Approaching the chiral point in two-flavour lattice simulations

Stefano Lottini ALPHA Collaboration

NIC, DESY Zeuthen

ExcitedQCD 2014, Bjelašnica

February 6, 2014

Stefano Lottini (ALPHA Coll.)

Chiral point in $N_{\rm f} = 2$ simulations

ExcitedQCD 2014, Bjelašnica

< 17 ▶

Introduction

- How to study the low-energy regime of QCD? No analytical first-principle tools there!
 - Effective theories on one hand ...
 - ... and lattice numerical simulations on the other.
- General idea:
 - measure masses and decay constants on the lattice
 - fit to $\chi \mathrm{PT}$ functional forms \Rightarrow fix its low-energy constants
 - ALPHA dealt mainly with kaons so far this is focused on pions. [Fritzsch et al. 2012], but see [SL 2013]
- Caveats/questions:
 - Data from discretised lattice reliable (continuum limit) ?
 - Are we in the χ PT regime ?

・ 同 ト ・ ヨ ト ・ ヨ ト

Data collection 1: lattice

- Discretised spacetime (spacing $a \ge 0.05$ fm).
- Discretised version of (Euclidean) QCD action and observables.
- Hit 'Run' on the computer, wait some (very long) time, get results.

Real-world issues:

- Choice of action: "Wilson action" (not the best for going chiral, but reliable and relatively fast)
- Discretisation effects? (our goal is: $a \rightarrow 0$) With "O(a)-improvement", disturbances are at most $O(a^2)$
- In the computer the volume is finite: don't worry as long as m_πL ≥ 4 (thumb rule)
- At each set of coupling, measure over *N*_{cfg} configurations: statistics, autocorrelations issues, etc...
- Two-flavour (i.e. *u*, *d*-quarks only) ? The *s* might count: can be added as *valence* (i.e. no loops)

Data collection 2: measurements

- What to measure in practice?
 - Two-point functions in time: $\langle P(0)P(t)\rangle, \langle P(0)A_0(t)\rangle$
 - Extract from those (lattice units: M_{*} = am_{*}, F_{*} = af_{*}): quark mass M_q, pion mass M_π and decay constant F_π
 - Also with strange quark ($\rightarrow M_{\rm K}, F_{\rm K}$)
- Ensembles produced by CLS and analysed by ALPHA
 - 10 to 20 stochastic sources/config. for correlators
 - Typical mass/decay constant known to percent accuracy:

- Renormalisation factors as in [ALPHA 2012]:
 - b-factors from one-loop PT [Sint, Weisz 1997]
 - Z_A, Z_P determined nonperturbatively.

Data collection 3: ensembles at hand

- $m_{\pi}L$ range is: 4.0 7.7 (i.e. enough not to worry much)
- Lowest m_{π} is 192 MeV
- All systems have $L_T = 2L$ and periodic b.c.

- Downward: chiral limit
- To the left: continuum limit

(more chiral = more expensive!) (finer lattice = more expensive!)

Data collection 4: error analysis

- Correlations are propagated to the final quantities
- Sophisticated error analysis includes slow-mode contributions [Schäfer, Sommer, Virotta, 2010]:

• A large contribution to the error from Z_A renorm. factor, e.g. for F_{π} :

" χ PT"

- An effective field theory for low-energy QCD
- $\bullet \ Order-by-order \ renormalisable \ (\rightarrow \ infinitely \ many \ \textit{low-energy constants})$
- Written in terms of pion field
- Lowest-order Lagrangian (schematically):

$$\mathcal{L}^{(\mathrm{LO})} = rac{1}{4} F^2 \Big[(D_\mu U) (D^\mu U^\dagger) + M^2 (U + U^\dagger) \Big]$$

($U~\leftrightarrow$ pion field, $M^2 \sim m_q \sim$ pion mass)

- Higher orders: derivatives of *U*, powers of *M*, e.g.: $\sim M^2 U^2, U^2 (DU)^2, \dots$
 - $\Rightarrow~$ Proliferation of terms (\leftrightarrow parameters) in $\mathcal L$
- Starting from one-loop diagrams one get "chiral logs", e.g. M² log(M²)

$SU(2) \chi PT$ for pion quantities

Consider (as functions of quark mass and lattice spacing)

$$M_{\pi}$$
 , F_{π}

and build

$$y = \frac{M_{\pi}^2}{8\pi^2 F_{\pi}^2}$$
 i.e. $y_{chir} = 0$, $y_{phys.} = y_{\pi} \simeq 0.013$

SU(2) χ PT (i.e. only up and down) predicts then (asymptotic series!)

