Hot SU(2) Glue around Deconfinement

Tereza Mendes

in collaboration with Attilio Cucchieri

Instituto de Física de São Carlos
Universidade de São Paulo

Helpful Glue!!

Gluon propagator is the most basic quantity of QCD

Gluon propagator is the most basic quantity of QCD

Confinement related to large distances (small momenta)

⇒ nonperturbative (e.g. lattice) study of IR gluon propagator

Gluon propagator is the most basic quantity of QCD

Confinement related to large distances (small momenta)

- ⇒ nonperturbative (e.g. lattice) study of IR gluon propagator
- IR limit corresponds to large lattice sizes...
- Qualitative study may be done for pure SU(2) theory; using large lattices should also reduce the problem with Gribov copies

Gluon propagator is the most basic quantity of QCD

Confinement related to large distances (small momenta)

- ⇒ nonperturbative (e.g. lattice) study of IR gluon propagator
- IR limit corresponds to large lattice sizes...
- Qualitative study may be done for pure SU(2) theory; using large lattices should also reduce the problem with Gribov copies

Gluon propagator in Landau gauge

$$D_{\mu\nu}^{ab}(p) = \sum_{x} e^{-2i\pi k \cdot x} \langle A_{\mu}^{a}(x) A_{\nu}^{b}(0) \rangle$$
$$= \delta^{ab} \left(g_{\mu\nu} - \frac{p_{\mu} p_{\nu}}{p^{2}} \right) D(p^{2})$$

Early simulations: Mandula & Ogilvie, PLB 1987

At high T, expect Debye screening of the color charge, with exponential fall-off of correlations, defining a screening length, or screening mass

At high T, expect Debye screening of the color charge, with exponential fall-off of correlations, defining a screening length, or screening mass

Note: chromoelectric (respec. chromomagnetic) screening related to longitudinal (respec. transverse) gluon propagator with momentum component $p_0=0$

At high T, expect Debye screening of the color charge, with exponential fall-off of correlations, defining a screening length, or screening mass

Note: chromoelectric (respec. chromomagnetic) screening related to longitudinal (respec. transverse) gluon propagator with momentum component $p_0=0$

⇒ determine screening masses/lengths from propagators

At high T, expect Debye screening of the color charge, with exponential fall-off of correlations, defining a screening length, or screening mass

Note: chromoelectric (respec. chromomagnetic) screening related to longitudinal (respec. transverse) gluon propagator with momentum component $p_0=0$

⇒ determine screening masses/lengths from propagators

Problem: gluon propagator is gauge-dependent... but poles are believed to be gauge-independent

At high T, expect Debye screening of the color charge, with exponential fall-off of correlations, defining a screening length, or screening mass

Note: chromoelectric (respec. chromomagnetic) screening related to longitudinal (respec. transverse) gluon propagator with momentum component $p_0=0$

⇒ determine screening masses/lengths from propagators

Problem: gluon propagator is gauge-dependent... but poles are believed to be gauge-independent

Expect real electric mass $D_L(z) \approx e^{-m_E z}$ (PT at large T).

At high T, expect Debye screening of the color charge, with exponential fall-off of correlations, defining a screening length, or screening mass

Note: chromoelectric (respec. chromomagnetic) screening related to longitudinal (respec. transverse) gluon propagator with momentum component $p_0=0$

⇒ determine screening masses/lengths from propagators

Problem: gluon propagator is gauge-dependent... but poles are believed to be gauge-independent

Expect real electric mass $D_L(z) \approx e^{-m_E z}$ (PT at large T).

Dimensional-reduction picture (based ont the 3D-adjoint-Higgs model) suggests a confined magnetic gluon, associated to a nontrivial magnetic mass

Above predictions confirmed at high T: Heller, Karsch & Rank (1995); Cucchieri, Karsch & Petreczky (2001)

Above predictions confirmed at high *T*:

Heller, Karsch & Rank (1995); Cucchieri, Karsch & Petreczky (2001)

It is not clear if/how a mass would show up around T_c

Above predictions confirmed at high *T*:

Heller, Karsch & Rank (1995); Cucchieri, Karsch & Petreczky (2001)

It is not clear if/how a mass would show up around T_c

Propagators near T_c , Cucchieri, Maas, T.M. (2007) (small lattices):

- $D_T(p)$ decreases with T (stronger IR suppression at high T)
- $D_L(p)$ reaches a plateau as $p \to 0$ for $T \neq T_c$

Peak of $D_L(0)$ at T_c ?

