Why $f_{0}(500)$ must be narrower?

Robert Kamiński

IFJ PAN Kraków, Poland
White!!! Bjelašnica BiH

February 6, 2014

Schedule

- for unfamiliar with this subject ($\sim 8 \mathrm{~min}$),
- for all
what is the meson $f_{0}(500)$?
- formally $f_{0}(500)$ (informally σ) with mass and width $\sim 500 \mathrm{MeV}$,
- the lightest scalar-isoscalar meson with $I^{G} J^{P C}=0^{+} 0^{++}$, decays into $\pi \pi$,
- had a rich but difficult life,
what is the meson $f_{0}(500)$?
- formally $f_{0}(500)$ (informally σ) with mass and width $\sim 500 \mathrm{MeV}$,
- the lightest scalar-isoscalar meson with $I^{G} J^{P C}=0^{+} 0^{++}$, decays into $\pi \pi$,
- had a rich but difficult life,
what is the meson $f_{0}(500)$?
- formally $f_{0}(500)$ (informally σ) with mass and width $\sim 500 \mathrm{MeV}$,
- the lightest scalar-isoscalar meson with $I^{G} J^{P C}=0^{+} 0^{++}$, decays into $\pi \pi$,
- had a rich but difficult life,

rich but difficult life of the σ meson

- until 1976 called ϵ or σ,
- excluded from Particle Data Tables from 1978 to 1992 and replaced by correlated two pions,
- since 1994: $f_{0}(400-1200)$,
- in years 2002-2010: $f_{0}(600)$,
- now (since 2012): $f_{0}(500)$
what is the meson $f_{0}(500)$?
- formally $f_{0}(500)$ (informally σ) with mass and width $\sim 500 \mathrm{MeV}$,
- the lightest scalar-isoscalar meson with $I^{G} J^{P C}=0^{+} 0^{++}$, decays into $\pi \pi$,
- had a rich but difficult life,
what is the meson $f_{0}(500)$?
- formally $f_{0}(500)$ (informally σ) with mass and width $\sim 500 \mathrm{MeV}$,
- the lightest scalar-isoscalar meson with $I^{G} J^{P C}=0^{+} 0^{++}$, decays into $\pi \pi$,
- had a rich but difficult life,
- very important for e.g.
- calculation of quark condensate mass,
- determination of $q \bar{q}-g g$ couplings,
- parameterization of $\pi \pi S$ wave amplitudes in e.g. many heavy meson decays (FSI)
- difficult to study
what is the meson $f_{0}(500)$?
- formally $f_{0}(500)$ (informally σ) with mass and width $\sim 500 \mathrm{MeV}$,
- the lightest scalar-isoscalar meson with $I^{G} J^{P C}=0^{+} 0^{++}$, decays into $\pi \pi$,
- had a rich but difficult life,
- very important for e.g.
- calculation of quark condensate mass,
- determination of $q \bar{q}-g g$ couplings,
- parameterization of $\pi \pi S$ wave amplitudes in e.g. many heavy meson decays (FSI)
- difficult to study
what is the meson $f_{0}(500)$?
- formally $f_{0}(500)$ (informally σ) with mass and width $\sim 500 \mathrm{MeV}$,
- the lightest scalar-isoscalar meson with $I^{G} J^{P C}=0^{+} 0^{++}$, decays into $\pi \pi$,
- had a rich but difficult life,
- very important for e.g.
- calculation of quark condensate mass,
- determination of $q \bar{q}-g g$ couplings,
- parameterization of $\pi \pi S$ wave amplitudes in e.g. many heavy meson decays (FSI)
- difficult to study

