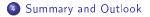
Infrared behaviour of propagators and running coupling in the conformal window of QCD

Excited QCD 2014, Bjelasnica/Sarajevo, 07.02.2014

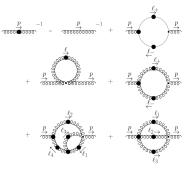
Markus Hopfer University of Graz



Doktoratskolleg Graz "Hadrons in Vacuum, Nuclei and Stars" FWF DK W1203-N16

Motivation

QCD with a Large Number of Flavours [MH, Fischer, Alkofer]

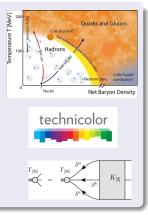


글 > - < 글 >

A Theoretical Description - The Formalism

- we work in:
 - Landau gauge
 - Euclidean space-time

exploring the QCD phase diagram using DSEs

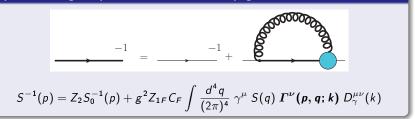

- study critical endpoint → cf. e.g. Luecker, Fischer, ...
- investigate CFL/CSC phases → cf. e.g. Mueller, Nickel, Buballa, ...
- scalar QCD @ $T \neq 0$ [in preparation]

exploring the conformal window

- turn up the number of flavours
 - SU(3): ≥ 8 fundamental flavours
 SU(2): ≥ 2 adjoint flavours

bound-state equations

 Bethe-Salpeter/Fadeev equations cf. e.g. Bhagwat, Eichmann, Maris, Nicmorus, Swanson, Tandy, Vujinovic, Williams, ...

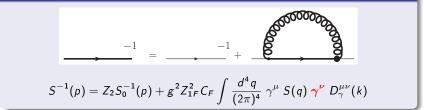

4 E b

Prerequisites for these Applications

- details of the relevant quark-gluon vertex tensor structure
 - on non-perturbative contributions
 - vertex dressing functions obtain non-zero values due to $D\chi SB$
 - how are these effects accounted for in models?

Dyson-Schwinger Equations - The Beginning

Dyson-Schwinger Equation for the Quark Propagator



Some Comments

- Quark-Gluon Vertex: rainbow truncation, BC/CP-type vertex constructions, ...
 - $D\chi SB \Leftrightarrow$ effective interaction strength
 - put effective interaction e.g. into gluon propagator
 - and/or use sophisticated vertex models
- Goal: full self-consistent solution
 - at vanishing temperature → 12 tensors
 - use transversal projector ~> 8 tensors

Dyson-Schwinger Equations - The Beginning

Some Comments

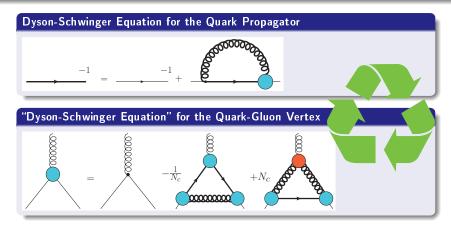
- Quark-Gluon Vertex: rainbow truncation, BC/CP-type vertex constructions, ...
 - $D\chi SB \Leftrightarrow$ effective interaction strength
 - put effective interaction e.g. into gluon propagator
 - and/or use sophisticated vertex models
- Goal: full self-consistent solution
 - at vanishing temperature ~> 12 tensors
 - use transversal projector → 8 tensors

물 에 물 어 물 어

Dyson-Schwinger Equations - The Beginning

Dyson-Schwinger Equation for the Quark Propagator

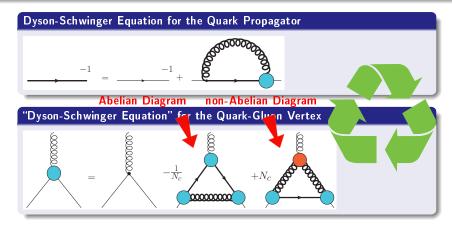
$$\int_{-1}^{-1} = \int_{-1}^{-1} + \int_{-1}^{0} \int_{$$


Some Comments

- Quark-Gluon Vertex: rainbow truncation, BC/CP-type vertex constructions, ...
 - $D\chi SB \Leftrightarrow$ effective interaction strength
 - put effective interaction e.g. into gluon propagator
 - and/or use sophisticated vertex models
- Goal: full self-consistent solution
 - at vanishing temperature → 12 tensors
 - use transversal projector ~→ 8 tensors

