Recent KLOE results on hadron physics

UNIVERSITÀ DI ROMA

P.Gauzzi
(Universita' La Sapienza e INFN - Roma) for the KLOE / KLOE-2 Collaboration

Outline

- DAФNE and KLOE
- $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$
- Transition Form Factors from Dalitz decays
- $\phi \rightarrow \boldsymbol{\eta} \boldsymbol{e}^{+} \boldsymbol{e}^{-}$
- $\phi \rightarrow \pi^{0} e^{+} e^{-}$
- $\quad \gamma \gamma$ physics
- $\gamma^{*} \gamma^{*} \rightarrow \eta$
- $\gamma^{*} \gamma^{*} \rightarrow \pi^{0} \pi^{0}$
- KLOE-2: detector upgrade
- Conclusions
- Frascati ϕ-factory: $e^{+} e^{-}$collider
(a) $V_{\mathrm{s}} \approx 1020 \mathrm{MeV} \approx \mathrm{M}_{\phi} ; \sigma_{\text {реак }} \approx 3.1 \mu \mathrm{~b}$
- Best performance in 2005:

$$
\mathrm{L}_{\text {peak }}=1.4 \times 10^{32} \mathrm{~cm}^{-1} \mathrm{~s}^{-1} \int \mathrm{Ldt}=8.5 \mathrm{pb}^{-1} / \mathrm{day}
$$

- KLOE: $2.5 \mathrm{fb}^{-1} @ V_{s}=\mathrm{M}_{\phi}\left(\Rightarrow \mathbf{8} \times 10^{9} \phi\right.$ produced $)$ $+250 \mathbf{p b}^{-1}$ off-peak @ $V_{\mathrm{s}=1000 \mathrm{MeV},}$

- DAФNE upgrade (2008): new interaction scheme;
large beam crossing angle + crabbed waist sextupoles
- 2010: DAФNE commissioning for KLOE-2 start several hardware failures \Rightarrow long shutdown
- End 2011: commissioning resumed
- Nov-Dec. 2012: $100 \mathbf{p b}^{-1}$ collected with carbon target for the study of deeply bound kaonic states (AMADEUS)
- Dec.2012-July 2013: shutdown for installation of new detectors
- DAФNE operations restarted in July 2013
- KLOE-2 goal: collect $\sim 5 \mathbf{f b}^{\mathbf{- 1}}$ in the next $\mathbf{2 - 3}$ years [Eur.Phys.J.C68(2010),619]

KLOE

Drift chamber:

- gas: $90 \% \mathrm{He}-10 \% \mathrm{iC}_{4} \mathrm{H}_{10}$
- $\delta p_{T} / p_{T}=0.4 \%$
- $\sigma_{\mathrm{xy}} \approx 150 \mu \mathrm{~m} ; \sigma_{\mathrm{z}} \approx 2 \mathrm{~mm}$
- $\sigma_{\text {vertex }} \approx 1 \mathbf{~ m m}$

Calorimeter (Pb-Sci.Fi.):

- $\sigma_{\mathrm{E}} / \mathrm{E}=5.7 \% / \sqrt{ }(\mathrm{E}(\mathrm{GeV}))$
- $\sigma_{t}=55 \mathrm{ps} / \sqrt{ }(\mathrm{E}(\mathrm{GeV})) \oplus 100 \mathrm{ps}$
- 98\% of 4π

Magnetic field: 0.52 T

$\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$

- $\eta \rightarrow \pi \pi \pi \pi$ decay \Rightarrow Isospin violation

$$
\Gamma(\eta \rightarrow 3 \pi) \propto Q^{-4}
$$

where $\quad Q^{2} \equiv \frac{\mathbf{m}_{\mathrm{s}}^{2}-\hat{\mathbf{m}}^{2}}{\mathbf{m}_{\mathrm{d}}^{2}-\mathbf{m}_{\mathrm{u}}^{2}} \quad\left(\hat{\mathbf{m}}=\frac{1}{2}\left(\mathrm{~m}_{\mathrm{u}}+\mathrm{m}_{\mathrm{d}}\right)\right)$
$\mathcal{L}_{\mathrm{I}}=-\frac{1}{2}\left(\mathrm{~m}_{u}-\mathrm{m}_{d}\right)(\bar{u} u-\bar{d} d)$
Determining \mathbf{Q} gives constraints on the light quark masses

- Previous KLOE analysis: $\phi \rightarrow \eta \gamma$ with $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0} \Rightarrow \pi^{+} \pi^{-}+3 \gamma$ final state $\mathrm{L}=450 \mathrm{pb}^{-1} \Rightarrow 1.34 \times 10^{6}$ events in the Dalitz plot

$$
|\mathbf{A}(\mathbf{X}, \mathbf{Y})|^{2}=1+a \mathbf{Y}+b \mathbf{Y}^{2}+c \mathbf{X}+d \mathbf{X}^{2}+e \mathbf{X Y}+f \mathbf{Y}^{3}
$$

\boldsymbol{a}	$\mathbf{- 1 . 0 9 0} \pm \mathbf{0 . 0 0 5}{ }^{+0.008}{ }_{-0.019}$
\boldsymbol{b}	$\mathbf{0 . 1 2 4} \pm \mathbf{0 . 0 0 6} \pm \mathbf{0 . 0 1 0}$
\boldsymbol{c}	$\mathbf{0 . 0 0 2} \pm \mathbf{0 . 0 0 3} \pm \mathbf{0 . 0 0 1}$
\boldsymbol{d}	$\mathbf{0 . 0 5 7} \pm \mathbf{0 . 0 0 6}{ }^{+0.007}{ }_{-0.016}$
\boldsymbol{e}	$\mathbf{- 0 . 0 0 6} \pm \mathbf{0 . 0 0 7}{ }^{+0.005}{ }_{-0.003}$
\boldsymbol{f}	$\mathbf{0 . 1 4} \pm \mathbf{0 . 0 1} \pm \mathbf{0 . 0 2}$
$\mathbf{P}\left(\boldsymbol{\chi}^{\mathbf{2}}\right)$	$\mathbf{7 3 \%}$

- Dispersive analyses of $\boldsymbol{\eta} \rightarrow \mathbf{3 \pi}$: subtraction constants fixed from a fit to