GKPY dispersion equations with imposed crossing symmetry condition

Madrid-Kraków group 2005-2011

GKPY dispersion equations with imposed crossing symmetry condition

Madrid-Kraków group 2005-2011

GKPY dispersion equations with imposed crossing symmetry condition

Madrid-Kraków group 2005-2011

GKPY equations and poles of the $\pi \pi$ amplitudes

 partial waves: JIexperiment

F1 D2

S0
 D0

S2 P1

GKPY equations and poles of the $\pi \pi$ amplitudes

partial waves: JI

```
experiment + theory (GKPY)
```


GKPY equations and poles of the $\pi \pi$ amplitudes

 partial waves: JI```
experiment + theory (GKPY)
```



## GKPY equations:

$$
\operatorname{Re} t_{\ell}^{\prime(\text { OUT })}(s)=\sum_{l^{\prime}=0}^{2} C^{\prime I^{\prime}} t_{0}^{\prime(I N)}\left(4 m_{\pi}^{2}\right)+\sum_{l^{\prime}=0}^{2} \sum_{\ell^{\prime}=0}^{4} f_{4 m_{\pi}^{2}}^{\infty} d s^{\prime} K_{\ell \ell^{\prime}}^{\prime \prime^{\prime}}\left(s, s^{\prime}\right) \operatorname{Im} t_{\ell^{\prime}}^{\prime^{(I N)}}\left(s^{\prime}\right)
$$

## GKPY equations:

$$
\operatorname{Re} t_{\ell}^{\prime(\text { OUT })}(s)=\sum_{l^{\prime}=0}^{2} C^{\prime \prime^{\prime}} t_{0}^{\prime(I N)}\left(4 m_{\pi}^{2}\right)+\sum_{l^{\prime}=0}^{2} \sum_{\ell^{\prime}=0}^{4} f_{4 m_{\pi}^{2}}^{\infty} d s^{\prime} K_{\ell \ell^{\prime}}^{\prime \prime^{\prime}}\left(s, s^{\prime}\right) \operatorname{Im} t_{\ell^{\prime}}^{\prime^{(I N)}}\left(s^{\prime}\right)
$$

$\operatorname{Re} t_{\ell}^{\prime(\text { OUT })}(s)=\operatorname{Re} t_{\ell}^{\prime(I N)}(s)$

## GKPY equations:

$\operatorname{Re} t_{\ell}^{\prime(\text { OUT })}(s)=\sum_{l^{\prime}=0}^{2} C^{\prime \prime^{\prime}} t_{0}^{\prime(I N)}\left(4 m_{\pi}^{2}\right)+\sum_{l^{\prime}=0}^{2} \sum_{\ell^{\prime}=0}^{4} f_{4 m_{\pi}^{2}}^{\infty} d s^{\prime} K_{\ell \ell^{\prime}}^{\prime \prime \prime}\left(s, s^{\prime}\right) \operatorname{Im} t_{\ell^{\prime}}^{\prime^{\prime(I N)}}\left(s^{\prime}\right)$
$\operatorname{Re} t_{\ell}^{\prime(\text { OUT })}(s)=\operatorname{Ret} t_{\ell}^{\prime(I N)}(s)$
and poles of the $\pi \pi$ amplitudes:



$$
M=\operatorname{Re}\left(E_{\text {pole }}\right), \quad \Gamma=-2 \times \operatorname{Im}\left(E_{\text {pole }}\right)
$$



## $f_{0}(600)$

$$
I^{G}\left(J^{P C}\right)=0^{+}
$$

or $\sigma$
A REVIEW GOES HERE－Check our WWW

## $f_{0}(600)$ T－MATRIX POLE $\sqrt{s}$

$$
\text { Note that } \Gamma \approx 2 \operatorname{lm}\left(\sqrt{{ }^{5} \text { pole }}\right)
$$

## VALUE（MeV）

DOCUMENT ID
TERN

## （400－1200）－i（250－500）OUR ESTIMATE

－－We do not use the following data for averages，fits，limits，et

