Dense nuclear matter in neutron stars

Giuseppe Pagliara
Dipartimento di Fisica e Scienze della Terra, Universita' di Ferrara & INFN Ferrara, Italy

Excited QCD 2014 – Bjelasnica, Sarajevo
Outline

- Precise mass measurements: existence of $2M_{\odot}$ stars
- Radii measurements: existence of stars with $R < 10$ km (large uncertainties)
- Implication for the equation of state: nucleons, Δ, hyperons, "deconfined" quarks?
- Two families of compact stars? Connection with (double) explosions SN and GRB events
A milestone for neutron stars

PSR J1614-2230, $1.97 \pm 0.04 \, M_{\text{sun}}$ star

(Demorest et al. Nature 2010)

Shapiro delay: GR effect of increasing the light travel time through the curved space-time near a massive body.

How was it possible?
Great observational and data-analysis set-up...
Luck: quite massive white dwarf companion $0.5 \, M_{\text{sun}}$ and the orbital plane almost edge-on.
... recently a even higher mass

$2.01 \pm 0.04 \, M_{\text{sun}}$ (Antoniadis et al. Science 2013)

Pulsar timing and spectra of the white dwarf companion allows to measure the mass of the two stellar objects.

Moreover, the decrease in the orbital period is perfectly in agreement with gravitational waves emission.
What a $2M_{\text{sun}}$ star means?

“Standard” neutron stars, just nucleons and electrons.

Central baryon densities of a $2M_{\text{sun}}$ star 3-7 times nuclear saturation density. Are there really just nucleons? Hyperons & Δ?

Microscopic calculation: nucleon nucleon potential and three body forces
Hyperons in compact stars

Few experimental data from hypernuclei: potential depths of Λ, Σ, Ξ allow to fix three parameters (usually the coupling with a scalar meson).

Within RMF: (see Weissenborn, Chatterjee, Schaffner-Bielich 2012)

\[\mathcal{L} = \sum_B \bar{\Psi}_B \left(i \gamma_\mu \partial^\mu - m_B + g_{\sigma B} \sigma - g_{\omega B} \gamma_\mu \omega^\mu - g_{\rho B} \gamma_\mu t_B \cdot \rho^\mu \right) \Psi_B \\
+ \frac{1}{2} \left(\partial_\mu \sigma \partial^\mu \sigma - m_\sigma^2 \sigma^2 \right) - U(\sigma) + U(\omega) \\
- \frac{1}{4} \omega_{\mu\nu} \omega^{\mu\nu} + \frac{1}{2} m_\omega^2 \omega_\mu \omega^\mu - \frac{1}{4} \rho_{\mu\nu} \cdot \rho^{\mu\nu} + \frac{1}{2} m_\rho^2 \rho_\mu \cdot \rho^\mu. \]

\[\mathcal{L}_{YY} = \sum_B \bar{\Psi}_B \left(g_{\sigma B}^* \sigma^* - g_{\phi B} \gamma_\mu \phi^\mu \right) \Psi_B \]

\[+ \frac{1}{2} \left(\partial_\mu \sigma^* \partial^\mu \sigma^* - m_{\sigma^*}^2 \sigma^*^2 \right) \\
- \frac{1}{4} \phi_{\mu\nu} \phi^{\mu\nu} + \frac{1}{2} m_\phi^2 \phi_\mu \phi^\mu. \]

\[\frac{1}{3} g_{\omega N} = \frac{1}{2} g_{\omega A} = \frac{1}{2} g_{\omega N} = g_{\omega N}, \]
\[g_{\rho N} = \frac{1}{2} g_{\rho A} = g_{\rho A}, \]
\[g_{\rho A} = 0, \]
\[2 g_{\phi A} = 2 g_{\phi N} = g_{\phi N} = -\frac{2\sqrt{2}}{3} g_{\omega N}. \]

Additional YY interaction

Couplings with vector mesons from flavor symmetry
Particle's fractions

Beta stable matter (equilibrium with respect to weak interaction+charge neutrality): large isospin asymmetry and large strangeness, very different from the nuclear matter produced in heavy ions collisions.

Notice: hyperons appear at 2-3 times saturation density.
The appearance of hyperons sizably softens the equation of state: reduced maximum mass.

Introducing the phi meson to obtain YY repulsion allows to be marginally consistent the astrophysical data.

... but: σ^* (to be interpreted as the $f_0(980)$) has not be included. Introducing this additional interaction would again reduce the maximum mass.
... more dramatic results in microscopic calculations

Hyperons puzzle: “...the treatment of hyperons in neutron stars is necessary and any approach to dense matter must address this issue.”

The solution is not just the “let's use only nucleons”
What about Δ?

Similar effects: softening of the equation of state. Just small changes of the couplings with vector mesons sizably decrease the maximum mass.