KLOE measurements of $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$

$$
\Rightarrow Q=21.3 \pm 0.6
$$

[Colangelo et al. PoS(EPS-HEP2011)304]

$$
\begin{aligned}
& m_{u}=(2.02 \pm 0.14) M e V \\
& m_{d}=(4.91 \pm 0.11) M e V
\end{aligned}
$$

and by using $\hat{\boldsymbol{m}}$ and \boldsymbol{m}_{S} from lattice $\mathbf{Q C D} \Rightarrow$

$$
\Rightarrow R=\frac{m_{S}-\hat{m}}{m_{d}-m_{u}}=37.7 \pm 3.3
$$

[Kampf et al., PRD84(2011)114015]

$$
\begin{aligned}
& m_{u}=(2.23 \pm 0.14) M e V \\
& m_{d}=(4.63 \pm 0.14) M e V
\end{aligned}
$$

New analysis of the full KLOE data set to reduce systematics:

- $\mathrm{L}=1.7 \mathrm{fb}^{-1} \Rightarrow$ about 4 times larger than previous analysis
- Improved MC simulation
- Selection: at least 2 charged tracks and 3 prompt photons
- Bhabha rejection by kinematics + TOF
- $\left|\mathrm{MM}\left(\phi \gamma \pi^{+} \pi^{-}\right)-\mathrm{M}_{\pi 0}\right|<\mathbf{1 5} \mathbf{~ M e V}$
$-\gamma \gamma$ opening angle (π^{0} rest frame) $>165^{\circ}$
- Signal efficiency $=\mathbf{3 7 . 6} \%$
- Background contamination $=0.96 \%$

$\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}:$ fit result

Dalitz plot slices in Y
Dalitz plot slices in \mathbf{X}

Old analysis

\boldsymbol{a}	$-1.090 \pm 0.005^{+0.008}{ }_{-0.019}$	-1.103 ± 0.003
\boldsymbol{b}	$0.124 \pm \mathbf{0 . 0 0 6} \pm \mathbf{0 . 0 1 0}$	$0.1419 \pm \mathbf{0 . 0 0 2 9}$
\boldsymbol{d}	$0.057 \pm \mathbf{0 . 0 0 6}{ }^{+0.007}{ }_{-0.016}$	$0.0725 \pm \mathbf{0 . 0 0 2 7}$
\boldsymbol{f}	$0.14 \pm \mathbf{0 . 0 1} \pm \mathbf{0 . 0 2}$	$0.154 \pm \mathbf{0 . 0 0 6}$

Data -Fit

$$
\mathbf{P}\left(\chi^{2}\right)=27 \%
$$

- Agreement with previous result
- c and e consistent with zero (C-violating parameters)
- Evaluation of systematics in progress

Transition Form Factors

Information on the structure of mesons comes
from their coupling to photons, described by the TFFs

$$
\mathcal{F}_{P \gamma \gamma}\left(q_{1}^{2}, q_{2}^{2}\right)
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
\gamma^{\star} \rightarrow P \gamma \\
P \rightarrow \gamma \gamma^{\star} \rightarrow \gamma \ell^{+} \ell^{-}
\end{array}\right\} \text {time-like } q^{2} \\
& \gamma^{\star} \gamma^{\star} \rightarrow P \quad \Rightarrow \text { space-like } q^{2}
\end{aligned}
$$

Transition Form Factors

- $a_{\mu}{ }^{\exp }-a_{\mu}{ }^{\mathrm{SM}}=(31.25 \pm 8.54) \times 10^{-10} \Rightarrow 3.7 \sigma$ discrepancy $\quad\left[a_{\mu}=\left(\mathrm{g}_{\mu}-2\right) / 2\right]$
$a_{\mu}{ }^{\mathrm{SM}}=a_{\mu}{ }^{\mathrm{QED}}+a_{\mu}{ }^{\text {weak }}+a_{\mu}^{\text {had }} \longrightarrow$ main contribution to the uncertainty on $a_{\mu}{ }^{\text {SM }}$
- An important part of $\boldsymbol{a}_{\mu}{ }^{\text {had }}$ is the Light-by-Light scattering
$\left(a_{\mu}{ }^{\text {LbL }}=(\mathbf{1 1 . 6} \pm \mathbf{3 . 9}) \times \mathbf{1 0}^{-\mathbf{1 0}}[\right.$ Jegerlehner-Nyffeler P.Rep.477(2009)] $)$

- TFFs for off-shell mesons \Rightarrow model dependent
\Rightarrow measurements of TFFs of on-shell mesons can help to constrain models to get a precise evaluation of the LbL contribution

Transition FFs from Dalitz

decays

- VMD well describes $\boldsymbol{\eta} \rightarrow \gamma \boldsymbol{\ell}^{+} \ell^{-}$, but fails for $\omega \rightarrow \pi^{0} \ell^{+} \boldsymbol{\ell}^{-}$

$F\left(q^{2}\right)=\frac{1}{1-q^{2} / \Lambda^{2}}$

Other models based on effective field theories proposed: Terschluesen-Leupold PPNP67(2012)401 Schneider et al. PRD86(2012)054013, Ivashyn Prob.Atomic Sci.Technol.2012N1(2012)179

- $\phi \rightarrow \eta e^{+} e^{-}: \Lambda^{-2}=(3.8 \pm 1.8) \mathrm{GeV}^{-2}(\sim 50 \%$ error) SND @ VEPP-2M

$$
\mathrm{VMD} \Rightarrow \Lambda^{-2} \approx \mathrm{M}_{\phi}^{-2} \approx 1 \mathrm{GeV}^{-2}
$$

- $\phi \rightarrow \pi^{0} e^{+} e^{-}$: no data available on $\mathrm{FF} ; \mathrm{VMD} \Rightarrow \Lambda^{-2} \approx 1.6 \mathrm{GeV}^{-2}$

$\phi \rightarrow \eta e^{+} e^{-} ; \eta \rightarrow \pi^{0} \pi^{0} \pi^{0}$

- Analyzed sample: $1.7 \mathrm{fb}^{-1}$
- 2 tracks +6 prompt photons $536.5<\mathrm{M}_{\text {recoil }}(e e)<554.5 \mathrm{MeV}$
$\sim 30000 \phi \rightarrow \eta e^{+} e^{-}\left(\eta \rightarrow \pi^{0} \pi^{0} \pi^{0}\right)$
- Efficiency $\approx 15 \%$