```
(455\pm6 + - 13)}-i(278\pm\mp@subsup{6}{-43}{+34}
(463\pm6 - +17)}-i(259\pm6+33 + +34
(552- - 84)
(466 \pm 18) -i(223 土 28)
(484 土 17) -i(255 土 10)
(441+16 +) -i(272+ + 9
(470 土 50) -i(285 土 25)
(541 土 39) -i(252 土 42)
(528\pm32)-i(207\pm23)
(440 土 8) -i(212 土 15)
(533\pm25)-i(247\pm25)
532 - i272
(470\pm30)-i(295\pm20)
```

| ${ }^{1}$ CAPRINI | 08 | RVUE |
| :---: | :--- | :--- |
| ${ }^{2}$ CAPRINI | 08 | RVUE |
| ${ }^{3}$ ABLIKIM | $07 A$ | BES |
| ${ }^{4}$ BONVICINI | 07 | CLEO |
| GARCIA－MAR．． 07 | RVUE |  |
| ${ }^{5}$ CAPRINI | 06 | RVUE |
| 6 ZHOU | 05 | RVUE |
| ${ }^{7}$ ABLIKIM | $04 A$ | BES |
| 8 GALLEGOS | 04 | RVUE |
| 9 PELAEZ | $04 A$ | RVUE |
| 10 RUG | 03 | RVUE |
| BLACK | 01 | RVUE |
| 5 COLANGELO | 01 | RVUE |

$f_{0}(500)$ or $\sigma$
was $f_{0}(600)$

A REVIEW GOES HERE－Check our

## $f_{0}(500)$ T－MATRIX POL

$$
\text { Note that } \Gamma \approx 2 \operatorname{Im}\left(\sqrt{{ }^{5} \text { pole }}\right)
$$

## VALUE（MeV） <br> DOCUMENT ID

## $\mathbf{( 4 0 0}=\mathbf{5 5 0})-\boldsymbol{i}(\mathbf{2 0 0}=\mathbf{3 5 0})$ OUR ESTIMATE

－－We do not use the following data for averages，fits


1 ALBALADEJO 12
2，3 GARCIA－MAR．． 11
2，4 GARCIA－MAR．． 11
${ }^{5}$ MOUSSALLAM11
6 MENNESSIER 10
7 MENNESSIER 10
8 CABRINI
${ }^{9}$ CABRINI
10 ABLIKIM
11 BONVICINI 07
12 RUG 07
GARCIA－MAR．． 07
... everything seems to be OK

## ... everything seems to be OK

## BUT!

some physicists still complain.

## ... everything seems to be OK

## BUT!

some physicists still complain.

- doubting semi specialists: ... for sure your solution is not unique,
- frightened: ... DR groups (Madrid \& Bern) got their results only due to specific choice parameterization of amplitudes,
- really frightened: ... not crossing symmetry in GKPY eqs but the limitation of this eqs to a single $\pi \pi$ channel leads to narrower and lighter $\sigma$,
- ignorants: ... one can put poles by hand and look at single - closest to physical region ones,
- beginners:... GKPY eqs are not enough, they neglect information from other channels,
- nervous: ... left cut is enough, we do not need GKPY,
- really nervous: ... so what ---- - forces DR to pull the sigma pole up-left?


## ... everything seems to be OK

## BUT!

some physicists still complain.

- doubting semi specialists: ... for sure your solution is not unique,
- frightened: ... DR groups (Madrid \& Bern) got their results only due to specific choice parameterization of amplitudes,
- really frightened: ... not crossing symmetry in GKPY eqs but the limitation of this
eqs to a single $\pi \pi$ channel leads to narrower and lighter $\sigma$,
- ignorants: ... one can put poles by hand and look at single - closest to physical
region ones,
- beginners:... GKPY eqs are not enough, they neglect information from other channels,
- nervous: ... left cut is enough, we do not need GKPY,
- really nervous: ... so what ---- - forces DR to pull the sigma pole up-left?


## ... everything seems to be OK

## BUT!

some physicists still complain.

- doubting semi specialists: ... for sure your solution is not unique,
