"Sapienza" Università di Roma - INFN sez. Roma 1

Exotic Hadron Spectroscopy

A. Pilloni

Excited QCD 2014, Sarajevo - February 4 ${ }^{\text {th }}, 2014$
in coll. w/ Esposito, Faccini, Maiani, Piccinini, Polosa, Riquer

Outline

- «Exotic landscape»
- Z_{c} (3900) and $\mathrm{Z}_{\mathrm{c}}^{\prime}(4025)$: tetraquarks?
- Feshbach resonances
- (Prompt production of $X(3872)$)
- Conclusions

Exotic landscape

Exotic landscape

In last ten years a lot of exotic resonances that do not fit the quarkonium model have appeared

Nowadays, the most assessed are

- $X(3872), J^{P C}=1^{++}$, no charged partners, huge isospin violation
- $Z_{c}(3900), J^{P C}=1^{+-}$, charged state
- $Y(4260), Y(4360), J^{P C}=1^{--}$, no charged partners
- $Z_{b}(10610)$ with $J^{P C}=1^{+-}$, charged state
- $Z_{b}^{\prime}(10650)$ with $J^{P C}=1^{+-}$, charged state

A convincing comprehensive framework

 which includes all these states is still missing
Proposed models

Molecule of hadrons (loosely bound)

> Diquark-antidiquark (tetraquark)

$8_{c} \quad$ Glueball \& Hybrids

(with valence gluons)

Hadrocharmonium
(Van der Waals forces)
$8_{c} \times 8_{c} \in 1_{c}$
...or a superposition of all these

$Z_{c}(3900)$

Found in $Y(4260) \rightarrow Z_{c}^{ \pm}(3900) \pi^{\mp} \rightarrow J / \psi \pi^{ \pm} \pi^{\mp}$
Exotic charged charmonium-like state! $I^{G} J^{P C}=1^{+} 1^{+-}$(tbc) (note that the $D D^{*}$ threshold is at 3876 MeV)

BESIII, PRL110 (2013) 252001

$$
\begin{gathered}
M=3899.0 \pm 3.6 \pm 4.9 \mathrm{MeV} \\
\Gamma=46 \pm 10 \pm 20 \mathrm{MeV}
\end{gathered}
$$

Belle, PRL110 (2013) 252002

$$
\begin{gathered}
M=3894.5 \pm 6.6 \pm 4.5 \mathrm{MeV} \\
\Gamma=63 \pm 24 \pm 26 \mathrm{MeV}
\end{gathered}
$$

$Z_{c}(3900)$

Found in $Y(4260) \rightarrow Z_{c}^{ \pm}(3900) \pi^{\mp} \rightarrow J / \psi \pi^{ \pm} \pi^{\mp}$
Exotic charged charmonium-like state! $I^{G} J^{P C}=1^{+} 1^{+-}$(tbc) (note that the $D D^{*}$ threshold is at 3876 MeV)

BESIII, PRL110 (2013) 252001

$$
\begin{gathered}
M=3899.0 \pm 3.6 \pm 4.9 \mathrm{MeV} \\
\Gamma=46 \pm 10 \pm 20 \mathrm{MeV}
\end{gathered}
$$

$$
\begin{gathered}
M=3894.5 \pm 6.6 \pm 4.5 \mathrm{MeV} \\
\Gamma=63 \pm 24 \pm 26 \mathrm{MeV}
\end{gathered}
$$

DTCTMT $-\downarrow$ Data
BESIII on arXiv:1310.1163

$$
Y(4260) \rightarrow Z_{c}(3885) \pi \rightarrow D D^{*} \pi
$$

$$
M=3883.9 \pm 1.5 \pm 4.2 \mathrm{MeV}
$$

$$
\Gamma=24.8 \pm 3.3 \pm 11.0 \mathrm{MeV}
$$

$$
\text { Is } Z_{c}(3900)=Z_{c}(3885) ?
$$

Tetraquark

One of the models for the $X(3872)$ is a compact diquark-antidiquark bound state

$$
[c q]_{S=0}[\bar{c} \bar{q}]_{S=1}+\text { h.c. }
$$

Maiani et al. PRD71 014028

$$
3_{c} \quad \hat{\Phi}_{\bar{q}}
$$

We can evaluate mass spectrum in a constituent quark model

$$
H=-2 \sum_{i<j} \kappa_{i j} \overrightarrow{S_{i}} \cdot \overrightarrow{S_{j}} \frac{\lambda_{i}^{a}}{2} \frac{\lambda_{j}^{a}}{2}
$$