 $M_{\pi}^{2} = M^{2} \left\{ 1 + y + y \log y + y^{2} + y^{2} \log y + y^{2} (\log y)^{2} \dots \right\}$ $F_{\pi} = \underbrace{F}_{LO} \left\{ 1 + \underbrace{y + y \log y}_{NLO} + \underbrace{y^{2} + y^{2} \log y + y^{2} (\log y)^{2}}_{NNLO} \dots \right\}$ Low-energy constants: 2 \rightarrow 4 \rightarrow 7, for LO \rightarrow NLO \rightarrow NNLO !

Extracting LECs by fitting

• 15 Ensembles $\times \{F_{\pi}, M_{\pi}\} \rightarrow$ 30 datapoints to fit

(simultaneous fits to all of them)

- Which fit function?
 - Truncate to NLO
 - NLO + linear ("junction")
 - Full-fledged NNLO fit
- These choices + fit-range cuts $[m_{\pi} \leq 650, 500, 390, 345 \text{ MeV}]$
 - \Rightarrow systematic uncertainties on the outcome

- LO low-energy constants:
 - F is \sim pion decay constant
 - M² ~ 4M_q(Σ/F²): used to get the chiral condensate Σ! (after clever rewriting of fit function)

Lots of accurate determinations (percent-level). Also used to set the scale.

(here: the scale *a* is set through $F_{\rm K}$)

- NLO LECs $\overline{\ell}_3$, $\overline{\ell}_4$: (note $\overline{\ell}_i = \log(\Lambda_i^2/M_{\pi,\text{phys}}^2)$) There are several estimates, uncertainty about 20% [FLAG 2013]
- NNLO LECs *l*₁₂, *c_M*, *c_F*: Nowadays still virtually undetectable

E.g. [BWM Collaboration '13] quote (w/ grain of salt) errors of 30-70%

くぼう くほう くほう

- All data coming from lattice are *adimensional* ("lattice units"):
 e.g. *M* = *am* and not *m* itself.
- "Setting the scale" means: finding a in fermi.
- To do this, choose an observable (e.g. kaon decay constant) and:

measure $F_{\rm K} \Rightarrow$ set $F_{\rm K} = a \cdot f_{\rm K} \equiv$ 155 MeV $\Rightarrow a = \cdots$ fm

• Once this is done, all other quantities can be made physical

< ロト < 同ト < ヨト < ヨト

- Here, *F*_K is used to set the scale
- As for F_{π} , measurements at various quark masses and chiral fits!
- Can compare two ways to get to physical point: (each requiring its own version of χPT)
 - Kaon mass fixed
 - Strange mass fixed

- There, NLO behaviour is very well seen and that's it !
- (as a result, lattice spacing known with percent accuracy or better)

百 正 正 百

- For pion-related observables, much more problematic (as observed by various groups as well)
- Quite some fit-range-cut dependence
- y²-terms effectively cancel "y log y" over a wide interval (which led to "junction fits" at some point)
- \star Can χ PT be trusted there? How much?

Effect of this all:

- For F_{π} (phys. point) and Σ , "no big deal"
- For y → 0 extrapolations and (N)NLO low-energy constants: large systematic uncertainty!

イロト イポト イヨト イヨト

Fit curves 1: F_{π}

Fit curves 1: F_{π} (zoom for $\beta = 5.3$)

Fit curves 2: M_{π}^2

f_{π} , two-flavour post-diction

Plugging in the scale from $F_{\rm K}$, take the continuum limit:

Chiral condensate Σ

Practically trouble-free. In the continuum and chiral limits:

 $\sqrt[3]{\Sigma} = 269 \pm 3_{stat} \pm 4_{syst}$ MeV $\overline{MS}(2 \text{ GeV})$

Condensate, $N_{\rm f} = 2$ determinations [FLAG 2013 prelim. report]

(N)NLO LECs

- Trusting NNLO here, $\overline{\ell}_4 = 3.3 \pm 0.9_{stat.} \pm 2_{sist!}$ NLO looks more convincing – cf. latest world-average of 4.59 ± 0.26
- Can't say much for $\overline{\ell}_3 \sim$ 2.26 $\pm \infty$! (believed to be in fact around 3.5)
- NNLO: just mentioning $\overline{\ell}_{12} \sim$ 1.6, $c_F \sim -19, c_M \sim -10$