Transition FF

- FF extracted from a fit of the $e^{+} e^{-}$invariant mass to:

$$
\frac{d}{d q^{2}} \frac{\Gamma\left(\phi \mid \rightarrow \eta e^{+} e^{-}\right)}{\Gamma(\phi \rightarrow \eta \gamma)}=\frac{\alpha}{3 \pi} \frac{\left|F_{\phi \eta}\left(q^{2}\right)\right|^{2}}{q^{2}} \sqrt{1-\frac{4 m^{2}}{q^{2}}} \times\left(1+\frac{2 m^{2}}{q^{2}}\right) \times\left[\left(1+\frac{q^{2}}{m_{\phi}^{2}-m_{\eta}^{2}}\right)^{2}-\frac{4 m_{\phi}^{2} q^{2}}{\left(m_{\phi}^{2}-m_{\eta}^{2}\right)^{2}}\right]^{3 / 2}
$$

[Landsberg, Phys.Rept.128(1985)301]

$$
\begin{aligned}
& F\left(q^{2}\right)=\frac{1}{1-q^{2} / \Lambda^{2}} \\
& \left.\Rightarrow \frac{d F}{d q^{2}}\right|_{q^{2}=0}=\Lambda^{-2}
\end{aligned}
$$

$\Lambda^{-2}=(1.17 \pm 0.11 \pm 0.09) \mathrm{GeV}^{-2}$
(SND: $(3.8 \pm 1.8) \mathrm{GeV}^{-2}$)
In agreement with VMD ($\left.\Lambda^{-2} \approx M_{\phi}{ }^{-2} \approx \mathbf{1} \mathrm{GeV}^{-2}\right)$

$$
\begin{aligned}
& \text { LRe } \\
& \mathbf{e V}^{-2} \\
& \hline
\end{aligned}
$$

$\mathrm{BR}\left(\phi \rightarrow \pi^{0} e^{+} e^{-}\right)=(1.12 \pm 0.28) \times 10^{-5}$
$\Rightarrow \quad 25 \%$ uncertainty
(SND $\Rightarrow 52$; CMD-2 $\Rightarrow 46$ events)

Events with 2 tracks + 2 prompt photons Background:
radiative Bhabha scattering
(several order of magnitudes larger)
$\phi \rightarrow \pi^{0} \gamma$ with photon conversion

- $\mathrm{L}=1.7 \mathrm{fb}^{-1}$
- 8777 events selected
- Signal efficiency $\approx 15 \%$

$\phi \rightarrow \pi^{0} e^{+} e^{-}$

- Good data-MC comparison

- Background subtraction from fit to the recoil mass against $e^{+} e^{-}$

- Fit systematics currently limited by the MC statistics of Bhabha events

$\Rightarrow \quad$ FF extraction in progress

$\gamma \gamma$ physics

$$
\frac{d N}{d W_{\gamma \gamma}}=L_{i n t} \frac{d F}{d W_{\gamma \gamma}} \sigma(\gamma \gamma \rightarrow X)
$$

$$
e^{+} e^{-} \rightarrow e^{+} e^{-} \gamma^{\star} \gamma^{\star} \rightarrow e^{+} e^{-} X
$$

- $\mathbf{X}=\pi^{0}, \eta \Rightarrow \sigma_{\gamma \gamma \rightarrow X}\left(q_{1}, q_{2}\right)=\frac{8 \pi^{2}}{M_{X}} \Gamma_{X \rightarrow \gamma \gamma} \delta\left[\left(q_{1}+q_{2}\right)^{2}-M_{X}^{2}\right]\left|\mathcal{F}\left(q_{1}^{2}, q_{2}^{2}\right)\right|^{2}$
- Two-photon width $\Gamma(\mathrm{X} \rightarrow \gamma \gamma)$
- Transition form factors $\mathcal{F}_{\mathrm{X}_{\gamma^{*}} \gamma^{*}}\left(\mathrm{q}_{1}{ }^{2}, \mathrm{q}_{2}{ }^{2}\right)$ at space-like q^{2}
- $X=\pi^{0} \pi^{0} \Rightarrow$ study of $f_{0}(500)$
- KLOE data: no $e^{ \pm}$tagging \Rightarrow analysis of off-peak data $(\sqrt{s}=1 \mathrm{GeV})$
- Data sample: $240 \mathbf{p b}^{-1}$ off-peak $(\sqrt{ } \mathrm{s}=1 \mathrm{GeV})$, no taggers
- Main bckg: $e^{+} e^{-} \rightarrow \eta \gamma$ with γ lost

- $\eta \rightarrow \pi^{0} \pi^{0} \pi^{0}$: events with no tracks and 6 prompt photons

combining the two channels:

$$
\sigma\left(e^{+} e^{-} \rightarrow e^{+} e^{-} \eta\right)=(32.7 \pm 1.3 \pm 0.7) \mathrm{pb}
$$

$\Rightarrow \Gamma(\eta \rightarrow \gamma \gamma)=(520 \pm 20 \pm 13) \mathrm{eV}{ }_{\text {[JHEP01(2013)119] }}$
$\gamma \gamma \rightarrow \pi^{0} \pi^{0}$
$e^{+} e^{-} \rightarrow e^{+} e^{-} \pi^{0} \pi^{0}$

- $f_{0}(500) \rightarrow \pi^{0} \pi^{0}$?
- Previous measurements by Crystal Ball and JADE

- $\quad 240 \mathbf{p b}^{-1}$ off-peak data ($\sqrt{ } \mathrm{s}=1 \mathrm{GeV}$)
- Selection:
- 4 prompt photons
- no late clusters in the EMC
- no tracks in the Drift Chamber
- best photon pairing to match $2 \pi^{0}$,s
\Rightarrow cut on pairing χ^{2}

- Still some background contamination at low $\mathbf{m}_{4 \gamma}$

$\mathrm{m}_{4 \gamma}[\mathrm{MeV}]$
\Rightarrow asymmetric \mathbf{p}_{L} distribution

Background reduced with a multivariate analysis:

- MC distributions for signal + known bckgd.
- data for residual background

- Residual background still under study
- Work is in progress to
extract the cross-section