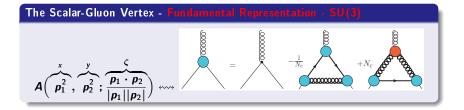
Basis (if
$$T = \mu = 0$$
)
 $\Gamma^{\nu} \rightsquigarrow \begin{cases} 1 \\ k \\ p \\ k \neq \end{pmatrix} \otimes \begin{cases} \gamma^{\nu} \\ k^{\nu} \\ p^{\nu} \end{cases}$
i.e. $\Gamma^{\nu} \propto \sum_{i=1}^{12} \lambda_i \Gamma_i$

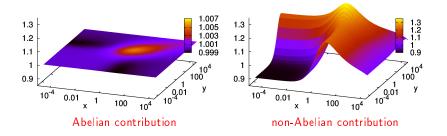
Markus Hopfer University of Graz Infrared behaviour of propagators and running coupling in the conform

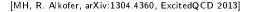

The Coupled System

Remarks/Ingredients

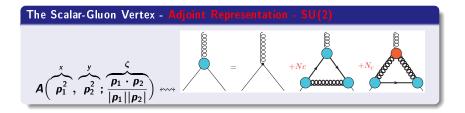
- dress all vertices, [Alkofer, Fischer, Llanes-Estrada, Schwenzer, Annals Phys. 324 (2009)]
 - correspondence to DSE-like equation in 3PI formalism, [Berges, PRD70 (2004)]
- 3-gluon vertex \rightarrow lattice/DSE/FRG results (cf. talk by M. Vujinovic)
- gluon propagator from lattice/<u>DSE</u> calculations ~> brute-force on GPUs

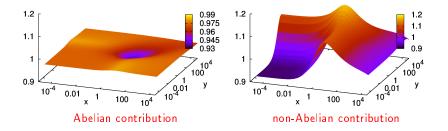

The Coupled System



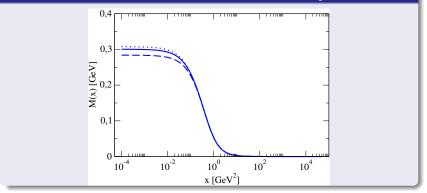

Remarks/Ingredients

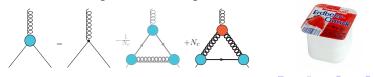
- dress all vertices, [Alkofer, Fischer, Llanes-Estrada, Schwenzer, Annals Phys. 324 (2009)]
 - correspondence to DSE-like equation in 3PI formalism, [Berges, PRD70 (2004)]
- 3-gluon vertex \rightarrow lattice/DSE/FRG results (cf. talk by M. Vujinovic)
- gluon propagator from lattice/<u>DSE</u> calculations ~→ brute-force on GPUs


Detour: A Scalar Theory



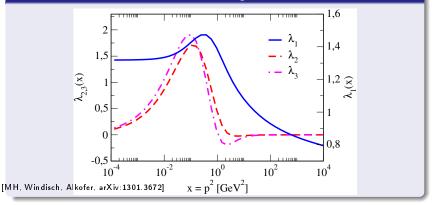
Detour: A Scalar Theory

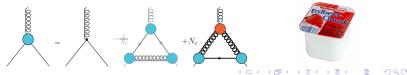



[MH, R. Alkofer, arXiv:1304.4360, ExcitedQCD 2013]

Results for the Quark Case

FERMIONIC CASE - Full Calculation with non-Abelian Diagram


• full calculation taking non-Abelian diagram into account


Infrared behaviour of propagators and running coupling in the conform

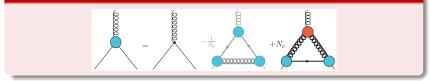
Results for the Quark Case

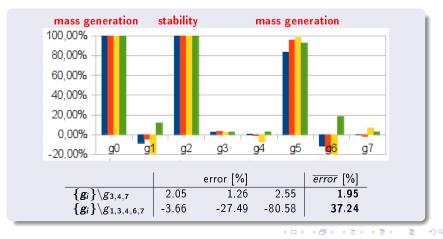
Some Selected Quark-Gluon Vertex Dressing Functions

full calculation taking non-Abelian diagram into account

Markus Hopfer University of Graz Infrared behaviour of propagators and running coupling in the conform

Tensor Decomposition of the Quark-Gluon Vertex

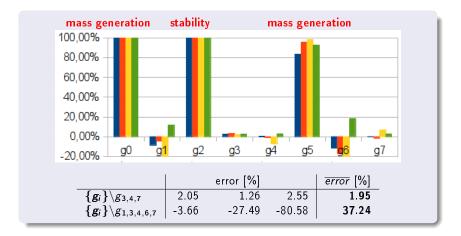

 $\Gamma^{\mu}(p,q;k) = g_0 \Gamma_0^{\mu} + g_1 \Gamma_1^{\mu} + g_2 \Gamma_2^{\mu} + g_3 \Gamma_3^{\mu} + \ldots + g_6 \Gamma_6^{\mu} + g_7 \Gamma_7^{\mu}$