 Chiral condensate and pion decay constant: well determined – stable and with percent accuracy

- But, as opposed to analogous *F*_K analysis,
 - NLO χ PT fades out at $m_{\pi} \simeq 300$ MeV already Same issue recently seen by BMW in 2+1 flavours (partial explanation: higher amplitude in chiral logs)
- Data not enough for proper NNLO fitting (which affects NLO LECs as well as *f*(*m* → 0) extrapolations)

More datapoints would be desired ... but CLS now has switched to N_F = 2 + 1 (guess: the same precocious breakdown of NLO will be seen there)

< ロ ト < 同 ト < 三 ト < 三 ト

The End.

Stefano Lottini (ALPHA Coll.)

Chiral point in $N_{\rm f} = 2$ simulations

ExcitedQCD 2014, Bjelašnica 22

<ロト < 回ト < 回ト < 回ト

(cf. [Schäfer, Sommer, Virotta 2010] for details)

Integrated autocorrelation time "converts naïve error into actual one":

$$\sigma^{2} = \frac{2\tau_{\text{int}}^{0}}{N}\Gamma(0) \quad ; \quad \tau_{\text{int}}^{0} = \frac{1}{2} + \sum_{t=1}\rho(t) \quad \text{with} \quad \rho(t) = \Gamma(t)/\Gamma(0)$$

In practice, signal on ρ soon lost: danger!

(despite trying to balance uncertainty in ρ and remainder of the tail) Observable can couple, undetected, to a slow mode

⇒ underestimation of error!

Solution: where the measured ρ vanishes ($t \equiv W$), attach an exponential tail

- It represents the observable's coupling to slow modes
- Its decay rate is measured (or estimated) previously

Use rather: $\tau_{\text{int}} = \tau_{\text{int}}^{0} + \tau_{\exp}\rho(W)$

Tag	β, a [fm]	m_{π} [MeV]	$m_{\pi}L$	N _{cnfg.}	N _{cnfg} .	N _{cnfg} .	N _{src}	trj.	Alg.	<i>r</i> ₀ ?
-					$ au_{\mathrm{int}}$	τ_{exp}			-	
A2	5.2	629	7.7	1000	817	120.6	10	8	DD	X
A3	(0.075)	492	6.0	1004	633	121.1	10	8	DD	X
A4		383	4.7	1012	861	122.0	10	8	DD	X
A5		330	4.0	1001	1100	163.5	10	4	MP	X
B6		281	5.2	636	639	51.9	20	2	MP	X
E4	5.3	580	6.2	156	97	9.3	10	16	DD	-
E5f	(0.065)	436	4.6	1000	354	59.9	10	16	DD	-
E5g		436	4.7	1000	571	119.8	10	16	DD	X
F6		311	5.0	600	410	35.9	10	8	DD	X
F7		266	4.3	1177	569	70.5	10	8	DD	X
G8		192	4.1	878	720	35.6	20	2	MP	X
N4	5.5	551	6.5	469	30	4.2	10	8	DD	X
N5	(0.048)	440	5.2	476	82	4.2	10	8	DD	X
N6		340	4.0	2010	386	40.2	10	4	MP	X
07		267	4.2	980	211	19.6	20	4	MP	X

• All systems have $L_T = 2L$ and periodic b.c.

Stefano Lottini (ALPHA Coll.)

590

∃ → < ∃ →</p>

From 2-point functions to PCAC masses

Define

$$P^{rs} = \overline{\psi}_r \gamma_5 \psi_s$$
 ; $A_0^{rs} = \overline{\psi}_r \gamma_0 \gamma_5 \psi_s$:

with the 2-point functions

$$f_{PP}^{rs} = \int \langle P^{rs}(x) P^{sr}(0) \rangle$$
; $f_{AP}^{rs} = \int \langle A_0^{rs}(x) P^{sr}(0) \rangle$.

one finds

$$\frac{\frac{1}{2}(\partial_0 + \partial_0^*)f_{AP}(x_0) + c_A a \partial_0^* \partial_0 f_{PP}(x_0)}{2f_{PP}(x_0)} \to m_{rs} \ , \ x_0 \to \infty \ ,$$

renormalised then as:

$$m_{R}^{rs} = \frac{Z_{A}}{Z_{P}} \frac{(1 + \overline{b}_{A} a m_{sea} + \widetilde{b}_{A} a m_{rs})}{(1 + \overline{b}_{P} a m_{sea} + \widetilde{b}_{P} a m_{rs})} m_{rs}$$

Stefano Lottini (ALPHA Coll.)

