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27km by 15km

Area: 316km2

Population: 420,000 

GDP: $8b
GDP per capita: $21k

The Maltese Islands



The University of Malta
- Set up in 1592 

- 11,000 students

- The only university & highest teaching institution in Malta

- 3,000 students graduate annually 

- Faculty of Engineering (Electronics, Systems, Power, Metallurgy, Mechanical 

and Manufacturing)

- Faculty of Information, Communications and Technology (Micro and 

Nanoelectronics, Communications and Computer Architecture, Computer 

Science, Computer Information Systems, Intelligent Computer Systems

- Faculty of Science;  Department of Physics

- About 300 students graduate from the university each year in the technical 

subjects  

- Very strict grading system that results in very high quality students



The University of Malta and CERN
- Started institutional collaboration in 2002 

- Started National collaboration in 2008 

- 23 Summer Students

- 4 PhDs 

- 2 Fellows

- Involvement in Magnetic Measurements and Instrumentation of 

Superconducting Magnets in SM18 

- Development and Integration of Magnet Control system in the CERN 

Control Centre 

- Development and Integration of Collimator Control Systems 

- Studies of Collimator Materials in LHC Accident Scenarios 

- Involvement in FP7 EUCARD and FP7 EUCARD2

- High Energy LHC Workshop in Malta in 2010



Magnetic Measurements and Instrumentation of 

Superconducting Magnets in SM18 

Monitoring of Field Quality @ Cold 

during Production
Establishment of Warm-

Cold Correlation
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Unprecedented Results

Snapback Measurements
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● Dcn obtained from the decay scaling at end of injection

● DI obtained from fitting parameter correlation 

– snapback scaling law

Snapback Correlation



Development and Integration of Magnet Control 

system in the CERN Control Centre 

• Beam based measurements:

• May be destructive and may cause undesirable emittance growth

• Some of the beam dynamics may not be easily determined from beam

measurements

• The beam diagnostics may not be fast enough (particularly during

snapback)

• The baseline for LHC control requires a system based on feed-forward control

to reduce the burden on the beam based feed-back

• Hybrid Control System

LHC
Field Description 

for LHC
data 

fusion

beam 

instrumentation 

and actuators

beam 

parameters

beam
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- Harmonics of 2nd, 3rd, 4th, 5th order exist in 

the LHC superconducting magnets 

- Without correction, the LHC will not work or 

will take years to commission

- Harmonics vary statically and dynamically 

as a function of current, time, powering 

history 

- Manufacturing tolerances result in a spread 

in these effects

decay

snapback
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The Field Description for the LHC
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Computing Parameters of Static Field Model
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Field snapback at 

beginning of acceleration

Decay and Snapback also depend on 

powering history!!  
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Prediction of b3 

harmonic to less than 

4%

Results



Development and Integration of Collimator 

Control Systems 



Modelling and Simulation of Beam Losses



BLM Spike Recognition



Collimator Materials in LHC Accident Scenarios 



Collimator Materials in LHC Accident Scenarios 
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