Tetraquark

1^{+-}state at 3882 MeV compatible with $Z_{c}(3900)$!

Prevision for other states:

- Neutral $I^{G}=1^{+}$partner ~ 3900 MeV
- Neutral $I^{G}=0^{-}$partner ~ 3900 MeV
- Charged/neutral 1^{+-}states ~ 3755 MeV
- Look for a $Z_{c}^{\prime}(3760)$ about $\sim 100 \mathrm{MeV}$ below $Z_{c}(3900)$
- Look for the prominent decay $Z_{c}(3900) \rightarrow \eta_{c} \rho$

Combined BES-Belle fit

Is there room for a lighter resonance?

Faccini, Maiani, Piccinini, AP, Polosa, Riquer PRD87 (2013) 111102

Z_{c}	$M=3890 \pm 6 \mathrm{MeV}$ Z_{c}^{\prime}
 $M^{\prime}=62 \pm 12 \mathrm{MeV}$	
	$\Gamma^{\prime}=3836 \pm 13 \mathrm{MeV}$
	$\Delta \phi=(109 \pm 30)^{\circ}$

$$
\chi^{2} / \mathrm{DOF}=41 / 65, C L=99.0 \%
$$

Combined BES-Belle fit

What about the $D^{*} D^{*}$ molecule?

Faccini, Maiani, Piccinini, AP, Polosa, Riquer PRD87 (2013) 111102
\(\left.\begin{array}{cl}Z_{c} \& M=3895 \pm 3 \mathrm{MeV}

\& \Gamma=48 \pm 8 \mathrm{MeV}\end{array}\right]\)| $Z_{c} Z_{c}^{\prime}$ | $M^{\prime}=4023 \pm 6 \mathrm{MeV}$ |
| :---: | :--- |
| | $\Gamma^{\prime}=13 \pm 26 \mathrm{MeV}$ |
| | $\Delta \phi=(196 \pm 77)^{\circ}$ |

$$
\chi^{2} / \mathrm{DOF}=47 / 65, C L=95.0 \%
$$

But Nature is malicious...

$Z_{c}^{\prime}(4020), Z_{c}^{\prime}(4025)$

BESIII, PRL112, 022001

$$
\begin{gathered}
Y(4260) \rightarrow Z_{c}^{\prime}(4025) \pi \rightarrow D^{*} D^{*} \pi \\
I^{G} J^{P C}=1^{+} 1^{+-}
\end{gathered}
$$

$$
M=4026.3 \pm 2.6 \pm 3.7 \mathrm{MeV}
$$

$$
\Gamma=24.8 \pm 5.6 \pm 7.7 \mathrm{MeV}
$$

BESIII, PRL111, 242001

$$
\begin{gathered}
Y(4260) \rightarrow Z_{c}^{\prime}(4020) \pi \rightarrow h_{c} \pi \pi \\
I^{G} J^{P C}=1^{+} 1^{\mp-}
\end{gathered}
$$

$$
M=4022.9 \pm 0.8 \pm 2.7 \mathrm{MeV}
$$

$$
\Gamma=7.9 \pm 2.7 \pm 2.6 \mathrm{MeV}
$$

$Z_{c}^{\prime}(4020), Z_{c}^{\prime}(4025)$

Z_{c}^{\prime} decays into $h_{c} \pi\left(s_{c \bar{c}}=0\right)$ in P-wave
Z_{c}^{\prime} should decay more into $\eta_{c} \rho\left(s_{c \bar{c}}=0\right)$ in S-wave
If Z_{c}^{\prime} is a $D^{*} \bar{D}^{*}$ molecule, it contains a $s_{c \bar{c}}=1$ component, it should decay into $J / \psi \pi$ in S-wave, where is it?

