

∣

∣

∣

∣

1
∫

0

dα
∫

d2r1d2r2 Ψ†
h(~r2, α)Ψin(~r1, α)

∣

∣

∣

∣

2

where the Greeen function satisfies the two-dimensional
Schroedinger equation:

[

i
d

dl2
−

m2
q − ∆r2

2 pT α (1 − α)
− Vq̄q(~b, ~τ ; l2, ~r2)

]

Gq̄q(~b, ~τ ; l1, ~r1; l2, ~r2)

= iδ(l2 − l1) δ(~r2 − ~r1),

[ B.Z. Kopeliovich, J.N., I.K. Potashnikova, I. Schmidt, Phys. Rev. C86, 054904 (2012)]
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Green function approach

with the boundary conditions

Gq̄q(l1, ~r1; l2, ~r2)
∣

∣

∣

l1=l2
= δ(~r2 − ~r1);

Gq̄q(l1, ~r1; l2, ~r2)
∣

∣

∣

l1>l2
= 0
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Green function approach

with the boundary conditions

Gq̄q(l1, ~r1; l2, ~r2)
∣

∣

∣

l1=l2
= δ(~r2 − ~r1);

Gq̄q(l1, ~r1; l2, ~r2)
∣

∣

∣

l1>l2
= 0

The imaginary part of the light-cone potential
Vq̄q(~b, ~τ ; l2, ~r2) is responsible for absorption in the
medium:

ImVq̄q(~b, ~τ ; l, ~r) = −1

4
q̂(l,~b, ~τ ) r2.
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What are the observables ?
nuclear attenuation (modification) factor at given impact
parameterb

RAB(b, pT) =
σAB(b, pT)

∞
∫

0

d2τTA(τ )TB(~b − ~τ )σpp(pT)
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What are the observables ?
nuclear attenuation (modification) factor at given impact
parameterb

RAB(b, pT) =
σAB(b, pT)

∞
∫

0

d2τTA(τ )TB(~b − ~τ )σpp(pT)

observable sensitive to the properties of the created medium
- azimuthal asymmetryof the produced hadrons relative to
the reaction plane⇒ it is characterized by the parameter -

elliptic flow at given impact parameterb

v2(b, pT) = 〈cos(2φ)〉 =
σ̂AB(b, pT)

σAB(b, pT)
,
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What are the observables ?
where

σ̂AB(b, pT) =

∫ ∞

0

d2τTA(τ )TB(~b − ~τ ) ×
∑

i,j,k,l

F
(B)
i/A (~τ ) ⊗ F

(A)
j/B(~b − ~τ ) ⊗ σ̂ij→kl ⊗ D̃h/k R̂k

AB(~b, ~τ , pT),
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What are the observables ?
where

σ̂AB(b, pT) =

∫ ∞

0

d2τTA(τ )TB(~b − ~τ ) ×
∑

i,j,k,l

F
(B)
i/A (~τ ) ⊗ F

(A)
j/B(~b − ~τ ) ⊗ σ̂ij→kl ⊗ D̃h/k R̂k

AB(~b, ~τ , pT),

and the modified suppression factor - simple model

R̂k
AB(~b, ~τ , pT) =

π
∫

0

dφ

π
cos(2φ) ×

exp

[

− 1

α (1 − α) pT

∞
∫

lkmax(pT ,zh)

dl l q̂(l,~b, ~τ +~l)

]

.
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What are the observables ?
and the modified suppression factor - Green function
formalism

R̂k
AB(~b, ~τ , pT) =

2π
∫

0

dφ
2π

cos(2φ)

∣

∣

∣

∣

1
∫

0

dα
∫

d2r1d
2r2 Ψ†

h(~r2, α)Gq̄q(~b, ~τ ; l1, ~r1; l2, ~r2)Ψin(~r1, α)

∣

∣

∣

∣

2

∣

∣

∣

∣

1
∫

0

dα
∫

d2r1d2r2 Ψ†
h(~r2, α)Ψin(~r1, α)

