Non-perturbative features of the three-gluon vertex in Landau gauge

G. Eichmann ¹, R. Williams ¹, R. Alkofer², **M. Vujinovic**²

The three-gluon vertex in Landau gauge, arXiv: 1402.1365

¹University of Giessen, Giessen, Germany ²University of Graz, Graz, Austria

Excited QCD, Bjelasnica Mountain, BIH, 02.-08. February 2014.

Outline of talk

- 1 Introduction: Strong QCD.
- @ Greens functions and Dyson-Schwinger equations (DSEs).
- Greens functions of QCD.
- Three-gluon vertex: calculation setup and results.
- Summary and outlook.

Strong QCD and non-perturbative methods

- QCD coupling α_S large at low energies \rightarrow Strong QCD.
- Non-perturbative phenomena: $D_{\gamma}SB$, confinement, ...
- Studies in this regime require non-perturbative tools.
 - Lattice QCD.
 - Punctional renormalisation group (FRG).
 - Seffective field theories (ChPT...)
 - Opson-Schwinger/Bethe-Salpeter/Faddeev equations.
- These tools are used for hadron phenomenology.
 - Masses.
 - Decay constants.
 - Form factors.

Greens functions

- Basic objects in QFTs are Greens functions.
- *n*-point Greens function encodes interactions of *n* 'particles'.
- Continuum version of lattice QCD correlation functions.
- Example: two-point Greens function (propagator) given by

$$G(x_1, x_2) = \frac{1}{N} \int \mathcal{D}_{\phi} e^{-i(S + \int_{x} J \cdot \phi)} \phi_1(x_1) \phi_2(x_2)$$

$$= \langle \phi_1(x_1) \phi_2(x_2) \rangle$$
(1)

S = action, J = 'sources'

Dyson-Schwinger equations

• Theory invariant under field translations $\phi(x) \to \phi(x) + \epsilon(x)$ \Rightarrow Dyson-Schwinger equations (DSEs).

$$\left\langle \frac{\delta S[\phi]}{\delta \phi(x)} \right\rangle_{J} = J(x) \tag{2}$$

- DSEs connect various *n*-point Greens functions.
- Infinite tower of coupled integral equations.
- Exact, continuous formulation of a quantum field theory.
- Perturbation theory can be extracted from DSEs.
- Practical calculations neccessitate truncations. X

Quark propagator DSE

- Exact equation, with full gluon propagator and quark-gluon vertex.
- \bullet Satisfy own DSEs, with higher-point Greens functions $\to \infty$ tower.

QCD action

QCD action (not gauge-fixed, no ghosts)

Quark propagator and quark-gluon vertex

- Quark propagator
 - → central object in bound state equations (Bethe-Salpeter, Fadeev).
- Quark-gluon vertex: connects matter and gluon fields.
 - Essential ingredient in quark propagator DSE.
 - 2 Structure of bound state equations, Ward-Takahashi identity.

Full DSE for quark-gluon vertex.

Three-gluon vertex Γ_{3g}

- Γ_{3g} and Γ_{4g} epitomise self-interaction of gluon field.
- Importance of three-gluon vertex:
 - Driving term in quark-gluon vertex DSE.
 - Enters bound state equations through quark-gluon vertex.
 - Irreducible three-body force in Faddeev equation.
 - Olosing truncated system of DSEs in ghost/gluon sector.
- Γ_{3g} is the current focus of our study.

Three-gluon vertex DSE

Truncated vertex DSE

Inputs for calculation

- **①** Ghost/gluon propagators \rightarrow use fit functions.
- ② Ghost-gluon vertex → taken to be bare.
 A. Cucchieri, A. Maas, T. Mendes, PRD 77, 2008
- **3** Three-gluon vertex \rightarrow self-consistently back-coupled.

Ghost dressings and gluon 'propagators'

Solid lines: DSE solutions, data by C. Fischer Dashed lines: Fit functions

07.02.2014.

