INFN – SEZIONE DI MILANO-BICOCCA People

- Section Director: Dr. D. Pedrini
- Group Leader: Prof G. Gorini
- Associated researchers/Post-docs/PhD Students
 - Prof. A. Baschirotto
 - Dr M. Tardocchi
 - Dr. E. Perelli-Cippo
 - Dr. M. Nocente
 - Dr. G. Croci
 - Dr. M. Rebai
 - C. Cazzaniga
 - A. Muraro
 - G. Albani

Main Activities

- Neutron and gamma spectroscopy on fusion reactors (tokamaks e.g. JET and AUG)
- General research (both theoretical and experimental) on nuclear fusion
- Fast neutron beam monitors based on GEM and diamond detector for spallation neutron sources and for fusion reactor experiments(e.g. ChipIR @ ISIS and ESS and SPIDER @ RFX-Consortium)
- GEM-based thermal neutron detectors (alternative to 3He?) for spallation neutron sources
- Diagnosis of cultural heritage artifacts
- Development of scintillation, solid-state and gas based detectors for different applications
- Development and realization of the new GEMINI chip for GEM readout

GEM laboratory

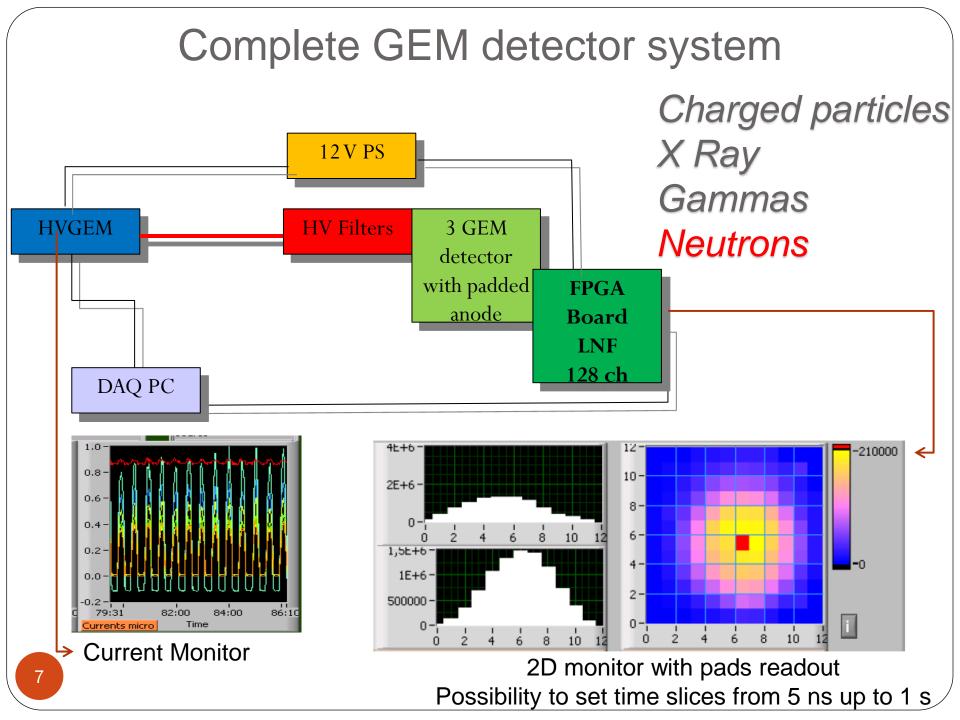
Ar-CO₂ mixing gas system Ortec Mini-X X-Rays tube with shielding Radioactive sources ⁵⁵Fe ¹³⁷Cs ⁶⁰Co ²²Na ²⁴¹Am GEM powered using HV-GEM and readout using CARIOCA + FPGA-MB

Development of GEM-based neutron beam monitors

G. Croci^{1,2}, C. Cazzaniga³, G. Claps⁴, M. Cavenago⁵, G. Grosso¹, F. Murtas^{4,6}, S. Puddu⁶, A. Muraro¹, E. Perelli Cippo¹, M. Rebai^{2,3}, R. Pasqualotto⁷, M. Tardocchi¹ and G. Gorini^{2,3}

¹Istituto di Fisica del Plasma, IFP-CNR - Milano (IT)
²INFN, Sezione di Milano-Bicocca (IT)
³Dipartimento di Fisica, Università di Milano-Bicocca (IT)
⁴INFN – LNF - Frascati (IT)
⁵INFN – LNL - Legnaro(IT)
⁶CERN – Geneva (CH)
⁷Consorzio RFX – Padova (IT)

OUTLINE


• Why and how to use GEM-based detectors to detect neutrons

FAST NEUTRON DETECTORS

- Mainframe projects
- Prototypes construction
- Performances on neutron beams
- Large area detector (35 x 20 cm²)
- THERMAL NEUTRON DETECTORS
 - Mainframe projects
 - Prototypes construction
 - Performances on neutron beams
- Conclusions and Future Perspectives

