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|. Motivation



Current ALICE TPC

The ALICE TPC

The main tracking device of
the ALICE barrel

Particle ID through dE/dx
-09<n <09

11 ARSCHIER

12 TRACKING OHAVEE
13 MUON FATER
TETIGOER CHAVEERS
13 DECLE MAGNET
16 PNE

17 COMPENSATOR MAGKET
w200

About 90 m? of gas
2010: Ne-CO,-N, (90-10-5)
2011-2013: Ne-CO, (90-10)
2014: Ar-CO, (90-10)

Drift voltage 100 kV for 94 us drift time

72 MWPCs with 557 768 readout pads
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Challenge:

ALICE

* From <1 kHz to 50
kHz (10 nb1)

— Heavy quarks,
quarkonia (low p,),
dileptons, exotica

* Continuous readout:
no trigger, no gating
— space charge
distortions of order
of 1 m = notan
option

* Current TPC doesn't
do the job

Run3: 50 kHz Pb-Pb

Radial and z distortions as a functionofrand z
for 50 kHz Pb-Pb collisions with non-gated
MWPC. Note that drift field is 400 V/cm
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ALICE R&D issues with GEMs

*+ Most GEM detectors are triple stacks operated with a
standard HV configuration with a standard gas
— IBF is several %, OK for position resolution

+ A different configuration is necessary for minimizing
IBF

— Study IBF: goal is below 1%, & below 20, for which
distortions are ~10 cm

* Therefore stability of operation has to be re-
demonstrated

» dE/dx resolution has to be proven
— maintain the current performance

Definitions: IBF = | 6/1.,04e = (14 )}/gain

4.10.2013 PH Detector Seminar - The ALICE TPC Upgrade

Electron multiplication
* with twa layers of GEMs

The idea of the
GEM-based TPC

(it is not ALICE TPC!)

HY mesh plare
and UV transparent
window allow laser
beam calibration



Space Charge Effects

e=5b e=10

[ Space Charge - 3D | [ Space Charge - 3D |

Current goal: IBF~1%, at a gain of 2000, € ~10

Resulting field distortion can be corrected



|l. Earlier measurements of
IBF by different groups



Modified by us Breskin review/table on IBF measuremenst

TPC (E4..:=0.1-0.2kV/cm, |GPM (E,..r+=0.5kV/cm,
Gain=10%) Gain=10%)
Detector IBF Collection IBF Collection
type efficiency efficiency
SGEM 4%@0.4kvem | 100% 5% (20%)" | 100%
| 3GEM 0.5% 100% 5% (20%)" |100%
4GEM 100% 2% 100%
(0.01%)™
R-MHSP/ 0.08% 100% 0.1% 100%
GEM/MHSP
F-R-MHSP/ |0.015% 100% 0.03% 100%
GEM/MHSP
"Cobra"/ 0.0027% 20% 0.0003% 20%
2GEM

* Reflective PC  **Gated mode e 8
At what current measuremenst WGI’%OHE!?



Effective lon Feedback

DOUBLE GEM
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l1l. Earlier measurements of
IBF by our TPC upgrade
groups
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TPC upgrade experimental sub-groups, involved in IBF studies,

and their interactions

Frankfurt

TUM

Tokyo

CERN

Yale
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New Important results!

Two important observations was made by a CERN and TUM teams:

1) IBF depends on Rate
2) IBF depends on gas gain
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IBF dependence on rate

* lon accumulation on top of a GEM foil produces enough space-charge to shield the
electric field above from incoming ions from below, thus fakely improving |BF

* This has obviously no effect on the rate capability

TRL Y e po o i T 1 GEMSE, d=Tirm, &GO, 75200
] S el 3-S5 -~ -

- e 5 1 GEVSR, d=drwm, A0 (70001
B : racumn, snem areaman *Effect found to
- i = 1 Em.mm—m,ﬂh1m ,
et = 1 ORI, e, Hn 1 f10) scale with the
L : 1 GEMSE: lhlﬁl‘gd:hl‘l.k‘-:n:-
: product of the
[ Vil tnr charge density