- use transversal/orthonormal basis
- basis not unique ~→ rotate to Ball/Chiu basis in the end

Polovanco of Different Tensor Structures the Precedure

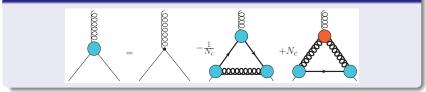
Relevance of Different Tensor Structures - the Procedure										
	$\langle \bar{\psi}\psi \rangle$	Γ_{π}	<i>M</i> (0)		error	[%]	error [%]			
$\{g_i\}$	292.75	86.77	282.53	BLUE	RED	YELLOW	GREEN			
{ g i}\g0	181.15	68.05	231.82	38.12	21.57	17.95	25.88			
$\{g_i\}\setminus g_1$	268.08	81.72	300.08	8.43	5.82	-6.21	6.82			
$\{g_i\}\setminus g_2$	131.10	47.46	172.10	55.22	45.30	39.09	46.54			
{ g i}\g3	285.10	83.95	282.09	2.61	3.25	0.16	2.01			
$\{g_i\}\setminus g_4$	291.20	86.76	286.80	0.53	0.01	-1.51	0.68			
{ g i}\g5	239.15	67.07	206.05	18.31	22.70	27.07	22.69			
{ g i}\g6	309.35	94.82	338.13	-5.67	-9.28	-19.68	11.54			
$\{g_i\} \setminus g_7$	286.97	82.53	242.22	1.97	4.89	14.27	7.04			

Relevance of Different Tensor Structures - Self-consistent Treatment



Markus Hopfer University of Graz

Infrared behaviour of propagators and running coupling in the conform


Relevance of Different Tensor Structures - Self-consistent Treatment

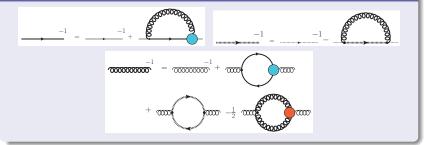
- find optimized basis
 - probably only three relevant tensor structures

Markus Hopfer University of Graz Infrared behaviour of propagators and running coupling in the conform

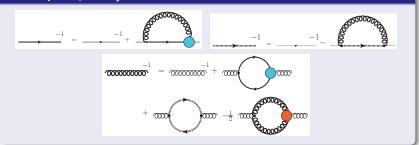
Including the Abelian Diva

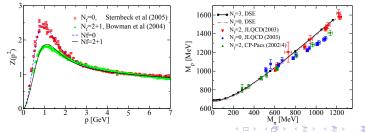
Relevance of Different Tensor Structures

		error [%]		error [%]
$\{g_i\} \setminus g_{3,4,7}$	2.05	1.26	2.55	1.95
$\{g_i\}\setminus g_{3,4,7} + Abelian$	1.32	0.22	5.56	$\lesssim 5$


Abelian Diagram

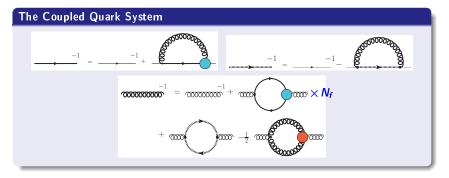
- ullet brute force approach: pprox 100.000 terms
- improved basis set:
 - $\bullet\,$ much less terms: $100.000\,\rightarrow\,8.000\,$ terms
 - feasible with CUDA (on C2070 GPUs at least)
- ontributes marginally even in CHIRAL LIMIT


- technicolor (TC) models → phenomenological discrepancies/inconsistencies
 - e.g. large FCNC's not observed in experiment
- improvements walking/conformal technicolor
 - minimal walking TC based on SU(2) with 2 adjoint Dirac fermions
 - large N_f QCD
 - large distance behaviour different from QCD ~→ (approx.) IRFP



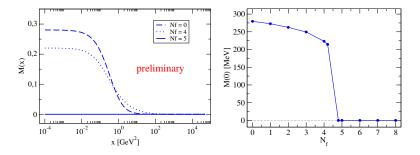
- model the quark-gluon vertex: CP, BC, 1BC, ...
- model the three-gluon vertex: Fischer 03', Huber 12'
- ullet increase the number of flavours $N_f
 ightarrow$ investigate influence of quark-loop
- in the following: large N_f QCD, i.e. SU(3)
 - but also adjoint / SU(2) possible