∣

∣

∣

∣

2
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ISI: energy conservation constraints
Any reaction observed so far at any energy is nuclear suppressed

at forward rapidities.
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ISI: energy conservation constraints
One can approach the kinematic limit increasing eitherxF , or

xT = 2pT /
√

s.
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ISI: energy conservation constraints
One can approach the kinematic limit increasing eitherxF , or

xT = 2pT /
√
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Interpretations of ISI suppression
Since the kinematic limit can be approached increasing eitherxF

or pT , it is convenient to introduce a variableξ,

ξ =
√

x2
F + x2

T ,

where

xF =
2 pL√

s
, xT =

2 pT√
s

.

HerepL andpT is the longitudinal and transverse component of
the momentum of the produced particles in c.m. frame.
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Interpretations of ISI suppression

any reaction,a + b → c + X, wherec = h, l̄l, J/Ψ, ...

is a large rapidity gap (LRG) process atξ → 1

ca

b X

Rapidity intervals

ln 
s

M 2 = ln
1

1 − x1

ln M 2

so
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Interpretations of ISI suppression

any reaction,a + b → c + X, wherec = h, l̄l, J/Ψ, ...

is a large rapidity gap (LRG) process atξ → 1

ca

b X

Rapidity intervals

ln 
s

M 2 = ln
1

1 − x1

ln M 2

so

the probability to radiate no gluons in the rapidity interval
∆y = ln 1

1−ξ
is suppressed by theSUDAKOV’S FORM

FACTORS(∆y) = 1 − ξ, which violates QCD
factorization
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Interpretations of ISI suppression
assumingA + B collisions and summing over multiple
interactions, the parton distribution inN of the projectile
nucleusA can be expressed in terms ofTB(b) and the
effectiveσeff ∼ σhN

in = 20 mb

[ B.Z. Kopeliovich, J. Nemchik, I.K. Potashnikova, M.B. Johnson, I. Schmidt; PR C72, 054606 (2005)]

F
(B)
i/N(x1, k2

1,T , b) = CG Fi/N(x1, k2
1,T)

e−[1−S(ξ)]σeff TB (b) − e−σeff TB (b)

S(ξ)
[

1 − e−σeff TB (b)
]

the normalization factorCG is fixed by the Gottfried sum rule
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Interpretations of ISI suppression
assumingA + B collisions and summing over multiple
interactions, the parton distribution inN of the projectile
nucleusA can be expressed in terms ofTB(b) and the
effectiveσeff ∼ σhN

in = 20 mb

[ B.Z. Kopeliovich, J. Nemchik, I.K. Potashnikova, M.B. Johnson, I. Schmidt; PR C72, 054606 (2005)]

F
(B)
i/N(x1, k2

1,T , b) = CG Fi/N(x1, k2
1,T)

e−[1−S(ξ)]σeff TB (b) − e−σeff TB (b)

S(ξ)
[

1 − e−σeff TB (b)
]

the normalization factorCG is fixed by the Gottfried sum rule

in A + B collisions one should take into account also
multiple interactions of target partons of the nucleusB in
the projectile nucleusA leading to the same form of

effective parton distributionsF (A)
j/N except that one should

replacex1 ⇒ x2, k1,T ⇒ k2,T , B ⇒ A, TB ⇒ TA
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Numerical results vs. data
Comparison with LHC data
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ALICE and CMS data for central,0-5%, lead-lead collisions vs.
the GF formalism at adjusted̂q0 = 2.0 GeV2/ fm.