1I:f‘::";:;:'::::'é: : ‘“' hiEh e i ::E: e "E:: o and the drift
e ettt SRS FE S 1 S
onbocktowm o ratem  Oc Rt o = length
% e e agresment with
%’ 5 Garfield++
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i - 1o e 10 o'
T " -":F ledl:lﬂd'l'!"na;lui T "'N'dmtnl;:

. e 02w, Ar-Gd, [73-34)

—i— o= 80 mm, Ar-00iTe-a0)

simulations

Expected in the upgrade scenario: ~ 5000 fC/cm?
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Note:
the difference in absolute values of IBF Is due
to the different voltage settings used in our
earlier measurements:

TUM used “Aachen/DESY” setting (shown earlier)
CERN —used a setting close to the “Bachman et al” (also shown
earlier)
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$Simple back on the envelope calculations
Mﬁe that IBF drop with rate is due to the
space charge effect

fL
(¢]
&

Detailed simulations made by
Tokyo group fully confirmed the
role of the space charge in the IBF
suppression at high rates
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Example: effect of gain in the case of triple GEM

(low rate)
10
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The observed effects forced
us to critically evaluate earlier
works and triggers scrupulous

studies
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V. Latest measurements
performed by ALICE TPC
upgrade sub-groups
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IV.1.Triple GEM
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IV.1.1 TUM results

20



TUM setup
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By (Vi)

For Ar/CO- 90/10

GEM voltage settings Detector field settings

GEM1 280V Epyist 0.4kVem™!

GEM2 35V Etq 55kVem™—1

GEM3 steerable  Egs 0.2kVem~!
Eind 4.5kVem™!

IB (E_ E,) for AriCO_(90/10)

IB (E_)for AHCO,_(90/10)

® Eo =02 &iem
ml = | | I I | B Eg =04 WVicm
= i E =08 Wfem
~ w E_ = (LB Wiem
008
aler o
nEr
nosH
C
noaF
oss i
um_l 11 1 1 11 1 | 11 1 | 11 1 1 11 1 1 1
3 = 55
Eq, [vcm]
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By [eviam]

For Ne/CO; 90/10

GEM voltage settings Detector field settings

GEM1 235V Eoriit 0.4kVem™?!

GEMZ2 245V Etq 50kVem—!

GEM3 steerable Eys 0.2kVem—!
Eing 38kVem™!

B (E, E_) for Ne/CO, (80/10)

ooy

0.0

0.0

e

.03

0o

IB (E_) for Ne/CO, (80/10)

4 = N =

45

T
Ey, Iz

IBF close to 3 % was achieved with triple GEMin Ar- and Ne-based mixtureg3



IV.1.2. CERN results
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IV.1.2a. Triple GEM
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Experimental setup:

A O Vdr

80 mm

Drift

2mm Transfer 1

Vi,
Vb2
Vi3
Vb3

2mm Transfer 2

00000 00

3mm Induction

Gas chamber Gas :Ar+30%CO,
Conditions/restrictions:

40kV/10mA, to minimize the space charge effect,
Gain ~ 2000, Vdr=400V/cm, current on readout
plate 20-50nA 26




LabView

B CAEN_N14714.vi

Use programmable
CAEN N1471A HV
PS for GEMs

Use N471 HV PS for
manual setting of
drift voltage and
current
measurement (the
fun part)

Measure pad-plane
current with Ohm-
meter (1 MQ)

GSI GEMs 2-2-3
mm

27
13.04.2012 GEM lab Measurements - TPC Upgrade



Results of CERN measurements with triple GEM
at CERN

E2

AGEM1=250V

0.4 3.8
AGEM2= 380 V 0a 37
AGEM3 =400 V 05 165
Etr1=4.5 kV/cm |
Etr2=variable 0.1 3.7
Eind= variable
3 3.5 4 4.5

Eind

Although our detector is different (much larger drift region ) TUM results were well
reproduced: | BF close to 3% was achieved , however e~60-too much
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CURRENT (nA)
8