In fact, $Z_{b}(10610)$ and $Z_{b}^{\prime}(10650)$ decay into both $\Upsilon(n S)$ and $h_{b}(n P)$

A simple PHS evaluation leads to
$\frac{\sigma\left(e^{+} e^{-} \rightarrow Z_{c}^{\prime} \pi \rightarrow \eta_{c} \pi \pi\right)}{\sigma\left(e^{+} e^{-} \rightarrow Z_{c}^{\prime} \pi \rightarrow h_{c} \pi \pi\right)} \sim 270, \quad \frac{\sigma\left(e^{+} e^{-} \rightarrow Z_{c}^{\prime} \pi \rightarrow J / \psi \pi \pi\right)}{\sigma\left(e^{+} e^{-} \rightarrow Z_{c}^{\prime} \pi \rightarrow h_{c} \pi \pi\right)} \sim 226$
Although precise evaluation of meson loops can severely modify these values, still $Z_{c}^{\prime} \pi \rightarrow J / \psi \pi$ should be observed

X, Z_{c}, Z_{c}^{\prime} : summary

Molecule
\checkmark The states are near thresholds
\checkmark Large decay into open charm
x Dynamical effects make the pattern obscure
\times How to justify bound states with positive binding energy?

Tetraquark
\checkmark The pattern is simple, based on $S U(3)$

* Many states are missing, in particular charged partners of $X(3872)$
\times Who is $Z_{c}^{\prime}(4025)$?

X, Z_{c}, Z_{c}^{\prime} : summary

Nieves et al. PRD88 (2013) 054007

Hanhart et al. PRL111 (2013) 132003
In all calculations, molecular resonances are at or below threshold. Is there a mechanism to push a bound state above threshold?

Feshbach resonances

Papinutto, Piccinini, AP, Polosa, Tantalo arXiv:1311.7374
In cold atoms there is a mechanism that occurs when two atoms can interact with two potentials, resp. with continuum and discrete spectrum

Feshbach resonances

Papinutto, Piccinini, AP, Polosa, Tantalo arXiv:1311.7374
In cold atoms there is a mechanism that occurs when two atoms can interact with two potentials, resp. with continuum and discrete spectrum

Interaction between channels

Feshbach resonances

We add an interaction Hamiltonian $H_{Q P}$ so that

$$
\begin{aligned}
& E\left|\psi_{P}\right\rangle=H_{P}\left|\psi_{P}\right\rangle+H_{Q P}\left|\psi_{Q}\right\rangle \\
& E\left|\psi_{Q}\right\rangle=H_{Q}\left|\psi_{Q}\right\rangle+H_{P Q}\left|\psi_{P}\right\rangle
\end{aligned}
$$

Feshbach resonances

We add an interaction Hamiltonian $H_{Q P}$ so that

$$
a \simeq a_{P}+C \sum \frac{\left.\left|\left\langle\psi_{i}\right| H_{Q P}\right| \psi_{t h}\right\rangle\left.\right|^{2}}{E_{t h}-E_{i}} \simeq a_{N R}-C \frac{\left.\left|\left\langle\psi_{r e s}\right| H_{Q P}\right| \psi_{t h}\right\rangle\left.\right|^{2}}{v}
$$

Feshbach resonances

We add an interaction Hamiltonian $H_{Q P}$ so that

$$
a \simeq a_{P}+C \sum \frac{\left.\left|\left\langle\psi_{i}\right| H_{Q P}\right| \psi_{t h}\right\rangle\left.\right|^{2}}{E_{t h}-E_{i}} \simeq a_{N R}-C \frac{\left.\left|\left\langle\psi_{r e s}\right| H_{Q P}\right| \psi_{t h}\right\rangle\left.\right|^{2}}{v}
$$