Sac

< 6 b

From 2-point functions to m_{PS} and f_{PS}

$$f_{PP}(x_0) = c_1 \left[e^{-m_{PS}x_0} + (echo) \right] + higher \ states$$
$$f_{PS}^{\text{bare}} = 2\sqrt{2c_1}m_{rs}m_{PS}^{-3/2} \quad , \quad f_{PS} = Z_A(1 + \overline{b}_A am_{sea} + \widetilde{b}_A am_{rs})f_{PS}^{\text{bare}}$$

Stefano Lottini (ALPHA Coll.)

Chiral point in $N_{\rm f} = 2$ simulations

ExcitedQCD 2014, Bjelašnica 26

- Generate U(1) random noise source on timeslice t: $\eta_t(x)$
- Solve $\zeta_t^r = a^{-1} (D + m_{0,r})^{-1} \gamma_5 \eta_t$
- Estimator for the two-point functions:

$$\begin{aligned} a^{3} f_{PP}^{rs}(x_{0}) &= \sum_{\mathbf{x}} \left\langle \left\langle \zeta_{t}^{r}(x_{0}+t,\mathbf{x})^{\dagger} \quad \zeta_{t}^{s}(x_{0}+t,\mathbf{x}) \right\rangle \right\rangle ; \\ a^{3} f_{AP}^{rs}(x_{0}) &= \sum_{\mathbf{x}} \left\langle \left\langle \zeta_{t}^{r}(x_{0}+t,\mathbf{x})^{\dagger} \gamma_{5} \zeta_{t}^{s}(x_{0}+t,\mathbf{x}) \right\rangle \right\rangle , \end{aligned}$$

(averages are over sources and configurations).

12 N A 12

ChiPT formulae (LECs: $M, F, \overline{\ell}_3, \overline{\ell}_4, \overline{\ell}_{12}, c_M, c_F$)

$$\begin{split} \mathcal{M}_{\pi}^{2}(\beta, y) &= \mathcal{M}_{\beta}^{2} \times \left\{ 1 - \frac{1}{2} \Big[\overline{\ell}_{3} + 2y_{\pi} \overline{\ell}_{4} + \log y_{\pi} \Big] \cdot y + \frac{1}{2} \cdot y \log y \right. \\ &+ \Big[c_{M} + \overline{\ell}_{4} + \frac{1}{4} (\overline{\ell}_{3} + \log y_{\pi})^{2} + \frac{q_{M}^{2}}{90} \Big] \cdot y^{2} \\ &- \frac{1}{2} \Big[(\overline{\ell}_{3} + \log y_{\pi}) + \frac{q_{M}}{6} \Big] \cdot y^{2} \log y + \frac{7}{8} \cdot y^{2} (\log y)^{2} \Big\} ; \\ \mathcal{F}(\beta, y) &= \mathcal{F}_{\beta} \times \left\{ 1 + \Big[\overline{\ell}_{4} + \log y_{\pi} + 2y_{\pi} \overline{\ell}_{4} \Big] \cdot y - 1 \cdot y \log y \right. \\ &+ \Big[- c_{F} - 2\overline{\ell}_{4} + (\overline{\ell}_{4} + \log y_{\pi})^{2} + \frac{q_{F}^{2}}{36} \Big] \cdot y^{2} \\ &- \Big[2 (\overline{\ell}_{4} + \log y_{\pi}) + \frac{q_{F}}{6} \Big] \cdot y^{2} \log y + \frac{5}{4} \cdot y^{2} (\log y)^{2} \Big\} ; \\ \mathcal{q}_{M} &= 60\overline{\ell}_{12} - 33\overline{\ell}_{3} - 12\overline{\ell}_{4} + 52 + 15 \log y_{\pi} \\ q_{F} &= 18\overline{\ell}_{4} - 15\overline{\ell}_{12} + 3 \log y_{\pi} - \frac{29}{2} . \end{split}$$

I

э

590

イロト イロト イヨト イヨト

30