WHY AND HOW TO USE GEMS TO DETECT NEUTRONS

- GEM detectors born for tracking and triggering applications (detection of charged particles)
- In order to detect neutral particles you need a converter
 - Fast Neutrons: Polyethylene converter + Aluminium
 - Neutrons are converted in protons through elastic scattering on hydrogen
 - Thermal Neutrons: ¹⁰Boron converter
 - Neutrons are detected using the productus (alpha,Li) from nuclear reaction ¹⁰B(n,alpha)7Li
- GEMs offer the following advantages
 - Very high rate capability (MHz/mm²) suitable for high flux neutron beams like at ESS
 - Submillimetric space resolution (suited to experiment requirements)
 - Time resolution from 5 ns (gas mixture dependent)
 - Possibility to be realized in large areas and in different shapes
 - Radiation hardness
 - Low sensitivity to gamma rays (with appropriate gain)

nGEM (fast neutrons GEM) prototypes

4 Prototypes of nGEM have been built and tested so far with Gas Mixture Ar/CO₂ & Ar/CO₂/CF₄

• 1 «Analogue» Prototype (nGEM-S-1)

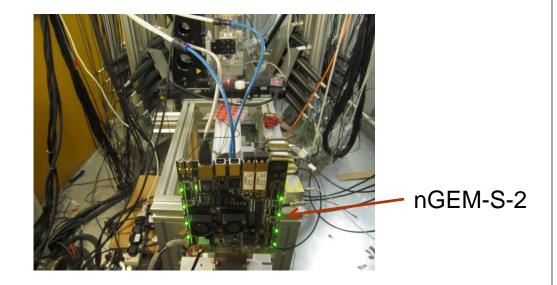
- 100 cm² active area
- Cathode: Aluminium (40 μm) + Polyethylene (60 μm)

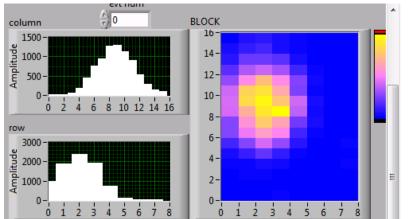
2 Small area Digital Prototypes (10x10 cm² – nGEM-S-2/3)

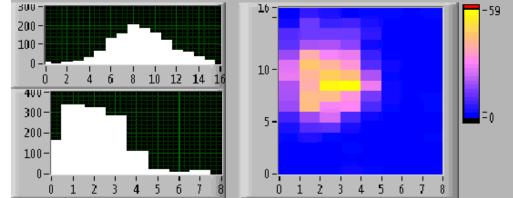
- nGEM-S-2
 - Cathode: Aluminium (40 μm) + Polyethylene (60 μm)
 - Gas Ar/CO₂ & Ar/CO₂/CF₄
- nGEM-S-3 (same cathode as full size prototype)
 - Cathode: Aluminium (50 μm) + Polyethylene (100 μm)

<u>1 Full-Size SPIDER prototype (nGEM-FS-1)</u>

- Cathode: Aluminium (50 μm) + Polyethylene (100 μm)
- 20 x 35 cm² active area





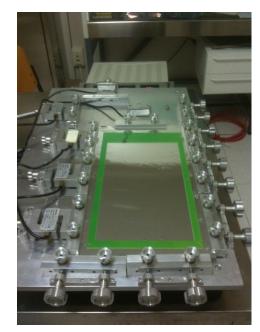

Real-time 2D beam map measurements

Monitor for a fast neutron beam with energies ranging from a few meV to 800 MeV

Tested at neutron beam of the Vesuvio facility at RAL-ISIS

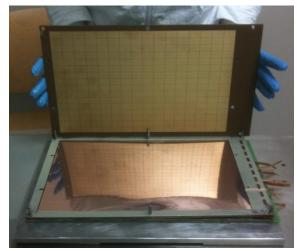
2D Beam profiles and intensity in real time

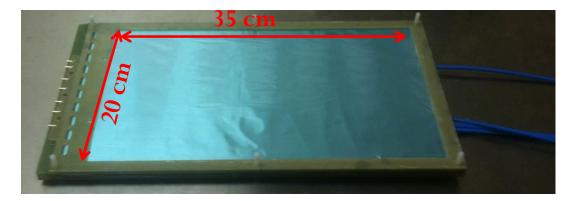
9


Neutron beam monitorig during the shutter opening

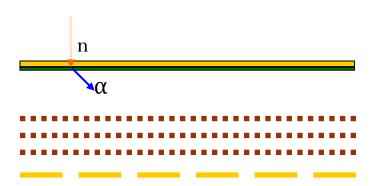
First nGEM full size prototype for SPIDER