$\gamma \gamma$ physics at KLOE-2

- KLOE-2 run at the ϕ peak
- Large background from ϕ decays
$\gamma \gamma$ process

channel	$\left.\begin{array}{c}\text { Total Production } \\ (\mathrm{L}=10 \mathrm{fb} \\ \hline 1\end{array}\right)$
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \pi^{0}$	4×10^{6}
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \eta$	10^{6}
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \pi^{+} \pi^{-}$	2×10^{6}
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \pi^{0} \pi^{0}$	2×10^{4}

ϕ decays

decay mode	esc.particle	events	bckg to:
$\mathrm{K}_{\mathrm{S}}\left(\pi^{0} \pi^{0}\right) \mathrm{K}_{\mathrm{L}}$	K_{L}	$\sim 10^{9}$	$\pi^{0} \pi^{0}$
$\mathrm{~K}_{\mathrm{S}}\left(\pi^{+} \pi^{-}\right) \mathrm{K}_{\mathrm{L}}$	K_{L}	$\sim 2 \times 10^{9}$	$\pi^{+} \pi^{-}$
$\pi^{+} \pi^{-} \pi^{0}$	π^{0}	$\sim 10^{9}$	
$\eta(\gamma \gamma) \gamma$	γ	$\sim 10^{8}$	η
$\pi^{0}(\gamma \gamma) \gamma$	γ	$\sim 5 \times 10^{8}$	π^{0}

- Additional background from continuum processes
\Rightarrow Electron taggers are needed to reduce background

Detector upgrade

- QCALT: W + scint. tiles + SiPM quadrupole coverage for K_{L} decays
- CCALT : LYSO + APD to increase acceptance for γ^{\prime} s from the IP ($\mathbf{2 1}^{\circ}$ to $\mathbf{1 0}^{\circ}$)

Low Energy Tagger

- To detect $e^{ \pm}$of $\mathrm{E} \approx 150-\mathbf{3 5 0} \mathbf{M e V}$ escaping from the beam-pipe
- Weak correlation between E and scattering angle
\Rightarrow calorimeters: 20×2 LYSO crystals read-out by SiPM, placed at $\sim 1.5 \mathrm{~m}$ from the IP

$$
\sigma_{\mathrm{E}} / \mathrm{E}<10 \% \text { for } \mathrm{E}>150 \mathrm{MeV}
$$

Calibration with cosmic rays (mips)

3, 2014

High Energy Tagger

Inner Tracker

- 4 layers of cylindrical triple GEMs
- $\sigma_{\mathrm{r} \phi} \sim 250 \mu \mathrm{~m}$ and $\sigma_{\mathrm{z}} \sim 400 \mu \mathrm{~m}$
- XV strips-pads readout ($20^{\circ} \div \mathbf{3 0}^{\circ}$ stereo angle)
- 2% of radiation length in the active region

Cylindrical Triple GEM

$\gamma^{*} \gamma^{*} \rightarrow \pi^{0} \pi^{0} @$ KLOE-2

- Detection of the scattered electrons will close the kinematics and will help to reduce background
- Coincidences of two tagging stations cover the interesting range in $\mathbf{W}_{\gamma \gamma}$

$\gamma^{*} \gamma^{*} \rightarrow \pi^{0} @$ KLOE-2

- $\quad \Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)=(8.09 \pm 0.11)$ eV (theory) $\Rightarrow 1.4 \%$ uncert.
- PrimEx Coll. @JLAB $\Rightarrow \Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)=(7.82 \pm 0.14 \pm 0.17) \mathrm{eV} \Rightarrow 2.8 \%$ uncert.
- KLOE-2: $V_{s}=\mathbf{M}_{\phi}$ 2γ in the EMC $+e^{+}$and e^{-}in the HETs ($\left|\mathrm{q}^{2}\right|<1 \mathbf{0}^{-\mathbf{3}} \mathrm{GeV}^{2} \Rightarrow$ quasi-real photons)
- $\sigma_{\text {tot }}\left(e^{+} e^{-} \rightarrow e^{+} e^{-} \pi^{0}\right) \approx 0.28 \mathrm{nb}$
- 1.2% acceptance
$\Rightarrow 2000$ evts/fb ${ }^{-1}$ expected

with $\mathrm{L}=5 \mathrm{fb}^{-1} \Rightarrow \delta \Gamma\left(\boldsymbol{\pi}^{0} \rightarrow \gamma \gamma\right) \approx \mathbf{1 \%}$ achievable
[EPJC72(2012)1917]

$\gamma^{*} \gamma^{*} \rightarrow \pi^{0} @$ KLOE-2

 - $\pi^{0} \gamma^{*} \gamma$ Transition FF $\mathcal{F}_{\pi^{0} \gamma \gamma^{\star}}\left(q^{2}, 0\right)$ lepton in the HET $\Rightarrow\left|\mathbf{q}^{2}\right| \approx 0$ quasi-real photon lepton in the $\mathbf{D C H} / E M C \Rightarrow\left|\mathbf{q}^{2}\right|<0.1 \mathrm{GeV}^{2}$

Conclusions

- KLOE is continuing to exploit the high statistics samples of light mesons collected at DAФNE to perform precision measurements in hadron physics
- KLOE-2: Installation of the new detectors completed

DAФNE operations restarted in July 2013
Goal: collect $\sim 5 \mathrm{fb}^{-1}$ in the next $2-3$ years
Rich program of measurements:

- study of $\boldsymbol{\eta}$ and $\boldsymbol{\eta}^{\prime}$ decays
- pseudoscalar meson transition form factors
- $\boldsymbol{\eta} / \boldsymbol{\eta}^{\prime}$ mixing
- $\quad \gamma \gamma$ processes at $\sqrt{s}^{s}=\mathbf{M}_{\phi}$ (with $e^{ \pm}$taggers)
- search for dark forces
- scalar mesons: $f_{0}(500)$ in $\gamma \gamma \rightarrow \pi^{0} \pi^{0} ; \quad f_{0}(980) / a_{0}(980) \rightarrow K^{0} \bar{K}^{0}$ [Eur.Phys.J.C68(2010),619]

Spare slides

$\phi \rightarrow \eta \gamma ; \eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$

- Selection: at least 2 charged tracks and $\mathbf{3}$ prompt photons (loose cut)
- Most energetic photon \Rightarrow recoil photon from ϕ decay ($\mathbf{3 6 3} \mathbf{~ M e V}$)
- Use constraints from kinematics (no kinematic fit) :

$$
\begin{aligned}
& E_{\gamma r e c}=\frac{m_{\phi}^{2}-m_{\eta}^{2}}{2\left(E_{\phi}-p_{\phi} \cos \theta\right)} \\
& p_{\eta}=p_{\phi}-p_{\gamma r e c} \\
& p_{\pi^{0}}=p_{\eta}-p_{\pi^{+}}-p_{\pi^{-}}
\end{aligned}
$$