Above predictions confirmed at high *T*:

Heller, Karsch & Rank (1995); Cucchieri, Karsch & Petreczky (2001)

It is not clear if/how a mass would show up around T_c

Propagators near T_c , Cucchieri, Maas, T.M. (2007) (small lattices):

- $D_T(p)$ decreases with T (stronger IR suppression at high T)
- $D_L(p)$ reaches a plateau as $p \to 0$ for $T \neq T_c$ Peak of $D_L(0)$ at T_c ?

Peak / sensitivity of $D_L(p)$ to T_c also seen by:

Fischer, Maas & Müller (2010), Bornyakov & Mitrjushkin (2010, 2011), Aouane et al. (2012), Maas et al. (2012), Silva et al. arXiv:1310.5629

Above predictions confirmed at high *T*:

Heller, Karsch & Rank (1995); Cucchieri, Karsch & Petreczky (2001)

It is not clear if/how a mass would show up around T_c

Propagators near T_c , Cucchieri, Maas, T.M. (2007) (small lattices):

- $D_T(p)$ decreases with T (stronger IR suppression at high T)
- $lacksquare D_L(p)$ reaches a plateau as p o 0 for $T
 eq T_c$ Peak of $D_L(0)$ at T_c ?

Peak / sensitivity of $D_L(p)$ to T_c also seen by:

Fischer, Maas & Müller (2010), Bornyakov & Mitrjushkin (2010, 2011), Aouane et al. (2012), Maas et al. (2012), Silva et al. arXiv:1310.5629

Note: "masses" from $D_L(0)^{-1/2}$

Of course, even if an exponential fit to the longitudinal gluon works at high T it is not obvious that this should hold at $T \gtrsim T_c$

Of course, even if an exponential fit to the longitudinal gluon works at high T it is not obvious that this should hold at $T \gtrsim T_c$

 \Rightarrow Instead of Yukawa fit for $D_L(p)$, consider more general forms

Of course, even if an exponential fit to the longitudinal gluon works at high T it is not obvious that this should hold at $T \gtrsim T_c$

 \Rightarrow Instead of Yukawa fit for $D_L(p)$, consider more general forms

Gribov-Stingl form, allowing for complex conjugate poles, works well at T=0 (in 4d and 3d). Let us take e.g.

$$D_{L,T}(p^2) = C \frac{1 + d p^{2\eta}}{(p^2 + a)^2 + b^2}$$

Of course, even if an exponential fit to the longitudinal gluon works at high T it is not obvious that this should hold at $T \gtrsim T_c$

 \Rightarrow Instead of Yukawa fit for $D_L(p)$, consider more general forms

Gribov-Stingl form, allowing for complex conjugate poles, works well at T=0 (in 4d and 3d). Let us take e.g.

$$D_{L,T}(p^2) = C \frac{1 + d p^{2\eta}}{(p^2 + a)^2 + b^2}$$

Poles at masses $m^2 = a \pm ib \implies m = m_R + im_I$

Of course, even if an exponential fit to the longitudinal gluon works at high T it is not obvious that this should hold at $T\gtrsim T_c$

 \Rightarrow Instead of Yukawa fit for $D_L(p)$, consider more general forms

Gribov-Stingl form, allowing for complex conjugate poles, works well at T=0 (in 4d and 3d). Let us take e.g.

$$D_{L,T}(p^2) = C \frac{1 + d p^{2\eta}}{(p^2 + a)^2 + b^2}$$

Poles at masses $m^2 = a \pm ib \Rightarrow m = m_R + im_I$

For longitudinal gluon: expect $m_I \rightarrow 0$ at high T

Of course, even if an exponential fit to the longitudinal gluon works at high T it is not obvious that this should hold at $T\gtrsim T_c$

 \Rightarrow Instead of Yukawa fit for $D_L(p)$, consider more general forms

Gribov-Stingl form, allowing for complex conjugate poles, works well at T=0 (in 4d and 3d). Let us take e.g.

$$D_{L,T}(p^2) = C \frac{1 + d p^{2\eta}}{(p^2 + \mathbf{a})^2 + \mathbf{b}^2}$$

Poles at masses $m^2 = a \pm ib \implies m = m_R + im_I$

For longitudinal gluon: expect $m_I \rightarrow 0$ at high T

Note: $D(0)^{-1/2} = \sqrt{(a^2 + b^2)/C}$ mixes m_R and m_I and depends on the normalization C