Four-gluon vertex

- DSE study of Γ_{4g}, without full tensor/color basis.
 C. Kellermann, C. Fischer, PRD 78, 2008
- We model Γ_{4g} , dressed tree-level structure.

$$\Gamma^{\mu\nu\rho\sigma}(p_1, p_2, p_3, p_4) = f_{4g}(x) \cdot \Gamma^{\mu\nu\rho\sigma}_{(0)}$$
 (3)

$$x \propto (p_1^2 + p_2^2 + p_3^2 + p_4^2)$$

- $f_{4g}(x)$ is 'correct' in IR and UV.
- Study dependence of results on Γ_{4g} model:

$$f_{4g}(x) \to f_{4g}(x) + (0...0.6)$$
 (4)

Γ_{4g} dressing

Stability of solution

- For f_{4g} too weak, solution is unstable (gluon triangle diverges).
- Different iteration methods do not help.
- Obtained stable solutions by strenghtening f_{4g} .
- Through f_{4g} we account for:
 - Neglected 2-loop terms in vertex DSE.
 - Insufficient knowledge of 'true' four-gluon vertex.

Basis for three-gluon vertex

- 3 Lorentz indices, 2 momenta \Rightarrow 14 tensor structures.
- In Landau gauge 4 tensors describe Γ_{3g} .
- Use orthonormal basis internally.

$$\tau^{i}_{\mu\nu\rho} \cdot \tau^{j}_{\mu\nu\rho} = \delta^{ij}, \quad i, j = 1 \dots 4$$
 (5)

- Rotate onto Bose-symmetric BC-like basis for results.
 J. S. Ball, T. W. Chiu, PRD 22, 2550 (1980)
- DSE calculation of Γ_{3g} with 1 tensor structure: A. Blum, M. Huber, M. Mitter, L. von Smekal, arXiv:1401.0713

Vertex kinematics

$$S_0 = \frac{1}{6}(p_1^2 + p_2^2 + p_3^2), \ s = \sqrt{3} \frac{p_2^2 - p_1^2}{p_1^2 + p_2^2 + p_3^2}, \ a = \frac{p_1^2 + p_2^2 - 2p_3^2}{p_1^2 + p_2^2 + p_3^2}$$
 (6)

Non-perturbative features of

Contributions to $\Gamma_{(0)}^{\mu\nu\rho}$ dressing, scaling

07.02.2014.

Contributions to $\Gamma_{(0)}^{\mu\nu\rho}$ dressing, decoupling

07.02.2014.

Zero crossing of $\Gamma_{(0)}^{\mu\nu\rho}$ dressing

Zero crossing seen in 3D lattice and 4D continuum studies.

A. Blum, M. Huber, M. Mitter, L. von Smekal, arXiv:1401.0713

A. Aguilar, D. Binosi, D. Ibanez, J. Papavassiliou, arXiv:1312.1212v1

Model and truncation dependent!

Angular dependence of F_1 dressing

M. Vujinovic et al. (KFU, Graz)

Angular dependence of F_1 dressing function at $S_0 = 102 \text{ GeV}^2$.

Angular dependence of F_3 dressing

Angular dependence of F_3 dressing function at $S_0 = 102 \text{ GeV}^2$.

Running couplings

RG invariant running couplings for different vertices:

$$\alpha_{gh} = \frac{g^2}{4\pi} Z \cdot G^2$$

$$\alpha_{3g}^{(n)} = \frac{g^2}{4\pi} Z \cdot G^2 \left[\frac{Z \cdot F_1}{G} \right]^n$$
(7)

- We calculate $\alpha_{3g}^{(n)}$ for n=2.
- In scaling scenario, IR fixed points of running couplings.
 R. Alkofer, C. Fischer, F. Llanes-Estrada, PLB 611, (2005)
- Our result for fixed point: $\alpha_{3g}^{(2)}(0) = 0.0016$.

Results for α_{gh} and α_{3g}

Summary

- **1** First DSE study of Γ_{3g} with full tensor structure.
- Expected all-scales divergences in the IR.
- Soft collinear divergences in subleading components.
- **①** Zero crossing in F_1 at hadronic scales $\Lambda \approx 1$ GeV:
 - Mild 4g vertex model dependence.
 - Possible significant dependance on truncation.

Outlook: Applications for Γ_{3g}

- Impact of zero crossing on hadronic observables.
- Meson spectroscopy beyond rainbow ladder:
 - Excited states.
 - Exotic mesons, hybrids and glueballs.
- Irreducible three-body force in baryons:
 - Two- vs. three-quark dominance in excited states.
 - Baryonic hybrids.
- Investigations of (near) conformal window of QCD-like theories. see also talk by Markus Hopfer

THANK YOU FOR YOUR ATTENTION!