$\phi \rightarrow \eta \gamma ; \eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$

- Bhabha rejection:
e / π separation with $\mathrm{TOF} \Rightarrow$

Signal

Bhabha background

Angle between the γ^{\prime} s from π^{0} and π^{+} / π^{-}

$\sigma\left(e^{+} e^{-} \rightarrow \eta \gamma\right) @ 1$ GeV

- Main background for $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \boldsymbol{e}^{+} \boldsymbol{e}^{-} \eta$
- $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \eta \gamma \rightarrow \pi^{+} \pi^{-} \pi^{0} \gamma: 3$ photons +2 tracks
- pion ID
- kinematic cuts to suppress background from kaons
- kinematic fit

$$
\sigma\left(e^{+} e^{-} \rightarrow \eta \gamma, 1 \mathrm{GeV}\right)=(0.856 \pm 0.008 \pm 0.016) \mathrm{nb}
$$

- Cross-check: from the fit for $\gamma \gamma \rightarrow \eta \rightarrow \pi^{0} \pi^{0} \pi^{0}:$

$\gamma^{*} \gamma^{*} \rightarrow \pi^{0} \pi^{1}$

- Residual background still under study
- Work is in progress to extract the cross-section
$\mathrm{MC}: \boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \boldsymbol{e}^{+} e^{-} \sigma(500) \rightarrow e^{+} e^{-} \pi^{0} \pi^{0}$ complete matrix elem.,full phase spac [EPJC47(2006)65]

Search for dark forces

- Recent astrophysical observations (AMS02, PAMELA, ATIC, INTEGRAL, DAMA/LIBRA) could be interpreted by assuming the existence of a light dark sector that interacts with SM particles through a mixing of a new gauge boson (U-boson) with $O(1 \mathrm{GeV})$ mass, with the photon

- If the mixing parameter $\varepsilon \sim 10^{-3}-10^{-4} \Rightarrow$ could be observable at KLOE
- Signature: $\phi \rightarrow \boldsymbol{\eta} \mathbf{U}, \mathbf{U} \rightarrow \boldsymbol{\ell}^{+} \boldsymbol{\ell}^{-}$

$$
\Rightarrow \phi \rightarrow \eta e^{+} e^{-} \quad \text { (main background: Dalitz decay) }
$$

- Two η decay channels analyzed: $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ and $\eta \rightarrow \pi^{0} \pi^{0} \pi^{0}$
- Other DF searches @ KLOE: $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \mathbf{U} \gamma \rightarrow \boldsymbol{\mu}^{+} \mu^{-} \gamma$;

$$
\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \mathbf{h}^{\prime} \mathbf{U} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}+\text {missing energy }
$$

Exclusion plot on α^{\prime} / α

- Upper limit for $\phi \rightarrow \eta \mathrm{U}$ evaluated in 1 MeV step in \mathbf{M}_{e} (MC simulation from Reece, Wang, JHEP 07(2009)051)
- Bckg from fit to $M_{e e}$ distribution excluding the 5 bins around the selected one
- Upper limit evaluated with the $\mathbf{C L}_{\mathrm{S}}$ method
U.L.@90\% C.L. on number of events
 U.L. on $\operatorname{BR}\left(\phi \rightarrow \eta \mathbf{U} ; \mathbf{U} \rightarrow e^{+} e^{-}\right) \quad \mathrm{M}_{\mathrm{U}}(\mathrm{MeV})$

P.Gauzzi

DF search in $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \mu^{+} \mu^{-} \gamma$

DF search in $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \mu^{+} \boldsymbol{\mu}^{-} \boldsymbol{\gamma}$

- Upper limit with the $\mathbf{C L}_{\mathrm{S}}$ method
- With the full KLOE statistics, $2.5 \mathrm{fb}^{-1}$, the sensitivity will improve by a factor of ~ 3
- A further factor of 2 is expected from KLOE-2 data-taking

DF searches: \mathbf{h}^{\prime}-strahlung

- Assume the existence of a higgs boson (h^{\prime}) of the hidden sector
- If $\mathbf{M}_{\mathrm{U}}+\mathbf{M}_{\mathrm{h}^{\prime}}<\mathbf{M}_{\phi}$ could be observed at KLOE
$\Rightarrow \boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \mathbf{U h}^{\prime} \underbrace{c^{+}}_{\text {[Batell et al.,PRD79(2009)115008] }}$
if $\mathbf{M}_{\mathbf{h}^{\prime}}>\mathbf{M}_{\mathbf{U}} \Rightarrow \mathbf{h}^{\prime} \rightarrow \mathbf{U U} \rightarrow 4 l$
if $\mathbf{M}_{\mathbf{h}^{\prime}}<\mathbf{M}_{\mathbf{U}} \Rightarrow \mathbf{h}^{\prime}$ invisible (escapes the detector) $\mathbf{U} \rightarrow l l$
\Rightarrow selected final state: $\mu^{+} \mu^{-}+$missing energy
events with 2 muons coming from the IP

DF searches: \mathbf{h}^{\prime}-strahlung

- Upper limit on $\alpha_{D} \varepsilon^{2}$ extracted from the scatter plot $\mathbf{M}_{\text {miss }}$ vs $\mathbf{M}_{\mu \mu}$
by considering for each bin the 5×5 bin region surrounding to evaluate
the background

If $\alpha_{D}=\alpha \Rightarrow$ upper limit on $\varepsilon \sim \mathbf{1 0}^{-3}$

KLOE-2 physics program

> Eur. Phys. J. C68(2010)619

- $\gamma \gamma$ physics
- Light meson spectroscopy
- Kaon physics
- Dark matter searches
- Hadronic cross section
- $\alpha_{\mathrm{em}}\left(\mathrm{M}_{\mathrm{Z}}\right)$ and $\left(\mathrm{g}_{\mu}-2\right)$