Gribov-Stingl Form for IR Gluon

Gribov-type propagator has purely-imaginary complex-conjugate poles

$$D(p^2) = C \frac{p^2}{p^4 + b^2}$$

(vanishes at p = 0, expected in Gribov-Zwanziger scenario)

Gribov-Stingl form (1986) allows for complex conjugate poles

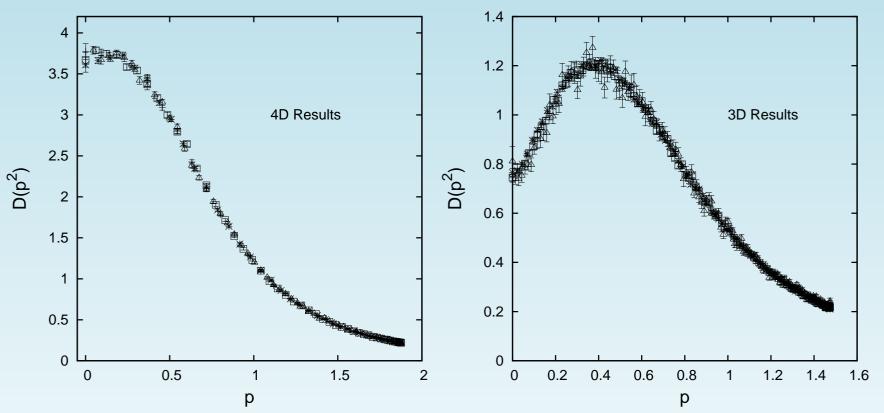
$$D(p^2) = C \frac{p^2 + d}{(p^2 + \mathbf{a})^2 + \mathbf{b}^2} = C \frac{p^2 + d}{p^4 + u^2 p^2 + t^2}$$

Poles at masses $m^2 = a \pm ib \implies m = m_R + im_I$

In general: pairs of (complex-conjugate) poles + real poles, starting from p^6 in the denominator, p^4 in numerator

More recently: massive propagator as a consequence of condensates, in Refined Gribov-Zwanziger scenario (Dudal et al., 2008)

Gluon Propagator at T=0

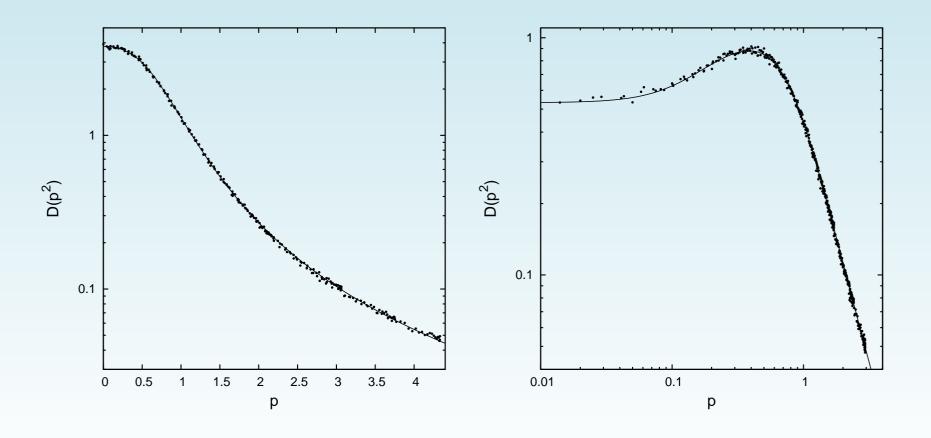


Gluon propagator D(k) as a function of the lattice momenta k (both in physical units) for the pure-SU(2) case in d=4 (left), considering volumes of up to 128^4 (lattice extent ~ 27 fm) and d=3 (right), considering volumes of up to 320^3 (lattice extent ~ 85 fm).