The Coupled Quark System



• some results obtained from these models

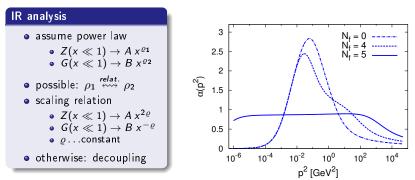
Markus Hopfer University of Graz


Infrared behaviour of propagators and running coupling in the conform

- model the quark-gluon vertex: CP, BC, 1BC, ...
- model the three-gluon vertex: Fischer 03', Huber 12'
- increase the number of flavours $N_f
 ightarrow$ investigate influence of quark-loop
- in the following: large N_f QCD, i.e. SU(3)
 - but also adjoint / SU(2) possible

Including the quark-loop with a $1BCxG^2$ vertex ansatz

- look at quark mass function $M(p^2 = x)$ for $N_f \in \{0, 4, 5\}$
- system enters chirally symmetric phase for $N_f \ge N_f^{crit} \Leftrightarrow M(x) = 0$



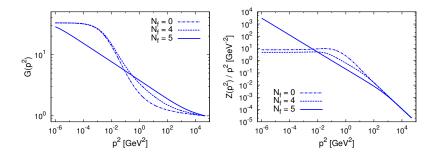
- $N_f^{crit} \approx 4.5 \rightsquigarrow$ too low! but depends ONLY on quark-qluon vertex!
- problem: scale fixing for gluon propagator!

[MH, Fischer, Alkofer, in preparation]

Including the quark-loop with a $1BCxG^2$ vertex ansatz

- look at non-perturbative running coupling: $\alpha(x) \propto Z(x)G^2(x)$
- scaling relation between ghost and gluon dressing function for $N_f \geq N_f^{crit}$
- coupling drops significantly $\Rightarrow M(p^2 = x) = 0 \rightarrow plateau$ is formed

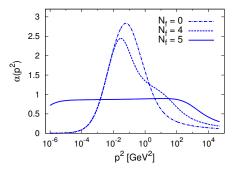
[MH, Fischer, Alkofer, in preparation]


きょう きょ

Including the quark-loop with a $1BCxG^2$ vertex ansatz

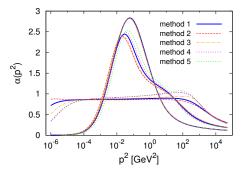
- scaling relation between ghost and gluon dressing function for $N_f \geq N_f^{crit}$
- power law behaviour over wide range of momenta \rightarrow sudden change!

•
$$Z(x) \rightarrow A x^{2\varrho}$$


•
$$G(x) \rightarrow B x^{-\varrho}$$
, $\varrho(N_f) \approx 0.149 @ N_f^{crit}$

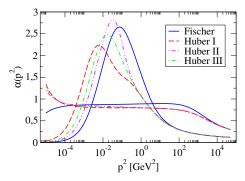
[MH, Fischer, Alkofer, in preparation]

Including the quark-loop with a $1BCxG^2$ vertex ansatz


obstacles: quadratic divergengies → analytical/numerical subtraction
 NO INFLUENCE on N^{crit}_ℓ (≈ 4.5) - only minor qualitative changes

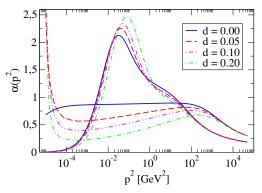
[MH, Fischer, Alkofer, in preparation]

Including the quark-loop with a $1BCxG^2$ vertex ansatz


- ullet obstacles: quadratic divergengies o analytical/numerical subtraction
- NO INFLUENCE on N_f^{crit} (\approx 4.5) only minor qualitative changes

[MH, Fischer, Alkofer, in preparation]

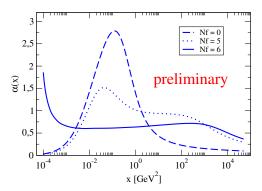
Including the quark-loop with a $1BCxG^2$ vertex ansatz


- dependence on three-gluon vertex ansatz
 - NO INFLUENCE on N_f^{crit} (≈ 4.5)
 - qualitative changes within confinement phase, i.e. $N_f < N_f^{crit}$
 - almost no influence within conformal phase, i.e. $N_f \ge N_f^{crit}$
 - ullet do the calculation with a proper vertex ightarrow (near) future work

[MH, Fischer, Alkofer, in preparation]