- frightened: ... DR groups (Madrid \& Bern) got their results only due to specific choice parameterization of amplitudes,
- really frightened: ... not crossing symmetry in GKPY eqs but the limitation of this eqs to a single $\pi \pi$ channel leads to narrower and lighter $\sigma$,
- ignorants: ... one can put poles by hand and look at single - closest to physical region ones,
- beginners:... GKPY eqs are not enough, they neglect information from other channels,
- nervous: ... left cut is enough, we do not need GKPY,
- really nervous: ... so what --- - forces DR to pull the sigma pole up-left?


## ... everything seems to be OK

## BUT!

some physicists still complain.

- doubting semi specialists: ... for sure your solution is not unique,
- frightened: ... DR groups (Madrid \& Bern) got their results only due to specific choice parameterization of amplitudes,
- really frightened: ... not crossing symmetry in GKPY eqs but the limitation of this eqs to a single $\pi \pi$ channel leads to narrower and lighter $\sigma$,
- ignorants: ... one can put poles by hand and look at single - closest to physical region ones,
- beginners:... GKPY eqs are not enough, they neglect information from other channels,
- nervous: ... left cut is enough, we do not need GKPY,
- really nervous: ... so what - .- - forces DR to pull the sigma pole up-left?


## ... everything seems to be OK

## BUT!

some physicists still complain.

- doubting semi specialists: ... for sure your solution is not unique,
- frightened: ... DR groups (Madrid \& Bern) got their results only due to specific choice parameterization of amplitudes,
- really frightened: ... not crossing symmetry in GKPY eqs but the limitation of this eqs to a single $\pi \pi$ channel leads to narrower and lighter $\sigma$,
- ignorants: ... one can put poles by hand and look at single - closest to physical region ones,
- beginners:... GKPY eqs are not enough, they neglect information from other channels,
- nervous: ... left cut is enough, we do not need GKPY,
- really nervous: ... so what -- - - forces DR to pull the sigma pole up-left?


## ... everything seems to be OK

## BUT!

some physicists still complain.

- doubting semi specialists: ... for sure your solution is not unique,
- frightened: ... DR groups (Madrid \& Bern) got their results only due to specific choice parameterization of amplitudes,
- really frightened: ... not crossing symmetry in GKPY eqs but the limitation of this eqs to a single $\pi \pi$ channel leads to narrower and lighter $\sigma$,
- ignorants: ... one can put poles by hand and look at single - closest to physical region ones,
- beginners:... GKPY eqs are not enough, they neglect information from other channels,
- nervous: ... left cut is enough, we do not need GKPY,
- really nervous: ... so what.-- - forces DR to pull the sigma pole up-left?


## ... everything seems to be OK

## BUT!

some physicists still complain.

- doubting semi specialists: ... for sure your solution is not unique,
- frightened: ... DR groups (Madrid \& Bern) got their results only due to specific choice parameterization of amplitudes,