&

A new approach: use one
large pitch GEM

ion feedback thgem2

................... . 15
-1
A= _ As follows from earlier measurements
/W\\/m“\ .//'"\‘\H ¢ _ .
e ] 10 3 of Sauli and Ropelewski and as well as
: ] '- ',;;'F { ¢ from the recent simulations, misalignment is
’ e 1, ¥ avery important factor in achieving low IBF
1 &
-~ | | € After several discussions with Leszek we
A.«-““":““"..f‘“’“““«-.-v'”“;‘m“".; decided to use one large pitch GEM to create
0 500 1000 1500 2000 2500 strong misalignment
POSITION (um)
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IV.1.2b. Triple GEM
with one large pitch GEM
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Experimental setup

A O Vdr

80 mm

Drift

2mm Transfer 1

Vi,
Vb2
Vi3
Vb3

2mm Transfer 2

O

O
O
O
O

O
O

3mm Induction

Gas chamber Gas :Ar+30%CO,
Conditions/restrictions:

40kV/10mA, to minimize the space charge effect,
Gain ~2000Vdr=400V/cm, current on readout plate
20-50nA 31




Gain scan at Vdr=400V/cm

IBF(%)

2.5

2 N

—

15

1
0.5

O 1 1 1 1 1 )

0 500 1000 1500 2000 2500 3000

Gain

So the improvement due to the large pitch
GEM was an a factor of 1,65

Gain is another parameter to reduce IBF
however, the price is an increase of €

e32



We also tested the arrangement when the large pitch was in the middle

A O Vdr

80 mm

Drift

2mm Transfer 1

2mm Transfer 2

00000 00
<

3mm Induction

Gas chamber

Results were similar...



IV.1.2c. Quadruple GEM
with one large pitch GEM
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Experimental setup and a resistive divider

Vmax=8kV
Total 7' O Vdr
90MQ
X-ray gun 80 mm
J/ Drift
Imm
x O vu
120MQ Transferl O Vbl
Variable l o Vt2
2mm Transfer 2 O Vb2
O V3
2mm Transfer 3 O Vb3
O
[ ] O .
Conditions/restrictions:
40I.(V{‘10mA ,to r_nlnlmlze tl:le space charge effect, Gas :Ne+1O%C02 +5%N?2
Gain ~2000, Vdr=400V/cm ;current on readot t plate 20-
50nA
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Measurements without a vertical beam In the center

(data obtained after N2 replacement, when both gain and IBF for unknown reason increased.

IBF(%)

Before IBF was 25% lower-changes in gas mixture?)

1.6

1.4 "’V

1.2

1

0.8
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0.2

0

0 2000 4000 6000 8000 10000 12000 14000 16000

Gain
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Scans with vertical X-ray
beam
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Scan in a perpendicular direction

o
[4)]

AV1=210V

AV2=250V :

IBF(%
AV3=285V o \\—o’“‘)—‘/
AV4=340V

Etr1=4.3kV/cm
Etr2=4.3kV/cm
Etr3=0.12kV/cm
Eind=4.7kv/cm

)

Distance (cm)

Due to the nonuniformity IBF measured with a parallel beam were always 30-50% better
39



Preliminary energy resolution
measurement
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Experimental setup and a resistive divider

Vmax=8kV Cu
Total + '®) Vdr
90MQ
X-ray gun 80 mm
The only
V 1mm Dt S5Fe€ transparent place
A2

120MQ Transferl I
Variable l I
2mm Transfer 2 I
2mm Transfer 3 H
Gas chamber 3mm Induction i

|

Ortecl42pc
Gas :Ar+30%C02
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Counts
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40
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Amplitud (a.u.)
AV1=365 —
AV2=365V I
AV3=365V |
AVA4=365V 37% FWHM
Etr1=4.5kV/cm S o}
Etr2=3.5 kV/cm
Etr3=0.3kV/cm
Eind=4.5kV/cm 1

Rodrigo treatment

o DATA

41%FWHM

500 1000 1500 2000 2500 3000 3500 4000

AV1=325
AV2=340V
AV3=380V
AV4=420V
Etr1=4.5kV/cm
Etr2=3.5 kV/cm
Etr3=0.3kV/cm
Eind=4.5kV/cm

o 500 1000 1800

Amplitud (a.u.)