Feshbach resonances

The Hadrocharmonium spectrum is unknown, it can be deduced from the mass of the resonance, otherwise one can naively expect $M_{\mathrm{Hch}} \approx M_{c \bar{c}}+M_{\text {light }}$ We impose a cutoff on v and $\Gamma_{D}<v$

Charm sector

Open channel	Hadroch.	$M_{\mathrm{Hch}}(\mathrm{MeV})$	$v(\mathrm{MeV})$	$I^{G} J^{P C}$	name
$D^{* 0} \bar{D}^{0}$	$J / \psi \rho^{0}$	3872	0	$1^{-} 1^{++}$	$X(3872)$
$D^{*+} \bar{D}^{0}$	$\psi(3770) \pi^{+}$	3900	24	$1^{+} 1^{+-}$	$Z_{c}(3900)$
$D^{*+} \bar{D}^{0}$	$h_{c}(2 P) \pi^{+}{ }^{(P-\text { wave })}$	4025	8	$1^{+} 1^{+-}$	$Z_{c}^{\prime}(4025)$

The vector state $Y(4260)$ does not fit this scheme \rightarrow Hybrid?
Hadron Spectrum coll. JHEP 1207 (2012) 126, see also Santopinto et al. PRD78 (2008) 056003

Feshbach resonances

$X(3872)$ should be a $I=1$ state, but $M\left(J / \psi \rho^{+}\right)<M\left(D^{+*} \bar{D}^{0}\right)$ No charged states, isospin violation!

If we assume $\Gamma=A \sqrt{v}$, we can use $Z_{c}(3900)$ as input to extract $A=10 \pm 5 \mathrm{MeV}^{1 / 2}$
This value is compatible for all resonances (still large errors...)

Bottom sector

Open channel	Hadrobott.	$M_{\mathrm{Hbt}}(\mathrm{MeV})$	$v(\mathrm{MeV})$	$I^{G} J^{P C}$	name
$B^{*+} \bar{B}^{0}$	$\chi_{b 0}(1 P) \rho^{+}(\mathrm{P}$-wave $)$	10610	3	$1^{+} 1^{+-}$	$Z_{b}(10610)$
$B^{*+} \bar{B}^{* 0}$	$\chi_{b 0}(1 P) \rho^{+}(P$-wave $)$	10650	1.8	$1^{+} 1^{+-}$	$Z_{b}^{\prime}(10650)$

We remark that $\Gamma\left(Z_{b}^{\prime}\right) / \Gamma\left(Z_{b}\right) \approx 0.63, v\left(Z_{b}^{\prime}\right) / v\left(Z_{b}\right) \approx 0.77$

Prompt production of $X(3872)$

$X(3872)$ is the Queen of exotic resonances
The most popular interpretation is a $D^{0} \bar{D}^{0 *}$ molecule
But the binding energy is $E_{B} \approx-0.14 \pm 0.22 \mathrm{MeV}$: very small! A simple square well model shows that $k_{\text {rel }} \approx 50 \mathrm{MeV}$

How many pairs can we produce at hadron colliders with such a small relative momentum?

Bignamini et al. PRL103 (2009) 162001

$$
\begin{aligned}
& \text { We obtain } \\
& \sigma\left(p \bar{p} \rightarrow D D^{*}\right) \approx 0.1 \mathrm{nb} @ \sqrt{s}=1.96 \mathrm{TeV}
\end{aligned}
$$

Experimentally
$\sigma(p \bar{p} \rightarrow X(3872)) \approx 30 \mathrm{nb}!!!$
Molecule challenged!!!

Prompt production of $X(3872)$

A solution can be Final State Interaction (rescattering of $D D^{*}$)...

Artoisenet and Braaten PRD81 (2010) 114018

Relative momenta as large as $\Lambda \sim O\left(m_{\pi}\right) \sim 300 \mathrm{MeV}$ rescatter into momenta of order $\sqrt{-2 \mu E_{B}} \sim 50 \mathrm{MeV}$

Migdal-Watson theorem

Prompt production of $X(3872)$

A solution can be Final State Interaction (rescattering of $D D^{*}$)...