- really frightened: ... not crossing symmetry in GKPY eqs but the limitation of this eqs to a single $\pi \pi$ channel leads to narrower and lighter $\sigma$,
- ignorants: ... one can put poles by hand and look at single - closest to physical region ones,
- beginners:... GKPY eqs are not enough, they neglect information from other channels,
- nervous: ... left cut is enough, we do not need GKPY,
- really nervous: ... so what ---- forces DR to pull the sigma pole up-left?


## ... for sure your solution is not unique

## Another group - "Bern" group:

H. Leytwyller, J. Gasser, G. Colangelo, I. Caprini ...

The Role of the input in Roy's equations for pi pi scattering" G. Wanders, Eur. Phys. J. C17 (2000) 323-336

In the abstract:
An updated survey of known results on the dimension of the manifold of solutions is presented. The solution is unique for a low energy interval with upper end at 800 MeV . We determine its response to small variations of the input: S-wave scattering lengths and absorptive parts above 800 MeV .
I.e.:

Fixed two boundary conditions for the $\pi \pi$ amplitude:

- at the threshold (SO wave scattering length) and
- at 800 MeV


## specific choice parameterization?

Madrid: $\cot \delta_{0}^{0}=\frac{\sqrt{s}}{2 k} \frac{M_{\pi}^{2}}{s-\frac{1}{2} z_{0}^{2}}\left[B_{0}+B_{1} w(s)+B_{2} w(s)^{2}+B_{3} w(s)^{3}\right], w=\frac{\sqrt{s}-\sqrt{s_{0}-s}}{\sqrt{s}+\sqrt{s_{0}-s}}$
Test amplitude: $T(s) \sim \prod_{i=1}^{N}\left[w(s)-w_{i}\right], w=\frac{\sqrt{s-s_{2}}+\sqrt{s-s 3}}{\sqrt{s_{3}-s_{2}}}$
New low energy amplitude (up to $\sim 400-500 \mathrm{MeV}$ ):
$\operatorname{Ref}_{\ell}^{\prime}(s)=\frac{\sqrt{s}}{4 k} \sin 2 \delta_{\ell}^{\prime}=m_{\pi} k^{2 \prime}\left[a_{\ell}^{\prime}+b_{\ell}^{\prime} k^{2}+c_{\ell}^{\prime} k^{4}+d_{\ell}^{\prime} k^{6}+O\left(k^{8}\right)\right]$
above $\sim 400-500 \mathrm{MeV}$ - structure of amplitude not changed repeated fit to the data (not changed) + GKPY equations



## specific choice parameterization?

Madrid: $\cot \delta_{0}^{0}=\frac{\sqrt{s}}{2 k} \frac{M_{\pi}^{2}}{s-\frac{1}{2} z_{0}^{2}}\left[B_{0}+B_{1} w(s)+B_{2} w(s)^{2}+B_{3} w(s)^{3}\right], w=\frac{\sqrt{s}-\sqrt{s_{0}-s}}{\sqrt{s}+\sqrt{s_{0}-s}}$
Test amplitude: $T(s) \sim \prod_{i=1}^{N}\left[w(s)-w_{i}\right], w=\frac{\sqrt{s-s_{2}}+\sqrt{s-s 3}}{\sqrt{s_{3}-s_{2}}}$
New low energy amplitude (up to $\sim 400-500 \mathrm{MeV}$ ):
$\operatorname{Ref}_{\ell}^{\prime}(s)=\frac{\sqrt{s}}{4 k} \sin 2 \delta_{\ell}^{\prime}=m_{\pi} k^{2 \prime}\left[a_{\ell}^{\prime}+b_{\ell}^{\prime} k^{2}+c_{\ell}^{\prime} k^{4}+d_{\ell}^{\prime} k^{6}+O\left(k^{8}\right)\right]$
above $\sim 400-500 \mathrm{MeV}$ - structure of amplitude not changed repeated fit to the data (not changed) + GKPY equations



## specific choice parameterization?

Madrid: $\cot \delta_{0}^{0}=\frac{\sqrt{s}}{2 k} \frac{M_{\pi}^{2}}{s-\frac{1}{2} z_{0}^{2}}\left[B_{0}+B_{1} w(s)+B_{2} w(s)^{2}+B_{3} w(s)^{3}\right], w=\frac{\sqrt{s}-\sqrt{s_{0}-s}}{\sqrt{s}+\sqrt{s_{0}-s}}$
Test amplitude: $T(s) \sim \prod_{i=1}^{N}\left[w(s)-w_{i}\right], w=\frac{\sqrt{s-s_{2}}+\sqrt{s-s 3}}{\sqrt{s_{3}-s_{2}}}$
New low energy amplitude (up to $\sim 400-500 \mathrm{MeV}$ ):