[TRIANGLES - ALICE Collaboration, B. Abelev et al.; Phys. Lett. B720, 52 (2013). ]

[SQUARES - CMS Collaboration, Y.-J. Lee et al.; J. Phys. G38, 124015 (2011). A. S. Yoon et

al.; J. Phys. G38, 124116 (2011). ]
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Numerical results vs. data
Comparison with LHC data - ALICE
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RAA(pT) for charge hadrons produced in lead-lead collisions at
different centralities. Calculations within the GF formalism with

q̂0 = 2.0 GeV2/ fm are compared with ALICE data.
[ALICE Collaboration, B. Abelev et al.; Phys. Lett. B720, 52 (2013). ]
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Numerical results vs. data
Comparison with LHC data - CMS
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RAA(pT) for charge hadrons produced in lead-lead collisions at
different centralities. Calculations within the GF formalism with

q̂0 = 2.0 GeV2/ fm are compared with CMS data.
[CMS Collab., Y.-J. Lee ; J. Phys. G38, 124015 (2011). A. S. Yoon ; J. Phys. G38, 124116 (2011). ]
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Numerical results vs. data
Comparison with LHC data - azimuthal asymmetry
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RAA(pT) for charge hadrons produced in lead-lead collisions
for two classes of events: In plane(−45o ≤ φ ≤ 45o) and

Out-of-plane(45o ≤ φ ≤ 135o). The GF calculations witĥq0

= 2.0 GeV2/ fm are compared with ALICE data.
[ALICE Collaboration, A. Dobrin et al.; J. Phys. G38, 124170 (2011). ]

Hydrodynamics vs perturbative QCD mechanism in production of hadrons in heavy ion collisions – p. 38/55



Numerical results vs. data
Comparison with LHC data - azimuthal asymmetry
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lead-lead collisions at different centralities5-10%, 10-20%,

20-30%, 30-40%, 40-50%. The GF calculations witĥq0 =

2.0 GeV2/ fm are compared with ALICE data.
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Numerical results vs. data
Comparison with LHC data - azimuthal asymmetry
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Azimuthal anisotropyv2(pT) for charge hadron production in
lead-lead collisions at different centralities0-10%, 10-20%,

20-30%, 30-40%, 40-50%, 50-60%. The GF calculations
with q̂0 = 2.0 GeV2/ fm are compared with CMS data.

[CMS Collaboration, S. Chatrchyan at al.; Phys. Rev. Lett.109, 022301 (2012). ]
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Numerical results vs. data
Comparison with RHIC data
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RAA(pT) for neutral pions produced in central,0-5%,
gold-gold collisions at

√
s = 200 GeV. The GF calculations

with q̂0 = 1.6 GeV2/ fm are compared with PHENIX data.
[ PHENIX Collaboration, A. Adare et al.; Phys. Rev. Lett.101, 232301 (2008); Phys. Rev. C87,

034911 (2013); M. L. Purschke et al.; J. Phys. G38, 124016 (2011). ]
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Numerical results vs. data
Comparison with RHIC data
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Numerical results vs. data
Comparison with RHIC data
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s = 62 GeV and at different centralities. The GF

calculations witĥq0 = 1.2 GeV2/ fm are compared with
PHENIX data. [PHENIX Collaboration, preliminary data posted at

http : //www.phenix.bnl.gov/WWW/plots/showplot.php?editkey = p1118 ]
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Numerical results vs. data
Comparison with RHIC data
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calculations witĥq0 = 0.6 GeV2/ fm are compared with
PHENIX data. [PHENIX Collaboration, preliminary data posted at

http : //www.phenix.bnl.gov/WWW/plots/showplot.php?editkey = p1117 ]
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Numerical results vs. data
Comparison with RHIC data - azimuthal asymmetry
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Azimuthal anisotropyv2(pT) for neutral pion production in
gold-gold collisions at different centralities. The GF calculations
with q̂0 = 1.60 GeV2/ fm are compared with PHENIX data.

[ PHENIX Collaboration, A. Adare et al.; Phys. Rev. Lett.105, 142301 (2010). ]
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Numerical results vs. data
Hydrodynamics vs. pQCD

OurpQCDcalculations forRAA(pT) andv2(pT) grossly
underestimate data at smallpT . 6 GeV.
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OurpQCDcalculations forRAA(pT) andv2(pT) grossly
underestimate data at smallpT . 6 GeV.

The observedRAA(pT) andv2(pT) expose quite a
different behavior towards smallerpT , steeply rising and
shaping a bump.