Artoisenet and Braaten PRD81 (2010) 114018

...but the application of Watson Theorem is spoiled by the presence of pions that interfere with $D D^{*}$ propagation, Bignamini et al. PLB684 (2010) 228-230
(FSI have been used also by Meissner et al. arXiv:1308.0193 to estimate Z_{c} and Z_{b} prompt xsects, but the application to above-threshold states is unclear)

A new mechanism?

However, these pions can elastically interact with $D\left(D^{*}\right)$, and slow down the pairs $D D^{*}$

Esposito, Piccinini, AP, Polosa JMP 4, 1569

The mechanism also implies: D mesons actually "pushed" inside the potential well (the classical 3-body problem!)
$X(3872)$ is a real, negative energy bound state (stable) It also explains a small width $\Gamma_{X} \sim \Gamma_{D^{*}} \sim 100 \mathrm{keV}$

A new mechanism?

Low k_{0} bins are refilled by the interaction with n pions

A new mechanism?

		Herwig		PYTHIA		Striking increase of σ after each scattering! Down by a factor 5-7 wrt $\sigma_{\exp } \approx 30 \mathrm{nb}$,
$k_{0}^{\text {max }}$		50 MeV	100 MeV	50 MeV	100 MeV	
No. of events	0 scatt.	52	253	240	1560	
	1 scatt.	44	299	283	1984	
	3 scatt.	843	2069	4843	11679	
	4 scatt.	1166	2802	6489	14916	
	5 scatt.	1689	4167	7770	18284	
σ [nb]	0 scatt.	0.10	0.50	0.13	0.83	
	1 scatt.	0.09	0.59	0.15	1.05	
	3 scatt.	1.67	4.10\%	2.57	6.20\%	
	4 scatt.	2.31	5.55	3.44	7.92	
	5 scatt.	3.34	8.25	4.12	9.71	

A new mechanism?

The mechanism proposed is not sufficient to explain all the experimental cross section, but could be a component of the real mechanism

A study of the effect of π interactions on known differential production cross section of open charm mesons is ongoing

Conclusions

The study of exotic resonances in heavy quark sector is still puzzling

- The tetraquark picture predicts $Z_{c}(3900)$, but misses $Z_{c}^{\prime}(4025)$
- The molecular picture has troubles with above-threshold states and production mechanisms
- Look for missing states and decay modes who can help in excluding models
- Explore new production mechanisms to take into account at- and above-threshold states
- Propose and search new states who can falsify some models

Thank you

BACKUP

Doubly charmed states

Another approach to choose among models, is to predict states who fit only in one model

For example, we proposed to look for doubly charmed states, which in tetraquark model are $[c c]_{S=1}[\bar{q} \bar{q}]_{S=0,1}$

These states could be observed in B_{c} decays @LHC
Esposito, Papinutto, AP, Polosa, Tantalo, PRD88 (2013) 054029

Doubly charmed states

Another approach to choose among models, is to predict states who fit only in one model

The doubly charged state $T_{S}^{++}=[c c]_{S=1}[\bar{d} \bar{s}]_{S=0}$ could not be explained in the molecular picture because of the Coulombian repulsion.

If $M\left(T_{s}^{++}\right)>3979 \mathrm{MeV}$ the state could decay into $D^{*+} D_{s}^{+}$ and could be seen @LHC

This state is particularly well-defined on the lattice, because no disconnected diagrams are involved.

The calculation is ongoing...