$\operatorname{Ref}_{\ell}^{\prime}(s)=\frac{\sqrt{s}}{4 k} \sin 2 \delta_{\ell}^{\prime}=m_{\pi} k^{2 \prime}\left[a_{\ell}^{\prime}+b_{\ell}^{\prime} k^{2}+c_{\ell}^{\prime} k^{4}+d_{\ell}^{\prime} k^{6}+O\left(k^{8}\right)\right]$
above $\sim 400-500 \mathrm{MeV}$ - structure of amplitude not changed repeated fit to the data (not changed) + GKPY equations


## one channel analysis leads to narrower and lighter $\sigma$

Let's make exercise:
fit of one pole at $k_{r}=\sqrt{s_{r} / 4-m_{\pi}^{2}}$ (one channel) to the phase shifts $\delta^{\text {in }}$ produced by 2 poles ( 2 channels) at $\sqrt{s}=620-i 550 \mathrm{MeV}$ and at $650-i 550 \mathrm{MeV}$.

$$
S=\frac{-k-k_{r}}{k-k_{r}} \times \frac{-k+k_{r}^{*}}{k+k_{r}^{*}}
$$

Analytically calculated $\operatorname{Re}\left(k_{r}\right)$ and $\operatorname{Im}\left(k_{r}\right) \longrightarrow \sqrt{s_{r}}=615.5-i 544.6 \mathrm{MeV}$
Fit to $\delta^{\text {in }}$ for $280<\sqrt{s}<1000 \mathrm{MeV} \longrightarrow \quad \sqrt{s_{r}}=618.2-i 539.3 \mathrm{MeV}$
Almost no difference between two wide poles in the 2-channel case and one pole!
Reason is the that all poles lie on different Riemann sheets and play very different role (even opposite signs!) in the full amplitude. They can compensate each other in large extend.

## GKPY eqs are not enough, they neglect information

 from other, higher channels $K \bar{K}, \eta \eta \ldots$
## $\overline{\bar{O}}$ ne has to analyze poles of the $\sigma$ on various Riemann sheets

$\operatorname{Re} t_{\ell}^{\prime(\text { OUT })}(s)=\sum_{l^{\prime}=0}^{2} C^{\prime I^{\prime}} t_{0}^{\prime(I N)}\left(4 m_{\pi}^{2}\right)+\sum_{l^{\prime}=0}^{2} \sum_{\ell^{\prime}=0}^{4} f_{4 m_{\pi}^{2}}^{\infty} d s^{\prime} K_{\ell \ell^{\prime}}^{\prime \prime^{\prime}}\left(s, s^{\prime}\right) \operatorname{lm} t_{\ell^{\prime}}^{\prime^{\prime \prime}(\mathbb{N})}\left(s^{\prime}\right)$
where $t_{\ell^{\prime}}^{\prime^{\prime}}\left(s^{\prime}\right) \sim \eta\left(s^{\prime}\right) e^{2 i \delta\left(s^{\prime}\right)}$

- above the $K \bar{K}$ threshold $\left(\sqrt{s^{\prime}} \approx 990 \mathrm{MeV}\right) t_{\ell}^{\prime(I N)}(s)$ must be multichannel therefore must have singularities on many Riemann sheets.
Moreover $\operatorname{Re} t_{\ell}^{\prime(\text { OUT })}(s) \approx \operatorname{Re} t_{\ell}^{\prime(I N)}(s)$,
- below $1100 \mathrm{MeV}: S_{\pi \pi}=\eta e^{2 i \delta_{\pi \pi}}$ and $S_{K \bar{K}}=\eta e^{2 i \delta_{K \bar{K}}}$ have the same $\eta$ which is directly fitted to the GKPY eqs,


## ... left cut is enough, we do not need GKPY ...

Left hand cut in parameterizations of amplitudes:

- additional factor $e^{i \alpha}$ in the full $S=e^{2 i \delta}$ matrix element,
- It has, however, nothing to do with crossing symmetry!


## ... left cut is enough, we do not need GKPY ...

Left hand cut in parameterizations of amplitudes:

- additional factor $e^{i \alpha}$ in the full $S=e^{2 i \delta}$ matrix element,
- It has, however, nothing to do with crossing symmetry!
- It does not provide any type of relationship $A(s, t)=C_{s t} A(t, s)$,