Gluon Fits

Fit of gluon propagator data (from A. Cucchieri & T.M., 2007) to rational forms above in d=4 (left) and d=3 (right) cases

Cucchieri, Dudal, T.M., Vandersickel PRD 2012

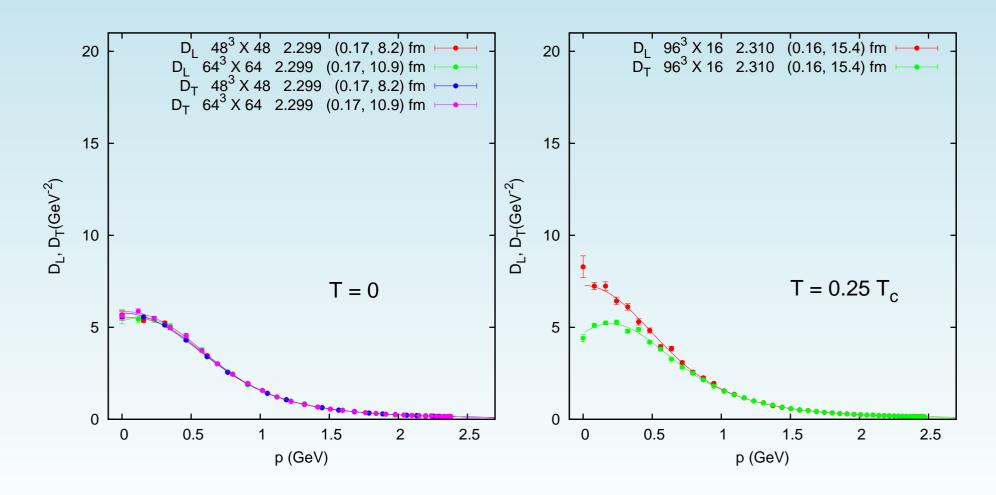


This Work (Finite T): Parameters

- pure SU(2) case, with a standard Wilson action
- cold start, projection on positive Polyakov loop configurations
- Landau-gauge fixing using stochastic overrelaxation
- lattice sizes ranging from $48^3 \times 4$ to $192^3 \times 16$
- several β values, allowing several values of the temperature $T=1/N_t\,a$ around T_c
- gluon dressing functions normalized to 1 at 2 GeV
- masses extracted from Gribov-Stingl behavior (fits shown in plots below)

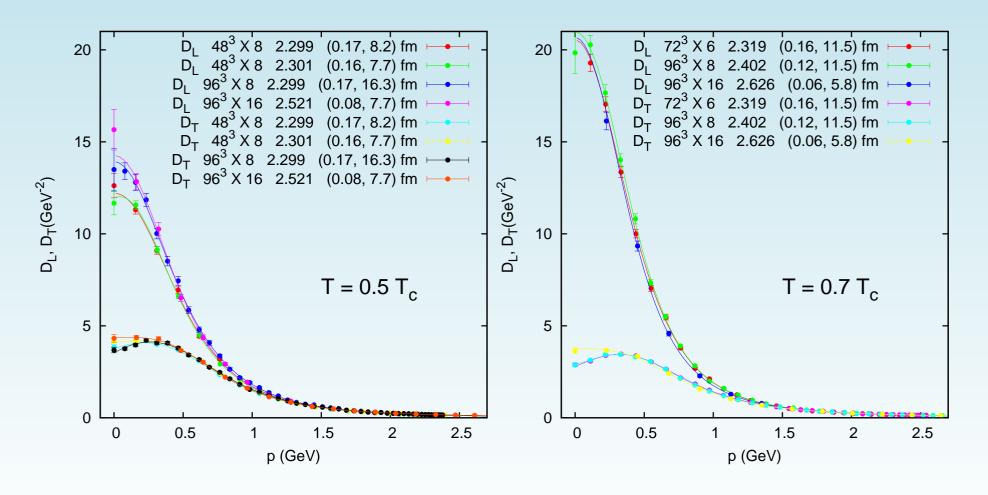
Results: Low Temperatures

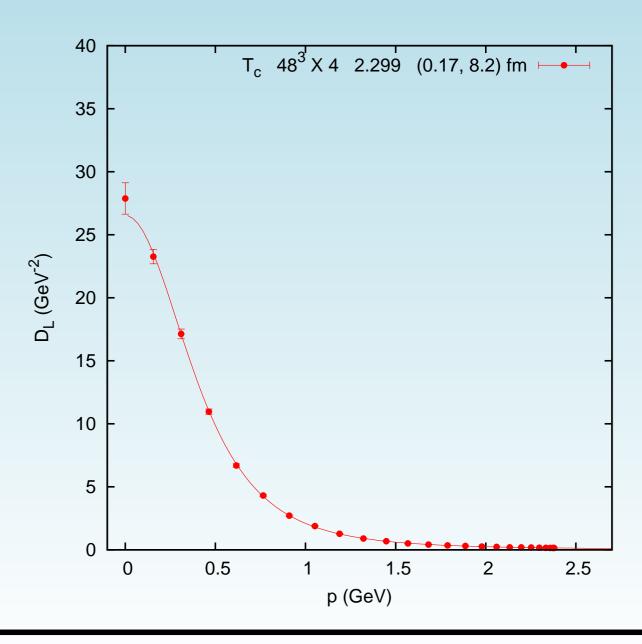
As T is turned on, magnetic propagator gets more strongly suppressed (3d-like), electric one increases