Including the quark-loop with a 1BCxG² vertex ansatz

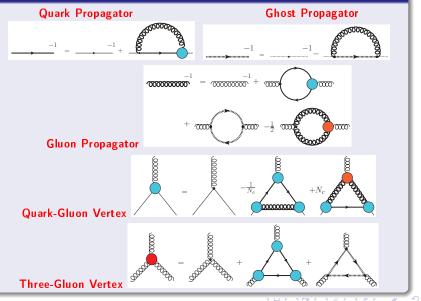
- dependence on quark-gluon vertex ansatz
 - varying the $1BC \times G^2$ model, d > 0 enhances IR interaction strength
 - corresponds to: tree-level \times function NO INFLUENCE on N_f^{crit} (\approx 4.5)



[MH, Fischer, Alkofer, in preparation]

Including the quark-loop with a 1BCxG² vertex ansatz

- dependence on quark-gluon vertex ansatz
 - try e.g. $CPxG^2$ ansatz: different $N_f^{crit} \Rightarrow$ tensor structure important corresponds to: (tree-level + additional tensor structure) \times function


 - do the calculation with a proper (full) vertex \rightarrow (near) future work

[MH, Fischer, Alkofer, in preparation]

Outlook: Solving a proper System

The Coupled System

Markus Hopfer University of Graz

Infrared behaviour of propagators and running coupling in the conform

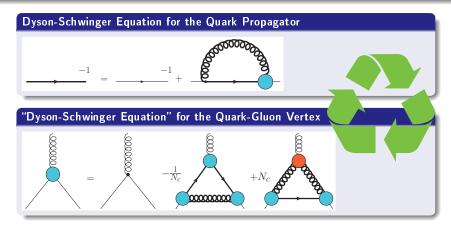
Summary

- quark-gluon vertex
 - self-consistent solution \rightarrow also scalar theory
 - dynamical mass in quark propagator
 - $D_{\chi}SB$ also in vertex dressing functions
 - isolate important tensor structures
 - useful for phenomenological model building
- Iarge N_f QCD
 - transition to a chirally symmetric phase above N_f^{crit}
 - scaling relation for YM propagators restored
 - conformal running coupling
 - **dependence on vertex ansatz** ⇒ needs improvement

Outlook

- still work to do for quark-gluon vertex !
- redo the flavour study using a full quark-gluon vertex !

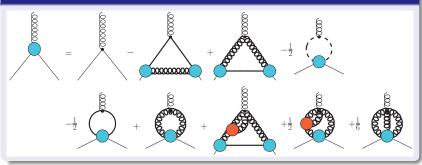
Thank You For Your Attention!


Markus Hopfer University of Graz Infrared behaviour of propagators and running coupling in the conform

Appendix

<ロ> (四) (四) (三) (三) (三) (三)

The Coupled System

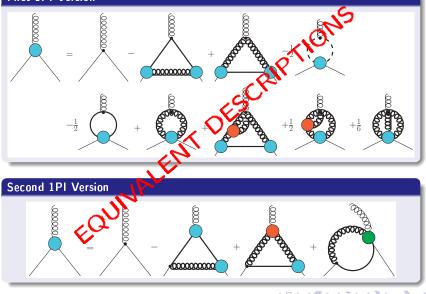


Remarks/Ingredients

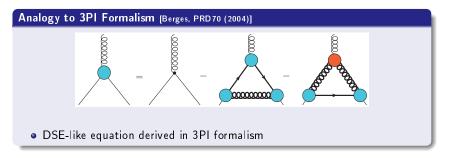
- dress all vertices, [Alkofer, Fischer, Llanes-Estrada, Schwenzer, Annals Phys. 324 (2009)]
 - correspondence to DSE-like equation in 3PI formalism, [Berges, PRD70 (2004)]
- gluon propagator from lattice/DSE calculations
- 3-gluon vertex \rightarrow only models available

Dyson-Schwinger Equation for the Quark-Gluon Vertex I

First 1PI Version



Second 1PI Version


Markus Hopfer University of Graz Infrared behaviour of propagators and running coupling in the conform

Dyson-Schwinger Equation for the Quark-Gluon Vertex I

First 1PI Version

Markus Hopfer University of Graz Infrared behaviour of propagators and running coupling in the conform

- (some) higher order corrections included
- same IR behaviour for all 3 equations,

[Alkofer, Fischer, Llanes-Estrada, Schwenzer, Annals Phys. 324 (2009)]

- ullet makes the system treatable \Rightarrow perfect, I'll buy it
 - compare with upcoming **lattice data** in the end and see whether truncation is justified