We relate this to an interplay of two mechanisms of hadron
production:(i) evaporation of hadrons from the created hot
medium controlled byhydrodynamics; (ii) perturbative
QCD mechanismof high-pT production of hadrons, which
propagate and attenuate in the hot medium.
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Numerical results vs. data
Hydrodynamics vs. pQCD

OurpQCDcalculations forRAA(pT) andv2(pT) grossly
underestimate data at smallpT . 6 GeV.

The observedRAA(pT) andv2(pT) expose quite a
different behavior towards smallerpT , steeply rising and
shaping a bump.

We relate this to an interplay of two mechanisms of hadron
production:(i) evaporation of hadrons from the created hot
medium controlled byhydrodynamics; (ii) perturbative
QCD mechanismof high-pT production of hadrons, which
propagate and attenuate in the hot medium.

The abrupt transition between the two mechanisms causes
distinct minima inRAA(pT) and inv2(pT) both observed
at the same values ofpT .
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Numerical results vs. data
Hydrodynamics vs. pQCD

Data onRAA(pT) corresponding toIn-planeand
Out-of-planeevents show that the transition from the
hydrodynamicto perturbativeregimes occur forIn-plane
events with a delay, at higherpT ⇒ the hydrodynamic flow
is much stronger, correspondingly the cross section is
larger.
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Numerical results vs. data
Hydrodynamics vs. pQCD

we combined ourpQCDmechanism with hydrodynamic
model from:
[ Iu.A. Karpenko, Yu.M. Sinyukov, K. Werner; Phys. Rev. C87, 024914 (2013). ]
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we combined ourpQCDmechanism with hydrodynamic
model from:
[ Iu.A. Karpenko, Yu.M. Sinyukov, K. Werner; Phys. Rev. C87, 024914 (2013). ]

RAA(pT) = RAA(pT)hydro + RAA(pT)pQCD
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we combined ourpQCDmechanism with hydrodynamic
model from:
[ Iu.A. Karpenko, Yu.M. Sinyukov, K. Werner; Phys. Rev. C87, 024914 (2013). ]

RAA(pT) = RAA(pT)hydro + RAA(pT)pQCD

v2(pT) =
v2(pT)hydroRAA(pT)hydro + v2(pT)pQCDRAA(pT)pQCD

RAA(pT)hydro + RAA(pT)pQCD
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Numerical results vs. data
Hydrodynamics vs. pQCD

we combined ourpQCDmechanism with hydrodynamic
model from:
[ Iu.A. Karpenko, Yu.M. Sinyukov, K. Werner; Phys. Rev. C87, 024914 (2013). ]

RAA(pT) = RAA(pT)hydro + RAA(pT)pQCD

v2(pT) =
v2(pT)hydroRAA(pT)hydro + v2(pT)pQCDRAA(pT)pQCD

RAA(pT)hydro + RAA(pT)pQCD

where transverse momentum spectra of the hydrodynamic
model are related toRAA(pT)hydro as:

RAA(pT)hydro =
d2NAA/dyd2pT [hydro]

〈TAA〉d2σpp/dyd2pT

fp
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Numerical results vs. data
Hydrodynamics vs. pQCD
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Numerical results vs. data
Hydrodynamics vs. pQCD
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The dominanthydrodynamic mechanismof elliptic flow, provides a large and rising withpT anisotropy

v2(pT ), which abruptly switches to theregime of pQCD, having a much smaller azimuthal anisotropy.
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Numerical results vs. data
Hydrodynamics vs. pQCD
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Numerical results vs. data
Hydrodynamics vs. pQCD
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Summary
• Using the rigorous quantum-mechanical approach based on
the path integral technique for description of theq̄q dipole
evolution we apply the standard convolution expression for
description of high-pT hadron production in heavy ion collisions
at mid rapidities in the RHIC and LHC kinematic range.
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the path integral technique for description of theq̄q dipole
evolution we apply the standard convolution expression for
description of high-pT hadron production in heavy ion collisions
at mid rapidities in the RHIC and LHC kinematic range.
• The dynamics of a strong nuclear suppression of high-pT