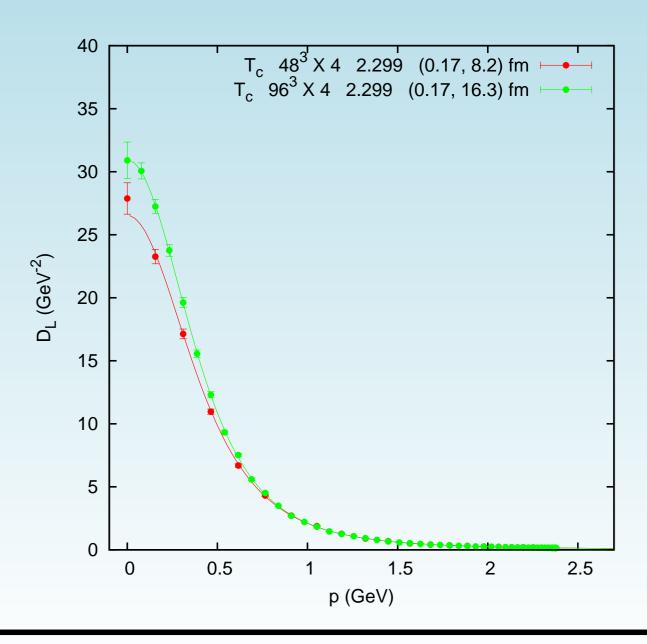


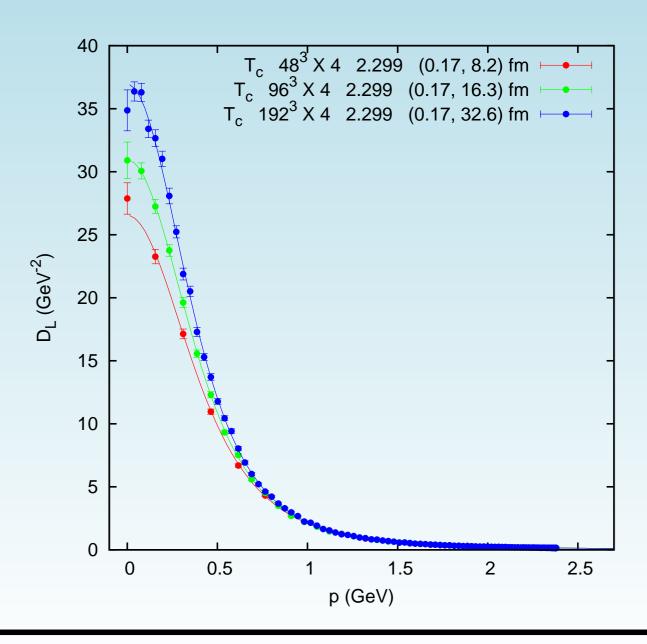
Results: Low Temperatures

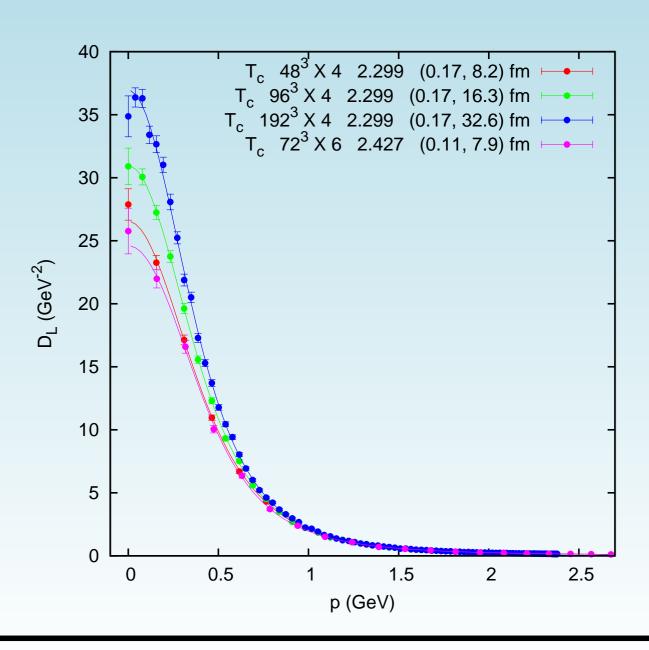
At larger T, magnetic propagator slightly more suppressed, electric one increases (showing IR plateau?)