Physics at a ϕ-factory

- Kaon physics: $\left|\mathbf{V}_{\mathrm{us}}\right|$ and CKM unitarity, CP and CPT violation, rare decays, ChPT tests, quantum mechanics tests
- Scalar and pseudoscalar mesons in ϕ radiative decays and in $\gamma \gamma$ collisions
- $\boldsymbol{\eta} \rightarrow 3 \pi$
- $\boldsymbol{\eta}\left(\boldsymbol{\eta}^{\prime}\right) \rightarrow \pi+\pi-\gamma \quad \Rightarrow$ Study of the box anomaly
- $\phi \rightarrow \eta e^{+} e^{-}, \phi \rightarrow \pi^{0} e^{+} e^{-} \Rightarrow$ Transition Form Factors
\Rightarrow Search for light dark photons (U-Bosons)
$-e^{+} e^{-} \rightarrow e^{+} e^{-} \eta\left(\pi^{0}\right) \quad \Rightarrow \gamma \gamma \rightarrow \eta\left(\pi^{0}\right)$; Two-photon partial width
\Rightarrow Transition Form Factors
-Hadronic cross-section via ISR $\left[e^{+} e^{-} \rightarrow \gamma\left(\pi^{+} \pi^{-}\right)\right]$: hadronic corrections to (g-2) ${ }_{\mu}$

Decay channel	Events $\left(\mathbf{2 . 5} \mathrm{fb}^{-1}\right)$
$\mathrm{K}^{+} \mathrm{K}^{-}$	3.7×10^{9}
$\mathrm{~K}_{\mathrm{L}} \mathrm{K}_{\mathrm{S}}$	2.5×10^{9}
$\rho \pi+\pi^{+} \pi^{-} \pi^{0}$	1.1×10^{9}
$\eta \gamma$	9.7×10^{7}
$\pi^{0} \gamma$	9.4×10^{6}
$\eta^{\prime} \gamma$	4.6×10^{5}
$\pi \pi \gamma$	2.2×10^{6}
$\eta \pi^{0} \gamma$	5.2×10^{5}

- Symmetric Dalitz plot:

$$
\begin{aligned}
& |\mathbf{A}|^{2} \propto 1+2 \alpha \mathbf{Z} \quad \Rightarrow \text { only one parameter } \\
& \mathbf{Z}=\frac{2}{3} \sum_{i=1}^{3}\left(\frac{3 E_{i}-M_{\eta}}{M_{\eta}-3 M_{\pi}}\right)^{2}=\frac{\rho^{2}}{\rho_{\max }^{2}} \quad \begin{array}{l}
\text { (} \rho \text { = distance from } \\
\text { the Dalitz plot center })
\end{array}
\end{aligned}
$$

- 450 pb $^{-1} ; 7$ prompt photons

$$
\Rightarrow 6.5 \times 10^{5} \text { events }
$$

$$
\alpha=-0.0301 \pm 0.0035_{-0.0036}^{+0.0022}
$$

[PLB 694 (2010) 16]

$\eta \rightarrow \pi^{0} \pi^{0} \pi^{0}$

$\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$

$$
\begin{aligned}
& X=\sqrt{3} \frac{E_{+}-E_{-}}{\Delta} \\
& \begin{array}{l}
Y=3 \frac{E_{0}-m_{0}}{\Delta}-1 \\
\left.m_{\eta}-2 m_{\pi^{ \pm}}-m_{0}\right)
\end{array} \\
& \begin{array}{r}
Y=3 \frac{E_{0}-m_{0}}{\Delta}-1 \\
\left(\Delta=m_{\eta}-2 m_{\pi^{ \pm}}-m_{0}\right)
\end{array} \\
& \phi \rightarrow \eta \gamma\left(\mathrm{E}_{\text {yrec }}=363 \mathrm{MeV}\right) \\
& \text { with } \eta \rightarrow \pi^{+} \pi^{-} \pi^{0} \Rightarrow \pi^{+} \pi^{-}+3 \gamma \text { final state } \\
& 450 \mathrm{pb}^{-1} \Rightarrow 1.34 \times 10^{6} \text { events in the Dalitz plot } \\
& |\mathbf{A}(\mathbf{X}, \mathbf{Y})|^{2}=\mathbf{1}+a \mathbf{Y}+b \mathbf{Y}^{2}+c \mathbf{X}+d \mathbf{X}^{2}+e \mathbf{X Y}+f \mathbf{Y}^{3} \\
& c, e \text { compatible with zero (} \mathrm{C} \text { violation) } \\
& \text { fit without cubic term }\left(f \mathrm{Y}^{3}\right) \Rightarrow \mathbf{P}\left(\chi^{2}\right) \sim 10^{-6}
\end{aligned}
$$

[JHEP0805(2008)006]

$\zeta\left(e^{+} e^{-} \rightarrow\right.$ hadr. $)$ below 1 GeV

- $>3 \sigma$ discrepancy between $a_{\mu}^{\text {SM }}-a_{\mu}{ }^{\exp }\left[a_{\mu}=\left(g_{\mu}-2\right) / 2\right]$
- $a_{\mu}{ }^{\text {SM }}=a_{\mu}{ }^{\text {QED }}+a_{\mu}{ }^{\text {weak }}+a_{\mu}^{\text {had }} \longrightarrow$ main contribution to the uncertainty on $a_{\mu}{ }^{\text {SM }}$

$$
a_{\mu}^{\text {had, Lo }}=1 /\left(4 \pi^{3}\right) \int_{4 \mathrm{~m}_{\pi}^{2}}^{\infty} \sigma\left(e^{+} e^{-} \rightarrow \text { hadr. }\right) \mathrm{K}(\mathrm{~s}) \mathrm{ds} ; \quad \mathrm{K}(\mathbf{s}) \sim \mathbf{1} / \mathrm{s}
$$

- $\sigma\left(e^{+} e^{-} \rightarrow\right.$ hadr. $)$ below $\mathbf{1 ~ G e V}$ is dominated by $e^{+} e^{-\rightarrow \pi^{+} \pi^{-}}$
- ϕ - factory: fixed $\sqrt{ } s \Rightarrow$ Initial State Radiation method

$$
s \cdot \frac{d \sigma\left(e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}+\gamma\right)}{d s_{\pi}}=\sigma\left(e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}\right) \mathrm{H}\left(s, s_{\pi}\right)
$$

