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Outline

-) Precise mass measurements: existence of
ZMSun stars

-) radii mesurements: existence of stars with R
<10km (large uncertainties)

-) Implication for the equation of state:
nucleons, A, hyperons, “deconfined”
quarks ?

-) Two families of compact stars ? Connection
with (double) explosions SN and GRB events



A milestone for neutron stars Physics:
PSR J1614-2230, 1.97£0.04 M_  star

(Demorest et al. Nature 2010)

Shapiro delay: GR effect
of increasing the light
travel time through the
curved space-time near
a massive body.

How was it possible?
Great observational and
data-analysis set-up...
Luck: quite massive
white dwarf companion
0.5 M__and the orbital

plane almost edge-on.




... recently a even higher mass
2.0110.04 Msun (Antoniadis et al Science 2013)

Pulsar timing and spectra
of the white dwarf
companion allows to
measure the mass of the
two stellar objects.

Moreover, the decrease in
the orbital period is
perfectly in agreement with
gravitational waves
emission.

Artist’s impression of the PSR ]J0348+0432 system.
The compact pulsar (with beams of radio emission) produces
a strong distortion of spacetime (illustrated by the green
mesh). Conversely, spacetime around its white dwarf com-

panion (in light blue) is substantially less curved. According
to relativistic theories of gravity, the binary system is subject
to energy loss by gravitational waves.



What a 2MSun star means?

“Standard” neutron
stars, just nucleons and
electrons.
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Microscopic calculation: nucleon nucleon
potential and three body forces



Hyperons in compact stars
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Particle's fractions

Beta stable matter
(equilibrium with
respect to weak
interaction+charge
neutrality): large
isospin asymmetry
and large
strangeness , very
different from the
nuclear matter
produced in heavy
ions collisions
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Notice: hyperons appear at
2-3 times saturation density



The appearance of
hyperons sizably
softens the
equation of state:
reduced maximum
mass

Introducing the
phi meson to
obtain YY
repulsion allows to
be marginally
consistent the
astrophysical data.

(upper branch).
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... more dramatic results in microscopic
calculations
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The solution is not just the “let's
use only nucleons”
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Similar effects: softening
of the equation of state.
Just small changes of the
couplings with vector
mesons sizably decrease
the maximum mass
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Some constraints on the
couplings with meson from
nuclear matter properties

Kosov, Fuchs, Marmyanov,
Faessler, PLB 421 (1998) 37




Stars containing quark matter?

Neutron star
(DBHEF)
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Alford et al Nature 2006 Kurkela et al 2010

pQCD calculations: “ ... equations of state including quark matter lead to
hybrid star masses up to 2Ms, in agreement with current observations.
For strange stars, we find maximal masses of 2.75Ms and conclude that
confirmed observations of compact stars with

144



... 1S this surprising?

Also at finite density
the quark matter
equation of state
should be stiffer than
the hadronic equation
of state in which new
particles are produced
as the density increases

Heavy ions physics: (Kolb & Heinz 2003)

p=e/3 massless
quarks

A
E
——
>
Q
Q
a

(=]

(=]

2 3,
e (GeV/fm“)

Hadron resonance gas



Recent radii measurements
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Nice, but just
nucleons

Two apparently contraddicting results: high mass — stiff equation of state
small radii — soft equation of state



Drago, Lavagno, G.P. 2013

(results from RMF models for
hadronic matter and simple
parametrizations for quark
mater)
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What prevents the conversion
of a metastable hadronic star?

A star containing only
nucleons and A cannot
convert into a quark star
because of the lack of
strangeness (need for
multipole simultaneous
weak Interactions). .

Only when hyperons start 00 02 Deli};ty , RS
to form the conversion

can take place.

o

=
&
=
<
]
o
=
=2
D
c
@
=)
c
-
c
=4

New minima of BE/A could appear
when increasing strangeness, (very)
Strange hypernll(jei (Schaffner-Bielich- Gal 2000)



Why conversion
should then occur?
Quark stars are
more bound: at a
fixed total baryon
number they have a
smaller
gravitational mass
wrt hadronic stars
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Hydro simulations

Input from microphysics: 3+1D code developped by
Hillebrandt and collaborators for

the study of SNIa adapted, by use of
an effective relativistic potential, for
handling the large compactness of

NSs, ( see Roepke et al A&A2005)
2) Detonation or deflagration & Best resolution 10m.

laminar burning velocity: at the
moment only deflagration has been
tested based on the results of Drago et
al 2007 where a strong deflagration
has been found in all the cases.

1) EoS of hadronic matter & quark
matter at finite temperature: at the
moment both beta-stable, lepton
number not conserved :-(




Within a simple
parametrization:
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Two EoSs which provide a
maximum mass of 2M__
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Conversion of a 1.4 M,

star

-) Rayleigh-Taylor
instabilities develop and
the conversion occurs on
time scales of ms.

-) The burning stops e 1 —
before the whole hadronilEEEE AP Il
matter has converted (thé
process is no more
exothermic, about 0.5
M_  of unburned

material)

-) A succesfull conversiorl
need a small E/A, no ”
conversion is possible

with set2 (the one with a GGG e .|
larger E/A=smaller ST et T Y @i 70T

FIG. 1: (color online) Model: Set 1, M = 1.4M;. Conversion front (red) and surface of the neutron star (yellow) at different

binding energY) times t. Spatial units 10" cm.




Temperature profiles after the combustion

The huge energy
released in the
burning leads to a
significant heating
of the star, few tens
of MeV in the
center.

EoS: Set 1

Burned material
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Steep gradient of the
temperature




Temperature profiles as initial conditions for the cooling diffusion equation

Heat transport equation due to
neutrino diffusion
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Steiner et al 2001



phase | process |A(T=5 MeV)|A(T=30 MeV)

Expected smaller cooling Nuclear | vn —wvn | 200 m

times with respect to hot Matter |v.n — e p|  2m

neutron stars Unpaired| vg — vg | 350 m
Quarks |vd — e u| 120m

CFL A3p 100 m 70 cm

v — v =10 km 4 m

|
M=1.4M

Sun




Luminosity
curves similar to
the protoneutron
stars neutrino
luminosities.
Possible
corrections due to
lepton number

conservation...
Phenomenology II: connection with
Phenomenology I: such a neutrino double GRBs within the protomagnetar
signal could be detected for events model
occurring in our galaxy (possible T —
strong neutrino signal lacking the Vatanad DB, Dt

optical counterpart if the conversion
is delayed wrt the SN)




Conclusions

-) New masses and radii measurements challenge nuclear
physics: tension between high mass and small radii. A 2.4
Msun candidate already exists.

-) LOFT and NICE missions, with a precision of 1km in
radii measurements, could hopefully solve the problem

-) Possible existence of two families of compact stars (high
mass — quark stars, low mass — hadronic stars). Rich
phenomenolgy: cooling, frequency distributions,
explosive events...






Are all CSs QSs ?: Merger of strange
stars

MIT60: 8 x 10°M_, MIT80 no ejecta. By assuming
a galactic merger rate of 10*%/year, mass
ejected: 109 M_/year. Constraints on the

strangelets flux (for AMS02)

A. Bauswein et al PRL (2009)



Nucleation

(many papers!! done by many people of this workshop!!)

Hot stars: thermal Cold stars: quantum
nucleation nucleation, WKB appr.
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Appendix2

Eh + Pr)URYh T Ph

vr v = pLvany
PRVRYh = PRVqYqg

'E en (up, o, Th) eq(tg, ph, T) e 7
A pp(un) PBlUq)

Drago et al 2007
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