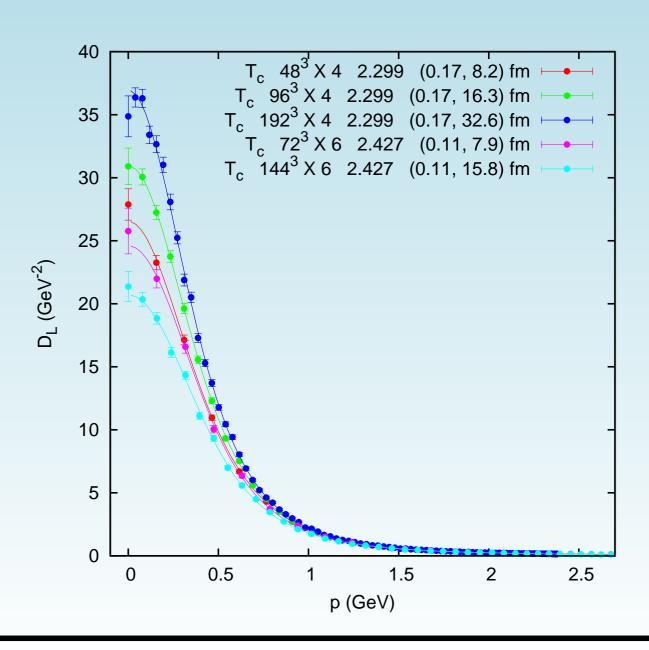


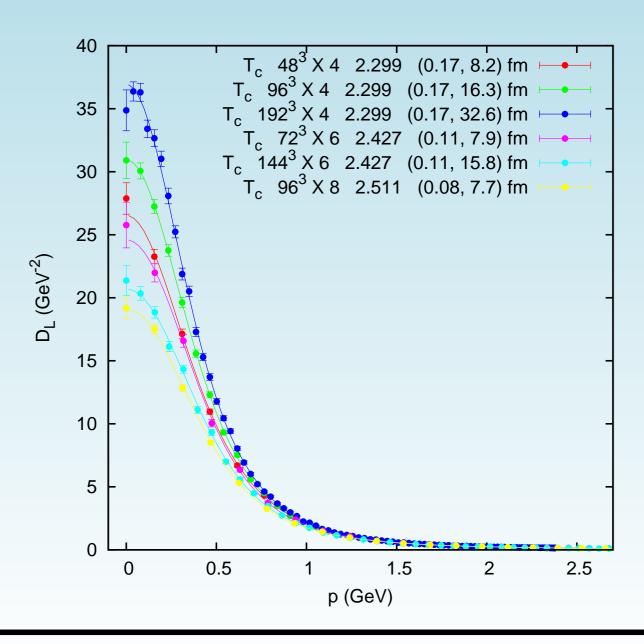


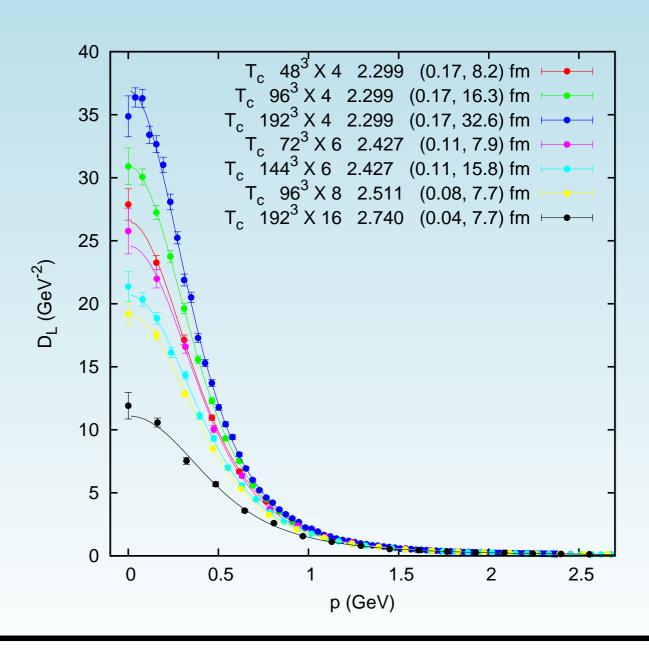




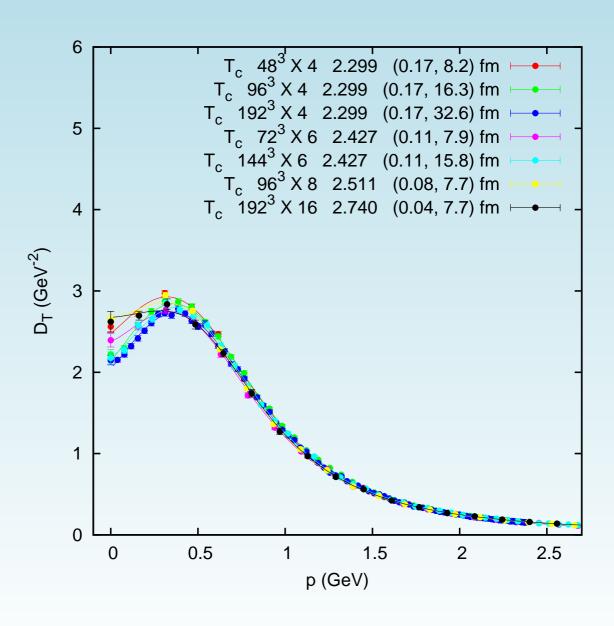






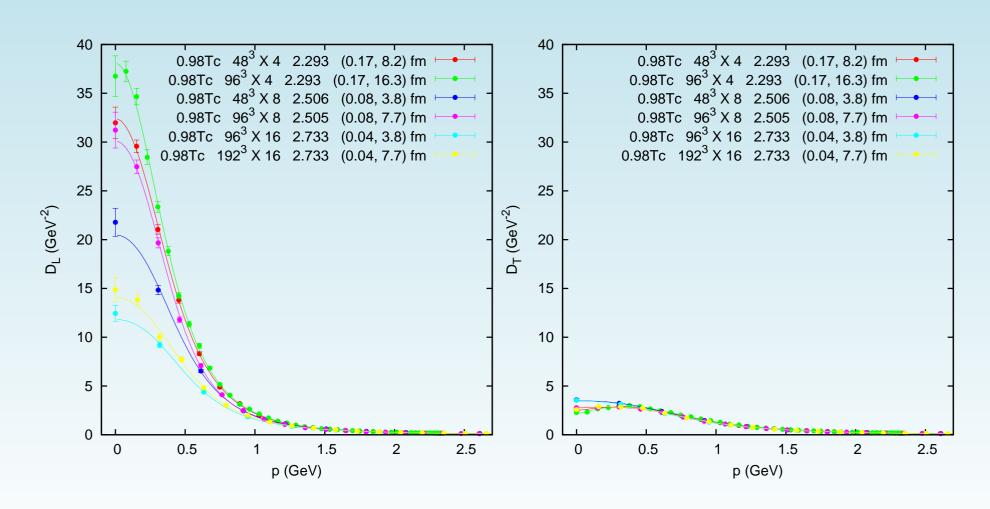


Results: Transverse Gluon at T_c



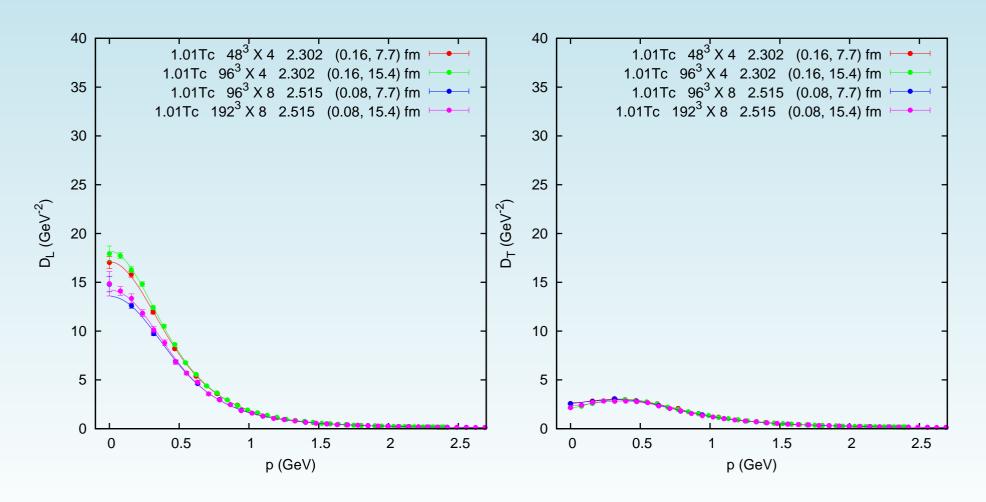