- Different analyses: (1) photon emitted at Small Angle (S.A. analysis)
[PLB606(2005)12, PLB670(2009)285]
(2) photon emitted at Large Angle (L.A. analysis)
[PLB700(2011)102]
(3) photon at S.A., $\sigma\left(e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \gamma\right) / \sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-} \gamma\right)$
[PLB720(2013)336]

S.A. analysis (KLOE08)

$$
a_{\mu}^{\pi \pi}=\int_{s_{1}}^{s_{2}} \sigma_{e e \rightarrow \pi \pi}(s) K(s) d s
$$

$\underline{a}_{\mu}^{\pi \pi}\left(0.35-0.95 \mathrm{GeV}^{2}\right)=\left(387.2 \pm 0.5_{\text {stat }} \pm 2.4_{\text {syst }} \pm 2.3_{\mathrm{th}}\right) \times 10^{-10}$

L.A. analysis (KLOE10)

$a_{\mu}{ }^{\pi \pi}\left(0.1-0.85 \mathrm{GeV}^{2}\right)=\left(478.5 \pm 2.0_{\text {stat }} \pm 5.0_{\text {sys }} \pm 4.5_{\text {th }}\right) \times 10^{-10}$ [PLB700(2011)102]

- Good agreement with KLOE08
- Combined KLOE08 + KLOE10: $a_{\mu}{ }^{\pi \pi}\left(0.1-0.95 \mathrm{GeV}^{2}\right)=(488.6 \pm 6.0) \times 10^{-10}$

$\sigma_{\text {had }}$ from $\pi \pi \gamma / \mu \mu \gamma$

- $\left|\mathbf{F}_{\pi}\right|^{2}$ from the ratio $\sigma\left(e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \gamma\right) / \sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-} \gamma\right)$ at $\sqrt{\mathbf{s}}=\mathbf{M}_{\phi}$ Small Angle analysis (photon not detected; $\boldsymbol{9}_{\gamma}<\mathbf{1 5}^{\circ}$)
[PLB720(2013)336]

$$
\left|F_{\pi}\left(s^{\prime}\right)\right|^{2} \approx \frac{4\left(1+2 m_{\mu}^{2} / s^{\prime}\right) \beta_{\mu}}{\beta_{\pi}^{3}} \frac{d \sigma_{\pi \pi \gamma} / d s^{\prime}}{d \sigma_{\mu \mu \gamma} / d s^{\prime}}
$$

- Many factors cancel in the ratio:
- radiator function
- luminosity from Bhabhas
- vacuum polarization

Separation btw $\pi \pi \gamma$ and $\mu \mu \gamma$ using $\mathbf{M}_{\text {TRK }}$ - muons: $\mathrm{M}_{\text {Trk }}<115 \mathrm{MeV}$

- pions: $\mathrm{M}_{\text {Trk }}>130 \mathrm{MeV}$

Very important control of π / μ separation in the ρ region $\left(\sigma_{\pi \pi} \gg \sigma_{\mu \mu}\right)$

$\mu \mu \gamma$ - data/MC comparison

$\frac{d \sigma_{\mu y(\gamma)}^{\text {obs }}}{d M_{\mu \mu}^{2}}=\frac{\Delta N_{\text {Obs }}-\Delta N_{\mathrm{Bkg}}}{\Delta M_{\mu \mu}^{2}} \cdot \frac{1}{\varepsilon_{\text {Sel }}} \cdot \frac{1}{\int L d t}$

- The systematic error has been averaged on $\mathbf{M}^{2}{ }_{\mu \mu}$
- Good agreement with PHOKHARA MC (QED @ NLO)

KLOE12 vs KLOE10

KLOE12: $\pi \pi \gamma / \mu \mu \gamma \quad$ [PLB720(2013)336]
KLOE10: Large Angle analysis (photon detected at $\boldsymbol{\vartheta}_{\gamma}>\mathbf{5 0}^{\circ}$) - off peak data [PLB700(2011)102]

Fractional difference:

Excellent agreement between the two independent measurements

Summary on a_{μ}

$\boldsymbol{a}_{\mu}{ }^{\text {exp }}-\boldsymbol{a}_{\mu}{ }^{\text {theo,SM }}$:
3.3σ discrepancy confirmed

$$
\Delta a_{\mu}^{\pi \pi}=\int_{s_{\min }}^{s_{\max }} \sigma_{\pi \pi(\gamma)}^{0}(s) \cdot K(s) d s
$$

Data	$\Delta^{\pi \pi} a_{\mu} \cdot 10^{10}$ $0.35<\mathrm{s}<0.85 \mathrm{GeV}^{2}$
$\sigma_{\pi \pi(\gamma)} / \sigma_{\mu \mu(\gamma),}$ SA- $\gamma_{\text {ISR }}$	$377.4 \pm 1.1_{\text {stat }} \pm 2.7_{\text {systth }}$
Abs. $\sigma_{\pi \pi(\gamma),}$ SA- $\gamma_{\text {ISR }}$	$379.6 \pm 0.4_{\text {stat }} \pm 3.3_{\text {systth }}$
Abs. $\sigma_{\pi \pi(\gamma), \text { LA- } \gamma_{\text {ISR }}}$	$376.6 \pm 0.9_{\text {stat }} \pm 3.3_{\text {systth }}$

* Our extrapolation based on DHMYZ10

$\mathbf{B R}\left(\mathbf{K}^{+} \rightarrow \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}(\gamma)\right)$

- Measurement of the absolute BR, to complete the program of precise measurement of the dominant $K^{ \pm}$decay channels
- The amplitude enters the cusp analysis of $K^{ \pm} \rightarrow \pi^{ \pm} \pi^{0} \pi^{0}$ to extract the $\pi \pi$ phase shift done by NA48
- Previous measurements :

Chiang ('72) (2330 evts) $\mathrm{BR}=(5.56 \pm \mathbf{0 . 2 0}) \% \Rightarrow \Delta B R / B R=3.6 \times 10^{-2}$
KLOE (2008) (fit to $\left.1-\Sigma_{i} B R_{i}\right) B R=(5.68 \pm 0.22) \%$
Flavianet fit (2010) : BR = (5.73 $\pm \mathbf{0 . 1 6) ~ \% ~}$

- Signal selection:
$-\boldsymbol{t a g}$ with $\mathrm{K} \rightarrow \mu \mathrm{v}, \pi \pi^{0}$
- 2 tracks with vertex along the K path before the DC wall
- K path from the extrapolation of the tag K to I.P.
- signal peak in the missing mass distribution ($3^{\text {rd }}$ pion)