- Moreover, subtracting constant is not specified so the output amplitude can be arbitrarily scaled!
- it makes amplitude only more realistic


## ... left cut is enough, we do not need GKPY ...

Left hand cut in parameterizations of amplitudes:

- additional factor $e^{i \alpha}$ in the full $S=e^{2 i \delta}$ matrix element,
- It has, however, nothing to do with crossing symmetry!
- It does not provide any type of relationship $A(s, t)=C_{s t} A(t, s)$,
- Moreover, subtracting constant is not specified so the output amolitude can be arbitrarily scaled!
- it makes amplitude only more realistic


## ... left cut is enough, we do not need GKPY ...



Left hand cut in parameterizations of amplitudes:

- additional factor $e^{i \alpha}$ in the full $S=e^{2 i \delta}$ matrix element,
- It has, however, nothing to do with crossing symmetry!
- It does not provide any type of relationship $A(s, t)=C_{s t} A(t, s)$,
- Moreover, subtracting constant is not specified so the output amplitude can be arbitrarily scaled!
- it makes amplitude only more realistic


## ... left cut is enough, we do not need GKPY ...



## Left hand cut in parameterizations of amplitudes:

- additional factor $e^{i \alpha}$ in the full $S=e^{2 i \delta}$ matrix element,
- It has, however, nothing to do with crossing symmetry!
- It does not provide any type of relationship $A(s, t)=C_{s t} A(t, s)$,
- Moreover, subtracting constant is not specified so the output amplitude can be arbitrarily scaled!
- it makes amplitude only more realistic


## what forces GKPY eqs to pull up-left the sigma pole?

$$
\operatorname{Re} t_{\ell}^{\prime(\text { OUT })}(s)=\sum_{l^{\prime}=0}^{2} C^{\prime \prime^{\prime}} t_{0}^{\prime(I N)}\left(4 m_{\pi}^{2}\right)+\sum_{l^{\prime}=0}^{2} \sum_{\ell^{\prime}=0}^{4} f_{4 m_{\pi}^{2}}^{\infty} d s^{\prime} K_{\ell \ell^{\prime}}^{\prime \prime^{\prime}}\left(s, s^{\prime}\right) \operatorname{Im} t_{\ell^{\prime}}^{\prime^{\prime(I N)}}\left(s^{\prime}\right)
$$

## what forces GKPY eqs to pull up-left the sigma pole?

$$
\begin{aligned}
& \operatorname{Re} t_{\ell}^{\prime(O U T)}(s)=\sum_{l^{\prime}=0}^{2} C^{I^{\prime}} t_{0}^{\prime(I N)}\left(4 m_{\pi}^{2}\right)+\sum_{l^{\prime}=0}^{2} \sum_{\ell^{\prime}=0}^{4} f_{4 m_{\pi}^{2}}^{\infty} d s^{\prime} K_{\ell \ell^{\prime}}^{I^{\prime}}\left(s, s^{\prime}\right) \operatorname{Im} t_{\ell^{\prime}}^{\prime^{\prime(I N)}}\left(s^{\prime}\right) \\
& \operatorname{Re} t_{0}^{0(O U T)}(s)=\operatorname{Re} t_{0}^{0(I N)}(s)
\end{aligned}
$$

## what forces GKPY eqs to pull up-left the sigma pole?

$\operatorname{Re} t_{\ell}^{\prime(\text { OUT })}(s)=\sum_{l^{\prime}=0}^{2} C^{\prime \prime^{\prime} t_{0}^{\prime(I N)}\left(4 m_{\pi}^{2}\right)+\sum_{l^{\prime}=0}^{2} \sum_{\ell^{\prime}=0}^{4} f_{4 m_{\pi}^{2}}^{\infty} d s^{\prime} K_{\ell \ell^{\prime}}^{I^{\prime}}\left(s, s^{\prime}\right) \operatorname{Im} t_{\ell^{\prime}}^{\prime^{\prime(I N)}}\left(s^{\prime}\right), ~(O U T)}$ $\operatorname{Re} t_{0}^{0(O U T)}(s)=\operatorname{Re} t_{0}^{O(I N)}(s)$


## what forces GKPY eqs to pull up-left the sigma pole?

 $\operatorname{Re} t_{0}^{0(O U T)}(s)=\operatorname{Re} t_{0}^{0(I N)}(s)$