Here only Δ are included

Notice: very small radii

Some constraints on the couplings with meson from nuclear matter properties

(Schurhoff, Dexheimer, Schramm 2010)
Stars containing quark matter?

Alford et al Nature 2006

Kurkela et al 2010

pQCD calculations: “... equations of state including quark matter lead to hybrid star masses up to 2Ms, in agreement with current observations. For strange stars, we find maximal masses of 2.75Ms and conclude that confirmed observations of compact stars with $M > 2M_{\text{sun}}$ would strongly favor the existence of stable strange quark matter”

Before the discoveries of the two $2M_{\text{sun}}$ stars!!
... is this surprising?

Heavy ions physics: (Kolb & Heinz 2003)

Also at finite density the quark matter equation of state should be stiffer than the hadronic equation of state in which new particles are produced as the density increases.

\[p = \frac{e}{3} \text{ massless quarks} \]

Hadron resonance gas
Recent radii measurements

Lattimer and Steiner 1305.3242
Two apparently contradicting results: high mass \rightarrow stiff equation of state
small radii \rightarrow soft equation of state

R = 9.1\pm1.3 km

Nice, but just nucleons
Two families of compact stars:
1) low mass (up to \(~1.5\) Msun) and small radii (down to 9-10km) stars are hadronic stars (containing nucleons, \(\Delta\) and hyperons) and they are metastable.
2) high mass and large radii stars are strange stars (strange matter is absolutely stable (Bodmer-Witten hyp.)).
What prevents the conversion of a metastable hadronic star?

A star containing only nucleons and Δ cannot convert into a quark star because of the lack of strangeness (need for multipole simultaneous weak interactions). Only when hyperons start to form the conversion can take place.

New minima of BE/A could appear when increasing strangeness, (very) strange hypernuclei (Schaffner-Bielich- Gal 2000).
Why conversion should then occur? Quark stars are more bound: at a fixed total baryon number they have a smaller gravitational mass wrt hadronic stars.
Hydro simulations

Input from microphysics:

1) EoS of hadronic matter & quark matter at finite temperature: at the moment both beta-stable, lepton number not conserved :-(

2) Detonation or deflagration & laminar burning velocity: at the moment only deflagration has been tested based on the results of Drago et al 2007 where a strong deflagration has been found in all the cases.

3+1D code developed by Hillebrandt and collaborators for the study of SNIa adapted, by use of an effective relativistic potential, for handling the large compactness of NSs, (see Roepke et al A&A2005)

Best resolution 10m.

Condition for exothermic combustion

\[e_h(P, X) > e_q(P, X) \]

\[X = \frac{(e + P)}{n_B^2} \]
Within a simple parametrization:

$$\Omega_{QM} = \sum_{i=u,d,s,e} \Omega_i + \frac{3\mu^4}{4\pi^2}(1 - a_4) + B_{eff}$$

Two EoSs which provide a maximum mass of $2M_{\odot}$

- E/A = 860 MeV (set1)
- E/A = 930 MeV (set2)

Different QSs binding energy $M_B - M_G$
Conversion of a 1.4 M_{\odot} star

- Rayleigh-Taylor instabilities develop and the conversion occurs on time scales of ms.
- The burning stops before the whole hadronic matter has converted (the process is no more exothermic, about 0.5 M_{\odot} of unburned material)
- A successful conversion need a small E/A, no conversion is possible with set2 (the one with a larger E/A=smaller binding energy)

Herzog, Roepke 2011, G.P. Herzog, Roepke 2013

FIG. 1: (color online) Model: Set 1, $M = 1.1M_{\odot}$. Conversion front (red) and surface of the neutron star (yellow) at different times t. Spatial units 10^{6} cm.
Temperature profiles after the combustion

The huge energy released in the burning leads to a significant heating of the star, few tens of MeV in the center.

Steep gradient of the temperature

Since the burning occurs on time scales of the order of ms, it is decoupled from the cooling (typical time scales of the order of seconds)
Temperature profiles as initial conditions for the cooling diffusion equation

Heat transport equation due to neutrino diffusion

\[
\frac{d}{dr} \frac{\epsilon_{tot}}{n_b} + P \frac{d}{dt} \frac{1}{n_b} = - \frac{\Gamma}{n_b r^2 e^\Phi} \frac{\partial}{\partial r} \left(e^{2\Phi} r^2 (F_{\epsilon,\nu_e} + F_{\epsilon,\nu_\mu}) \right) \\
\frac{dP}{dr} = -(P + \epsilon_{tot}) \frac{m + 4\pi r^3 P}{r^2 - 2mr} \\
\frac{dm}{dr} = -4\pi r^2 \epsilon_{tot} \\
\frac{da}{dr} = \frac{4\pi r^2 n_b}{\sqrt{1 - 2m/r}} \\
\frac{d\Phi}{dr} = \frac{m + 4\pi r^3 P}{r^2 - 2mr} \\
F_{\epsilon,\nu_e} = -\frac{\lambda_{\epsilon,\nu_e}}{3} \frac{\partial \epsilon_{\nu_e}}{\partial r} \\
F_{\epsilon,\nu_\mu} = -\frac{\lambda_{\epsilon,\nu_\mu}}{3} \frac{\partial \epsilon_{\nu_\mu}}{\partial r}
\]