$\mathbf{B R}\left(\mathbf{K}^{+} \rightarrow \boldsymbol{\pi}^{+} \pi^{+} \boldsymbol{\pi}^{-}(\gamma)\right)$

$174 \mathrm{pb}^{-1}$ of the KLOE data sample

- Analyzed sample: $\mathbf{1 7 4} \mathbf{p b}^{-1}$
- Efficiency evaluated by MC and corrected from data-MC comparison
- Signal extraction from fit to $\mathrm{m}^{2}{ }_{\text {miss }}$ spectrum with signal and bckg shapes from MC
$N\left(K^{+} \rightarrow 3 \pi\right)=45054.1 \pm 212.2 \mathrm{evts}$
$N\left(K^{-} \rightarrow \mu \nu\right)=12065087$

$B R\left(K^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}(\gamma)\right)=\left(0.05526 \pm 0.00035_{\text {stat }} \pm 0.00036_{\text {syst }}\right)$
$\Delta B R / B R=9.2 \times 10^{-3}$

$\phi \rightarrow \mathbf{K}_{\mathbf{S}} \mathbf{K}_{\mathbf{L}} \longrightarrow \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}$

- Standard Model Extension [Kostelecky et al., PRD61(1999)016002,PRD64(2001)076001] \Rightarrow possibility of violation of CPT and Lorentz invariance

$$
\begin{aligned}
& \varepsilon_{L, S}=\varepsilon_{K} \pm \delta \\
& \delta \simeq i \sin \phi_{S W} e^{i \phi_{S W}} \gamma_{K}\left(\Delta a_{0}-\vec{\beta}_{K} \cdot \Delta \vec{a}\right) / \Delta m
\end{aligned}
$$

- δ depends on the orientation of the \mathbf{K} momentum with respect to the fixed vector Δa :
- angular distributions
- earth rotation effects ($\mathrm{T}_{\text {sid }}=$ sidereal time)

$$
\begin{aligned}
\delta_{K}\left(\vec{P}_{K}, T_{s i d}\right)= & \frac{i \sin \phi_{S W} e^{i \phi_{S W}}}{\Delta m} \gamma_{K}\left[\Delta a_{0}+\beta_{K} \Delta a_{Z}(\cos \vartheta \cos \chi-\sin \vartheta \cos \varphi \sin \chi)\right. \\
& -\beta_{K} \Delta a_{X} \sin \vartheta \sin \varphi \sin \omega_{E} T_{s i d} \\
& +\beta_{K} \Delta a_{X}(\cos \vartheta \sin \chi+\sin \vartheta \cos \varphi \cos \chi) \cos \omega_{E} T_{\text {sid }} \\
& +\beta_{K} \Delta a_{Y}(\cos \vartheta \sin \chi+\sin \vartheta \cos \varphi \cos \chi) \sin \omega_{E} T_{s i d} \\
& \left.+\beta_{K} \Delta a_{Y} \sin \vartheta \sin \varphi \cos \omega_{E} T_{s i d}\right]
\end{aligned}
$$

Andavis sticategy

- $\mathrm{L}=1.7 \mathrm{fb}^{-1}$ analyzed
- Kaons ordered according the z momentum component

$$
I\left(\Delta t, T_{s i d}, \vartheta_{K_{1}}, \varphi_{K_{1}}\right) \propto
$$

$$
e^{-\Gamma|\Delta \tau|}\left[\left|\varepsilon_{K}-\delta_{K}\left(\vec{P}_{1}\right)\right|^{2} e^{\frac{\Delta \Gamma}{2} \Delta \tau}+\left|\varepsilon_{K}-\delta_{K}\left(\vec{P}_{\phi}-\vec{P}_{1}\right)\right|^{2} e^{-\frac{\Delta \Gamma}{2} \Delta \tau}-\right.
$$

$$
\left.-2 \Re e\left(\left(\varepsilon_{K}-\delta_{K}\left(\vec{P}_{1}\right)\right)\left(\varepsilon_{K}-\delta_{K}\left(\vec{P}_{\phi}-\vec{P}_{1}\right)^{*}\right) e^{-i \Delta m \Delta \tau}\right)\right\rceil
$$

- Data divided into 8 samples: 4 sidereal time bins $\times 2$ angular bins
$\int_{\Delta \tau_{i}} d \Delta \tau \int_{\Delta T_{j}} d T \int_{\Delta \Omega_{h}} d \Omega_{K_{1}} \rho\left(\Omega_{K_{1}}, T\right) I\left(\Delta \tau, T, \Omega_{K_{1}}\right)$
- Simultaneous fit of the $\Delta \tau$ distributions to extract the Δa_{μ} parameters

Fit result

$$
\begin{aligned}
& \Delta a_{0}=\left(-6.0 \pm 7.7_{\text {stat }} \pm 3.1_{\text {sys }}\right) 10^{-18} \mathrm{GeV} \\
& \Delta a_{x}=\left(0.9 \pm 1.5_{\text {stat }} \pm 0.6_{\text {sys }}\right) 10^{-18} \mathrm{GeV} \\
& \Delta a_{r}=\left(-2.0 \pm 1.5_{\text {stat }} \pm 0.5_{\text {sys }}\right) 10^{-18} \mathrm{GeV} \\
& \Delta a_{z}=\left(3.1 \pm 1.7_{\text {stat }} \pm 0.6_{\text {sys }}\right) 10^{-18} \mathrm{GeV}
\end{aligned}
$$

$$
\chi^{2} / n d f=211.7 / 184 \quad \Rightarrow \quad P\left(\chi^{2}\right)=8 \%
$$

[PLB730(2014)89]

Transition Form Factors

Information on the structure of mesons come
from their coupling to photons, described by the TFFs
$\mathcal{F}_{P \gamma \gamma}\left(q_{1}^{2}, q_{2}^{2}\right)\left\{\begin{array}{l}\gamma^{\star} \rightarrow P \gamma \\ P \rightarrow \gamma \gamma^{\star} \rightarrow \gamma \ell^{+} \ell^{-} \\ \gamma^{\star} \gamma^{\star} \rightarrow P\end{array}\right.$

- Light-by-Light scattering contribution to g-2 of the muon is dominated by single pseudoscalar exchange