Doubly charmed states

Just started the analysis of correlators $\left\langle O_{1}(x) O_{1}^{\dagger}(0)\right\rangle$
where $O_{1}=\epsilon_{A B K} \bar{c}_{c}^{A} \gamma^{i} c^{B} \epsilon_{C D K}\left(\bar{d}^{C} \gamma^{5} s_{c}^{D}-\bar{s}^{C} \gamma^{5} d_{c}^{D}\right)$
is the interpolating operator of a $J^{P}=1^{+}$tetraquark
Guerrieri, Papinutto, AP, Polosa, Tantalo, work in progress

Simulation with a $32^{3} \times 64$ lattice, $n_{f}=2, m_{\pi} \simeq 500 \mathrm{MeV}$
Lüscher's method is to be implemented

$Z_{c}^{0}(3900)$ at CLEO?

A reanalysis of CLEO data shows a 3σ neutral resonance in

$$
\psi(4160) \rightarrow \pi^{0} Z_{c}^{0} \rightarrow J / \psi \pi^{0} \pi^{0}
$$

Xiao et al.
PLB767, 366-370

$$
\begin{gathered}
M=3907 \pm 12 \mathrm{MeV} \\
\Gamma=34 \pm 29 \mathrm{MeV}
\end{gathered}
$$

Isospin violation?

Look for $Z_{c}^{0} \rightarrow J / \psi \eta$
Hanhart et al.
arXiv:1312.5621

Decay channels

Two questions:

- What can $Z_{c}(3900)$ decay into?
- Why is Z_{c} (3900) much broader than $X(3872)$?
- $J / \psi \pi^{+}$
- $\psi(2 S) \pi^{+}$
- $D^{+} \overline{D^{* 0}}, D^{*+} \overline{D^{0}} \sim 4 \mathrm{MeV}$
- $\eta_{c} \rho^{+}$

We suppose

- $h_{c} \pi^{+}$in P-wave

$$
g_{D D^{*} X(3872)}=g_{D D^{*} Z(3900)}
$$

- Radiative decays

Decay channels

Two questions:

- What can $Z_{c}(3900)$ decay into?
- Why is Z_{c} (3900) much broader than $X(3872)$?
- $J / \psi \pi^{+} \sim 29 \mathrm{MeV}$
- $\psi(2 S) \pi^{+} \sim 6 \mathrm{MeV}$
- $D^{+} \overline{D^{* 0}}, D^{*+} \overline{D^{0}} \sim 4 \mathrm{MeV}$
- $\eta_{c} \rho^{+} \sim 19 \mathrm{MeV}$
- $h_{c} \pi^{+}$in P-wave

No grounds for other couplings We only suppose

$$
g=M_{Z_{c}}
$$

Some agreement with QCD sum rules Dias et al. arXiv:1304.6433

- Radiative decays
$\Gamma \sim 60 \mathrm{MeV}$, agrees with experimental value

Other models

Hadro-charmonium

Voloshin PRD87 9, 091501

A $c \bar{c}$ state surrounded by light matter

Decay into $\eta_{c} \rho$ forbidden by HQSS

A light $Z_{c}^{\prime}(3785)$ expected with $I^{G} J^{P C}=1^{-} 0^{++}$ (not visible in $J / \psi \pi$ channel)

Other models

Molecule

$D D^{*}$ loosely bound molecule $1-\pi$ exchange attractive in $I^{C}=1^{-}$channel, although less than in $I^{C}=0^{+}(X(3872))$

Tornqvist Z.Phys. C61 525-537
A molecule decays mostly into its constituents (long range decay)

Decays into charmonium + light mesons suppressed by $1 / a$ (short range decay) Braaten et al. PRD69, 074005

$$
\text { e.g. } B R\left(X(3872) \rightarrow D D^{*}\right) \sim 70 \%, B R(X(3872) \rightarrow J / \psi \rho) \sim 5 \%
$$

Other models

Molecule

Wang et al. arXiv:1303.6355
$D D^{*}$ loosely bound molecule $1-\pi$ exchange attractive in $I^{C}=1^{-}$channel, although less than in $I^{C}=0^{+}(X(3872))$

Tornqvist Z.Phys. C61 525-537
Expected with $\mathrm{BR}\left(\mathrm{Z}_{\mathrm{c}} \rightarrow\right.$ DD* $) \sim 70-80 \%$
But we estimated $\Gamma\left(\mathrm{Z}_{\mathrm{c}} \rightarrow D D^{*}\right) \sim 4 \mathrm{MeV}$, How to reach $\Gamma=40 \mathrm{MeV}$?