## what forces GKPY eqs to pull up-left the sigma pole?

$$
\operatorname{Re} t_{\ell}^{\prime(\text { OUT })}(s)=\sum_{l^{\prime}=0}^{2} C^{\prime I^{\prime} t_{0}^{\prime(I N)}\left(4 m_{\pi}^{2}\right)+\sum_{l^{\prime}=0}^{2} \sum_{\ell^{\prime}=0}^{4} f_{4 m_{\pi}^{2}}^{\infty} d s^{\prime} K_{\ell \ell^{\prime}}^{\prime \prime^{\prime}}\left(s, s^{\prime}\right) \operatorname{Im} t_{\ell^{\prime}}^{\prime^{\prime(I N)}}\left(s^{\prime}\right), 0(\text { OUT }), 0(I N)}
$$

$$
\operatorname{Re} t_{0}^{0(O U T)}(s)=\operatorname{Re} t_{0}^{O(I N)}(s)
$$




## what forces GKPY eqs to pull up-left the sigma pole?

 $\operatorname{Re} t_{0}^{0(O U T)}(s)=\operatorname{Re} t_{0}^{0(I N)}(s)$



## what forces GKPY eqs to pull up-left the sigma pole?


$\operatorname{Re} t_{0}^{0(O U T)}(s)=\operatorname{Re} t_{0}^{0(I N)}(s)$





## what forces GKPY eqs to pull up-left the sigma pole?

$$
\operatorname{Re} t_{\ell}^{\prime(\text { OUT })}(s)=\sum_{l^{\prime}=0}^{2} C^{\prime \prime^{\prime}} t_{0}^{\prime(I N)}\left(4 m_{\pi}^{2}\right)+\sum_{l^{\prime}=0}^{2} \sum_{\ell^{\prime}=0}^{4} f_{4 m_{\pi}^{2}}^{\infty} d s^{\prime} K_{\ell \ell^{\prime}}^{\prime \prime^{\prime}}\left(s, s^{\prime}\right) \operatorname{Im} t_{\ell^{\prime}}^{\prime^{\prime(I N)}}\left(s^{\prime}\right)
$$

$$
\operatorname{Re} t_{0}^{0(O U T)}(s)=\operatorname{Re} t_{0}^{O(I N)}(s)
$$






## what forces GKPY eqs to pull up-left the sigma pole?

$$
\operatorname{Re} t_{\ell}^{\prime(\text { OUT })}(s)=\sum_{l^{\prime}=0}^{2} C^{\prime \prime^{\prime}} t_{0}^{\prime(I N)}\left(4 m_{\pi}^{2}\right)+\sum_{l^{\prime}=0}^{2} \sum_{\ell^{\prime}=0}^{4} f_{4 m_{\pi}^{2}}^{\infty} d s^{\prime} K_{\ell \ell^{\prime}}^{\prime \prime^{\prime}}\left(s, s^{\prime}\right) \operatorname{Im} t_{\ell^{\prime}}^{\prime^{\prime(I N)}}\left(s^{\prime}\right)
$$

$$
\operatorname{Re} t_{0}^{0(O U T)}(s)=\operatorname{Re} t_{0}^{O(I N)}(s)
$$






## what forces GKPY eqs to pull up-left the sigma pole?



Two things: trigonometry and crossing symmetry algebra lead to narrower and lighter $\sigma$.
what forces GKPY eqs to pull up-left the sigma pole?


Two things: trigonometry and crossing symmetry algebra lead to narrower and lighter $\sigma$.

Nothing more and nothing instead of it is needed.

## single pole - closest to physical region one

Unitarity: $S(k)=S^{*}\left(-k^{*}\right)$

$$
S=\frac{-k-p}{k-p} \times \frac{-k-p^{\prime}}{k-p^{\prime}}
$$



Pole $p^{\prime}$ :
needed for unitarity but gives also a small contribution the the phase shifts.


## how important is pole $p^{\prime}$ ?

## $\rho(770)$

exercise with $\rho(770)$ (P-wave)

PDG Tables'2012:
$M=771.1 \pm 0.9 \mathrm{MeV}$,
$\Gamma=149.2 \pm 0.7 \mathrm{MeV}$
It corresponds to $\delta=90^{\circ}$ and includes influence of the symmetric pole $p^{\prime}$.

Analytical continuation of the amplitude to the complex $s$ plane gives
$M=766.1 \mathrm{MeV}, \Gamma=149.2 \mathrm{MeV}$ for the single $p$ pole.

Some analyses find difference $\sim 10 \mathrm{MeV}$ for mass ( Res $_{\text {pole }}$ ) of the $\rho$.