Assumption: quark matter is formed already in beta equilibrium, no lepton number conservation imposed in the burning simulation, no lepton number diffusion

Diffusion is dominated by scattering of non-degenerate neutrinos off degenerate quarks

\[
\frac{\sigma_S}{V} = \frac{G_F E_{\nu_i} \mu_i^2}{5\pi^3}
\]

Steiner et al 2001
Expected smaller cooling times with respect to hot neutron stars

Reddy et al 2003

<table>
<thead>
<tr>
<th>phase</th>
<th>process</th>
<th>$\lambda(T=5 \text{ MeV})$</th>
<th>$\lambda(T=30 \text{ MeV})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear</td>
<td>$\nu n \rightarrow \nu n$</td>
<td>200 m</td>
<td>1 cm</td>
</tr>
<tr>
<td>Matter</td>
<td>$\nu_e n \rightarrow e^- p$</td>
<td>2 m</td>
<td>4 cm</td>
</tr>
<tr>
<td>Unpaired</td>
<td>$\nu q \rightarrow \nu q$</td>
<td>350 m</td>
<td>1.6 m</td>
</tr>
<tr>
<td>Quarks</td>
<td>$\nu d \rightarrow e^- u$</td>
<td>120 m</td>
<td>4 m</td>
</tr>
<tr>
<td>CFL</td>
<td>λ_{3B}</td>
<td>100 m</td>
<td>70 cm</td>
</tr>
<tr>
<td></td>
<td>$\nu\phi \rightarrow \nu\phi$</td>
<td>$>10 \text{ km}$</td>
<td>4 m</td>
</tr>
</tbody>
</table>
Luminosity curves similar to the protoneutron stars neutrino luminosities. Possible corrections due to lepton number conservation...

Phenomenology I: such a neutrino signal could be detected for events occurring in our galaxy (possible strong neutrino signal lacking the optical counterpart if the conversion is delayed wrt the SN)

Phenomenology II: connection with double GRBs within the protomagnetar model
Conclusions

- New masses and radii measurements challenge nuclear physics: tension between high mass and small radii. A 2.4 Msun candidate already exists.

- LOFT and NICE missions, with a precision of 1km in radii measurements, could hopefully solve the problem.

- Possible existence of two families of compact stars (high mass – quark stars, low mass – hadronic stars). Rich phenomenology: cooling, frequency distributions, explosive events...
Appendix
Are all CSs QSs?: Merger of strange stars

MIT60: $8 \times 10^{-5} \text{M}_{\odot}$, MIT80 no ejecta. By assuming a galactic merger rate of $10^{-4(-5)}$/year, mass ejected: $10^{-8(-9)} \text{M}_{\odot}$/year. Constraints on the strangelets flux (for AMS02)

A. Bauswein et al PRL (2009)
Nucleation
(many papers!! done by many people of this workshop!!)

Hot stars: thermal nucleation

$$\Gamma = T^4 \exp \left[-\frac{16\pi}{3} \frac{\sigma^3}{(\Delta p)^2 T} \right]$$

Cold stars: quantum nucleation, WKB appr.

$$U(R) = \frac{4}{3} \pi R^3 n_q (\mu_q - \mu_h) + 4\pi \sigma R^2$$

$$A(E) = 2 \int_{R_-}^{R_+} dR \sqrt{2M(R) + E - U(R)[U(R) - E]}$$

As expected: strong dependence on surface tension and overpressure

Mintz et al 2010
\[(e_h + p_h)v_h \gamma_h^2 = (e_q + p_q)v_q \gamma_q^2, \]
\[(e_h + p_h)v_h^2 \gamma_h^2 + p_h = (e_q + p_q)v_q^2 \gamma_q^2 + p_q, \]
\[\rho_B^h v_h \gamma_h = \rho_B^q v_q \gamma_q \]

\[\Delta \left(\frac{E}{A} \right) (T, \rho_B^h) = \frac{e_h(u_h, \rho_B^h, T_h)}{\rho_B^h(u_h)} - \frac{e_q(u_q, \rho_B^q, T)}{\rho_B^q(u_q)} = c_V^q (T - T_h) \]

Drago et al 2007