Results: Propagators at 0.98 T_c

Just below T_c , systematic errors for $D_L(p)$ are already present



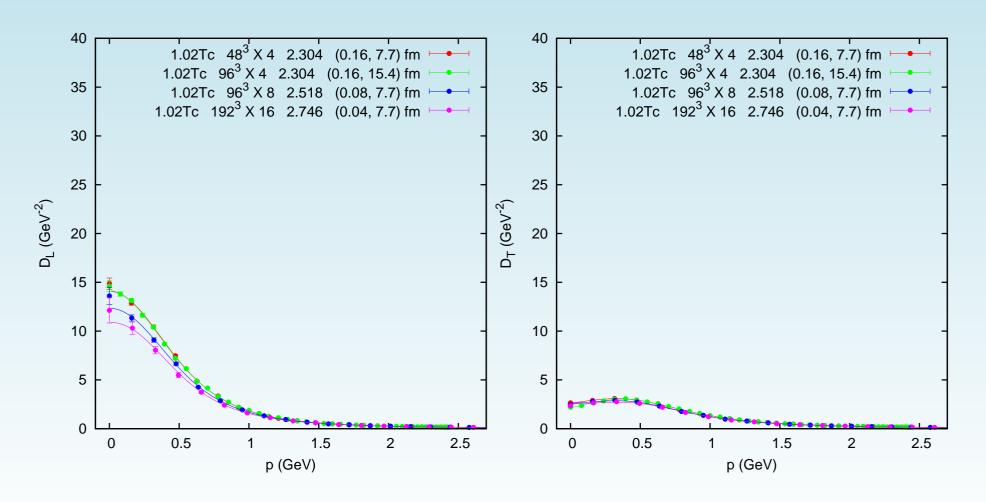
Results: Propagators at 1.01 T_c

Just above T_c , systematic errors for $D_L(p)$ seem much less severe, IR plateau for $D_L(p)$ drops significantly for $N_t \leq 8$