hadrons is based on theshortness of the production length, lp, of
a colorless pre-hadrons and on its development and propagation
through a dense medium.
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evolution we apply the standard convolution expression for
description of high-pT hadron production in heavy ion collisions
at mid rapidities in the RHIC and LHC kinematic range.
• The dynamics of a strong nuclear suppression of high-pT

hadrons is based on theshortness of the production length, lp, of
a colorless pre-hadrons and on its development and propagation
through a dense medium.
• the main part of nuclear suppression is related to the survival
probability of colorless dipole propagating through a dense
medium⇒ color transparency- steep rise of the nuclear
modification factorRAA(pT) with pT
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Summary
• Using the rigorous quantum-mechanical approach based on
the path integral technique for description of theq̄q dipole
evolution we apply the standard convolution expression for
description of high-pT hadron production in heavy ion collisions
at mid rapidities in the RHIC and LHC kinematic range.
• The dynamics of a strong nuclear suppression of high-pT

hadrons is based on theshortness of the production length, lp, of
a colorless pre-hadrons and on its development and propagation
through a dense medium.
• the main part of nuclear suppression is related to the survival
probability of colorless dipole propagating through a dense
medium⇒ color transparency- steep rise of the nuclear
modification factorRAA(pT) with pT

• In comparison with LHC a dominance of quarks with larger
lp leads to a smaller suppression at RHIC.
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Summary
• In the RHIC kinematic range we introduced also a
suppression factor related to the constraints on nuclear parton
distributions imposed by energy conservation.
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Summary
• In the RHIC kinematic range we introduced also a
suppression factor related to the constraints on nuclear parton
distributions imposed by energy conservation.
• This suppression factor falling steeply withpT is irrelevant
at LHC but causes rather flatpT dependence ofRAA at RHIC.
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Summary
• In the RHIC kinematic range we introduced also a
suppression factor related to the constraints on nuclear parton
distributions imposed by energy conservation.
• This suppression factor falling steeply withpT is irrelevant
at LHC but causes rather flatpT dependence ofRAA at RHIC.
• Calculations contain only medium density adjustment and
we found the transport coefficient to be:
q̂0 = 0.60GeV 2/fm at

√
s = 39GeV ,

q̂0 = 1.20GeV 2/fm at
√

s = 62GeV ,
q̂0 = 1.60GeV 2/fm at

√
s = 200GeV ,

q̂0 = 2.00GeV 2/fm at
√

s = 2.76TeV .
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Summary
• In the RHIC kinematic range we introduced also a
suppression factor related to the constraints on nuclear parton
distributions imposed by energy conservation.
• This suppression factor falling steeply withpT is irrelevant
at LHC but causes rather flatpT dependence ofRAA at RHIC.
• Calculations contain only medium density adjustment and
we found the transport coefficient to be:
q̂0 = 0.60GeV 2/fm at

√
s = 39GeV ,

q̂0 = 1.20GeV 2/fm at
√

s = 62GeV ,
q̂0 = 1.60GeV 2/fm at

√
s = 200GeV ,

q̂0 = 2.00GeV 2/fm at
√

s = 2.76TeV .
• these value are more than order of magniture less than was
found from jet quenching data within the energy loss scenario
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Summary
• In the RHIC kinematic range we introduced also a
suppression factor related to the constraints on nuclear parton
distributions imposed by energy conservation.
• This suppression factor falling steeply withpT is irrelevant
at LHC but causes rather flatpT dependence ofRAA at RHIC.
• Calculations contain only medium density adjustment and
we found the transport coefficient to be:
q̂0 = 0.60GeV 2/fm at

√
s = 39GeV ,

q̂0 = 1.20GeV 2/fm at
√

s = 62GeV ,
q̂0 = 1.60GeV 2/fm at

√
s = 200GeV ,

q̂0 = 2.00GeV 2/fm at
√

s = 2.76TeV .
• these value are more than order of magniture less than was
found from jet quenching data within the energy loss scenario
• Finally we combined ourpQCDresults with the
hydrodynamicmechanism providing a successful description of
data in the full range ofpT .
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