A light $Z_{c}^{\prime}(3760)$ expected with $I^{G} J^{P C}=1^{-} 0^{++}$

Other models

Molecule

$Z_{c}^{0}(3900)$ could violate isospin just like $X(3872)$ A $Y(4260) \rightarrow Z_{c}^{0} \pi^{0} \rightarrow J / \psi \eta \pi^{0}$ could occur
If so, it cannot be accomodated into molecular picture:
In X(3872) isospin violation is due to

$$
\Delta=M\left(D^{+} D^{-*}\right)-M\left(D^{0} D^{0 *}\right) \sim 8 \mathrm{MeV}
$$

Hanhart et al. PRD85 011501
Z_{c}^{0} is above both thresholds, and $\Delta \ll \Gamma$
In molecular picture Z_{c}^{0} should be a pure isovector

Strong couplings

How do we evaluate $g_{D D^{*} X(3872)}$?

$$
g_{D D^{*} X(3872)}^{2}=B R\left(X \rightarrow D D^{*}\right) \Gamma_{\mathrm{X}}\left(\frac{p^{*}}{8 \pi M_{x}^{2}} \overline{\left|M\left(X \rightarrow D D^{*}\right)\right|^{2}}\right)^{-1}
$$

But if $M_{X}<M_{D}+M_{D^{*}}$ the decay momentum p^{*} is undefined
We average over a random set $\left(M_{X}\right)_{i}$, distributed as a Breit-Wigner, centered at $M_{X}=3872 \mathrm{MeV}$ and with a width $\Gamma_{X}=1.2 \mathrm{MeV}$ respecting the kinematical limits

$$
M_{D}+M_{D^{*}}<\left(M_{X}\right)_{i}<\mathrm{M}_{\mathrm{B}}-\mathrm{M}_{\mathrm{K}}
$$

We get $g_{D D^{*} X(3872)}=2.5 \mathrm{GeV}$

Strong couplings

The matrix element can be evaluated in an effective theory

$$
\begin{aligned}
\left\langle D(p) D^{*}(\eta, q) \mid X(\lambda, P)\right\rangle & =g_{D D^{*} X} \eta \cdot \lambda \\
\frac{1}{3} \sum_{\text {pol }}\left|\left\langle D(p) D^{*}(\eta, q) \mid X(\lambda, P)\right\rangle\right|^{2} & =\frac{1}{3} g_{D D^{*} X}^{2}\left(3+\frac{p^{* 2}}{M_{X}^{2}}\right)
\end{aligned}
$$

The D-wave componenent is negligible with respect to the S-wave one
We get $g_{D D^{*} X(3872)}=2.5 \mathrm{GeV}$

Strong couplings

What about other couplings?

We cannot relate $g_{X \psi \rho}$ to $g_{Z_{c} \psi \pi}$ (no chiral symmetry or HQSS)

But we are talking about S-wave decays and we need couplings with the dimension of a mass

The main mass scale is the mass of the $Z_{c}(3900)$ So we estimate

$$
g \sim M_{Z_{c}} \sim 3900 \mathrm{MeV}
$$

Tuning of MC

Monte Carlo simulations A. Eposito

- We compare the $D^{0} D^{*-}$ pairs produced as a function of relative azimuthal angle with the results from CDF:

Such distributions of charm mesons are available at Tevatron
No distribution has been published (yet) at LHC

$p \bar{p} \rightarrow c \bar{c}$

\#events	Herwig	Pythia
0π	10	3
1π	19	21
3π	802	814

The enhancement is impressive because first bins are almost empty

T states production

> To do
> Fare calcoli spazio fasi
> Controlla numeri arxiv (BES e voloshin)
> Aggiungi una slide backup sul ccbar

