

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Recent gain calculations

Özkan ŞAHİN & Tadeusz KOWALSKI

Uludağ University, Physics Department, Bursa – TURKEY

Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow – POLAND

Gain measurements and fits for Ar – CO₂ mixtures

High precision gain measurements in Krakow (Tadeusz KOWALSKI)

- special guard for dark current
- * no need to use gain scaling
- ✤ Wide gain regime: ionisation to gain of 10⁵; less than 5% error on gas gain
- ♦ Pressure range: 0.4 1.8 atm
- Admixture concentration: $1 50 \% CO_2$

Extracted transfer rates

3/14

Modelling of the transfer rates

Confirmation of the transfer curves with earlier data at 1070 hPa

Lower uncertainty with recent data

Positive radiative term at low CO2 concentrations

Pressure and concentration depence of feedback

Decreases of β easy to explain in terms of photon mean free path !!!

MPGD 2013 & 12th RD51 Collaboration Meeting 14–17 October 2013, CERN

Photo – absorption cross section of CO₂

Cross section compiled from J. Berkowitz, *Atomic and Molecular Photoabsorption*, Chapter 5, p. 189–197, Academic Press (2002) \clubsuit photons from 3d and higher radiative levels can ionise CO_2

* 4s photons produce photo – electron if they arrive the cathode but they can not ionise CO_2

 \Rightarrow non – radiative states decays to intermediate states; they have not enough energy to ionise CO₂ or to extract electron from cathode

 $\sigma_{pa}: 3d, 5s > 4s > 4d$

Production rates and avalanche region

4s levels are the most abudantly produced
they are not lost in Penning transfers
they can contribute to feedback effectively by arriving the cathode ???

 $r_{size} = \frac{V_{anode}(gain\,curves)}{E(\alpha = 1,\,Magboltz,\,\log(r_{tube}/r_{anode}))}$

Absorption distance of the excited states

✤ Both avalanche sizes and photon mean free path decreases with pressure and size reduction is smaller than the mean free path

 \clubsuit photons in 1% and 2% CO₂ stopped outside the avalanche (still in gas) while the rest are absorbed in the avalanche

MPGD 2013 & 12th RD51 Collaboration Meeting 14-17 October 2013, CERN

CO₂ fraction [%]

Size in the tube with thinner anode wire is smaller: explains bigger beta for $r_a = 24 \ \mu m$

Measured by Tadeusz KOWALSKI with the same technique and equipment

♦ Present calculations cover 2% - 20% CO₂ mixtures

All excited states of Ne can ionise CO_2 (3d and higher in Ar – CO_2 mixtures)

✤ No gain scaling needed as before

MPGD 2013 & 12th RD51 Collaboration Meeting 14–17 October 2013, CERN

Transfer rates (0.4 and 0.8 atm)

 \diamond the biggest transfer at the lowest CO₂ concentration

- bump in 10% CO2 mixture then sharp decrease for higher fractions
- ♦ larger rate for the tube with thicker anode wire ($r_a = 50 \mu m$) MPGD 2013 & 12th RD51 Collaboration Meeting 14–17 October 2013, CERN

rates are almost flat including 10% CO₂
then they decrease in 15% and 20% CO₂
the rates are bigger at 0.8 atm

errors on transfer rates are getting bigger for high concentrations

Transfer rates (1.2 and 1.8 atm)

* the rates reach a maximum for 10% CO_2 mixture (see bumps)

 \clubsuit maximum and minimum transfer rate gaps over CO_2 concentrations become smaller with increasing pressure

* we get smaller rate in the tube with thinner anode wire (blue circles on the plots)

* the rates interestingly decrease with increase of CO₂ fraction (first time) !!!

Modelling the transfer rates

* no drops at the highest pressure

 \bullet there was in Ar – CO₂ mixtures

If parameters for some mixtures are not
physically meaningful

✤ measurements below 0.4 atm may help to get more sensible results for radiative terms

MPGD 2013 & 12th RD51 Collaboration Meeting 14-17 October 2013, CERN

* ALICE TPC results does not confirm the decrease with CO_2 concentration

0.5% uncertainty on CO₂ fraction

★ gain range: $2 \ 10^4 - 5 \ 10^5$

Experimental data:

- C. Garabatos, The ALICE TPC, NIM A **535** (2004) 197–200. Proceedings of the 10th International Vienna Conference on Instrumentation.
- Unpublished data for R. Veenhof, Choosing a gas mixture for the Alice TPC, ALICE-INT-2003-29 version 1.0, CERN,2003.

Feedback parameters in Ne – CO₂ mixtures

 \diamond both increase of pressure and CO₂ concentration lead decrease on feedback parameters

♦ feedback in Ne – CO_2 mixtures is change broader range compared to Ne – CO_2 mixtures

Ar $- \text{CO}_2$: 3 - 20 10⁻⁶, Ne $- \text{CO}_2$: 0.7 - 600 10⁻⁶

* calculations on avalanche sizes and photon mean free paths for $Ne - CO_2$ mixtures are in progress

MPGD 2013 & 12th RD51 Collaboration Meeting 14-17 October 2013, CERN

Next

• Hope to publish the results that we have for Ar - CO2 mixtures in very soon

♦ We have last minute experimental gain data for Ne – CO₂ mixtures only 3 days ago; measured in 30% and 50% CO₂ fractions

3.5% CO₂ data will also be ready in a few days (private communication with Tadeusz KOWALSKI, 13th Oct)

very important to fill gaps modelling of the transfer rates

✤ calculations are in progress

✤ measurements in 1% CO₂ would also be very useful !!!

• Physical meaning of drops of the transfer rates at high CO_2 fractions has to be worked closely

*We will check Magboltz cross sections for Ne by comparing the literature

MPGD 2013 & 12th RD51 Collaboration Meeting 14–17 October 2013, CERN