GEM Foil HV Test

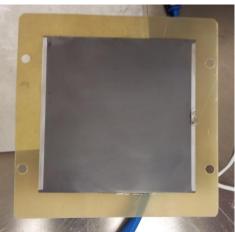

10


Cathode Stretching and Framing

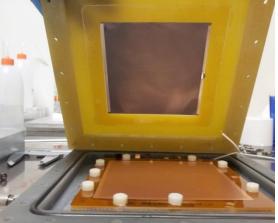
GEM Stretching and Framing


Assembly 256 Pads

At the moment it is the largest area GEMbased fast neutron detector!!!!


bGEM prototype of thermal neutron beam monitor

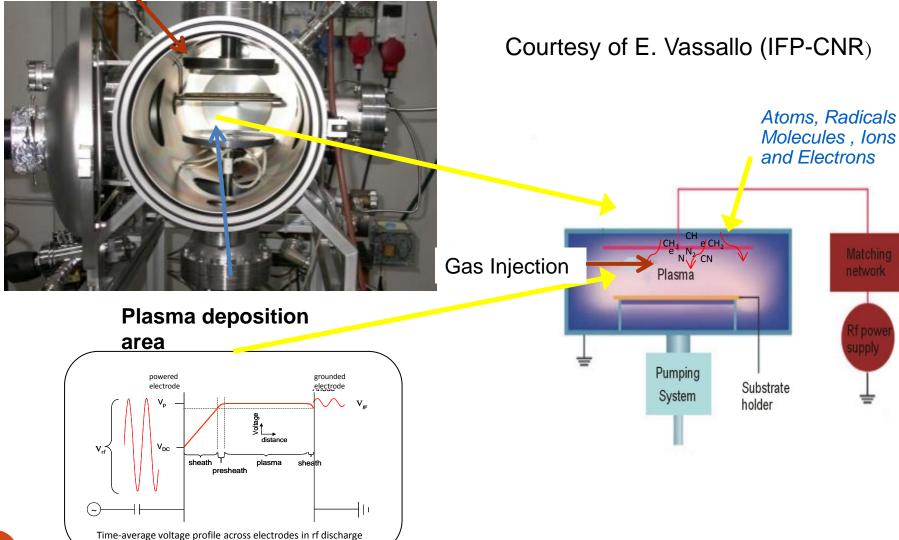
- Triple GEM detector equipped with an aluminum cathode coated with 1µm of B₄C: first bGEM prototype
- Exploit the ¹⁰B(n,α)⁷Li reaction in order to detect thermal neutrons



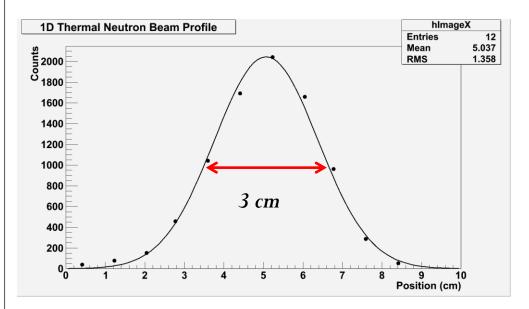
Detector Schematics

11

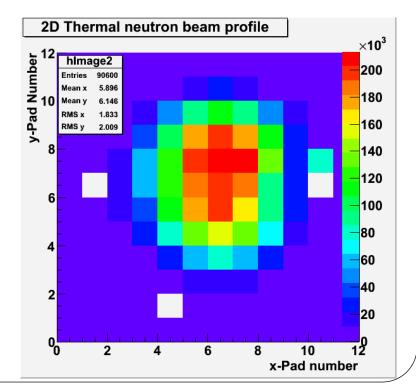
B₄C coated aluminium cathode mounted on its support



B₄C coated aluminium cathode assembled inside the bGEM chamber layout


Low efficiency detector \rightarrow

1% is sufficient since the neutron flux is very high (>10⁶n/cm²s)


RF plasma sputtering system for B_4C coating B_4C targetat IFP-CNR (Milano,Italy)

Measurement of ISIS-vesuvio 2D thermal neutron beam profile

The measured FWHM is around 3 cm compatible with ISIS-Vesuvio data G. Croci et Al, NIMA (2013), In Press

Future Perspectives

- A new larger area nGEM neutron detector for MITICA (the evolution of SPIDER) is under design and will be developed next year
- A new high efficiency (>50%?) thermal neutrons GEM-based detector - based on a 3D cathode of thin lamellas - for future spallation neutron sources has been designed and is currently been built. Results will be presented in the next months. This detector can represent a valid alternative to ³He detectors
- We are working on a new GEMINI chip which will be able to increase the number of channels. The new chip can manage 32 channels, in comparison to the 8 channels of CARIOCA. This new GEMINI chip will be used to upgrade all these detectors