2000 2500 3000
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1IV.1.2d. Quadruple GEM
with two large pitch GEMs
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Vmax=8kV Cu
Total 7Y O Vdr
90MQ
80 mm
¢<1mm Drift
GEM-1, 280 um pitch
120MQ Transferl Vtl
Variable l I Vb1
2mm Transfer 2 H Vt2
GEM-3, 280 pm pitch I Vb2
2mm Transfer 3 I Vi3
i Vb3

Gas chamber 3mm Induction I

Current:45-
185nA



1.2
IBF 1!
0.8
0.6
0.4

0.2

Example of a scan
(for the first time with the vertical beam we observed IBF around 0.8%)

—/

-

0.1 0.2

AV1=210V
AV2=250V
AV3=285V
AV4=340V
Etr1=4.3kV/cm
Etr2=4.3kV/cm
Etr3=0.1-0.3kV/cm
Eind=4.7kv/cm

0.3 0.4 0.5
Etr3 2500

2000

1500

Gain

1000

500

—

0.1

0.2

0.3

0.4

45

Etr3



V. Important works performed
In parallel by TUM and
Frankfurt groups
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V.1.TUM results with quadruple GEM (all
ordinary)

IBF over T2 and T3 for Ne-CO_-N, (90-10-3)

E., [kMicm]

284 294

i 02 03 04 ©05 06 07 08 09 1
E., [KV/em]

IBF of ~1% was reached
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IBF [%]

1.6

14

1.2

0.8

One of TUM scans with usual quadruple GEM

IBF (E_) for Ar-CO_ (90-10)

T1 e E,=0.1kVicm

m E,=02kVicm

E;. = 0.3 KV/icm
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Cross —check: similar scans in the case of
our/CERN quadruple GEM containing two
large pitch GEMs
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IBF(%)

N
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N\ Our results at
\\ similar conditions
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V.2.Frankfurt results with
quadruple GEM with two large
pitch GEM
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IB (%)

2 standard, 2 LP GEMs (position 1 and 3)
Ne-CO2-N2 (90-10-5)

Gain: 2000
= & ET3= 1000 Vicm
o B ET3= 100 Vicm
* L
180 L
160 d
140
120 | |
[ |
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100 -
[ |
082
0.ed
0.40 T T T
400 BO0 00 10D 1200

Transfer Field 2 (\Vicm)
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E— on x-axis

lon backflow

2 standard, 2 LP GEMs (postion 2 and 3)

Energy resolution

2 standard, 2 LP GEMs (position 2 and 3)

Ne-CO_-N_ (80-10-5) Ne-CO,-N, (90-10-5)
1.8 - . Gain: 2000 . Gain: 2000
] E,.= 100 Wiem e E_= 100 Wicm
16 1 T3 - m
u
: . 175 - .
14 . . = ]
1.2 - u
17,0 -
1.0+ L] &
& - _—
™ . 0.33 % 18,5
]

0.8 4 [ ] = -

* 160 -
04 4 L I - u
o2 T T T T T T Ll 15,5 T T ] T T T T T T

a 500 1000 1500 2000 Z30a a0 a 00 1000 1500 2000 2500
E,, (Vicm}) E,, {Wiem)
15 10.2013 Rainer Renfordt, Esther Bartsch 5
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CERN, TUM and Frankfurt
results have a tendency to
merge!
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Conclusions:

*\We are approaching IBF ~0.5 and € ~
10 which Is even better than our goal

* This can be achieved by various
voltage settings which gives us
flexibility In optimization

* We are focused now on finding
optimum operational points offering at
the same time low IBF (€), sufficient
energy resolution, stability with time
and low sparking probabillity
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