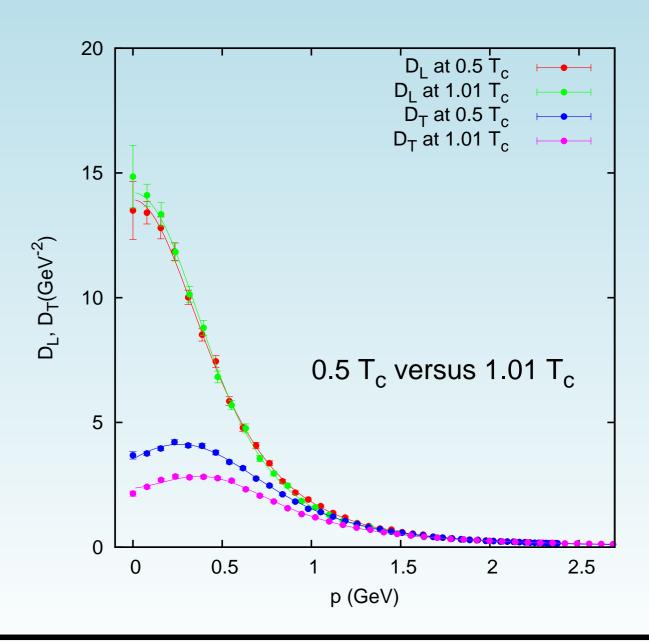


Results: Propagators at 1.02 T_c

Just above T_c , systematic errors for $D_L(p)$ seem much less severe, IR plateau for $D_L(p)$ drops somewhat for $N_t \leq 8$



Comparison: $0.5T_c$ vs. T_c



Discussion

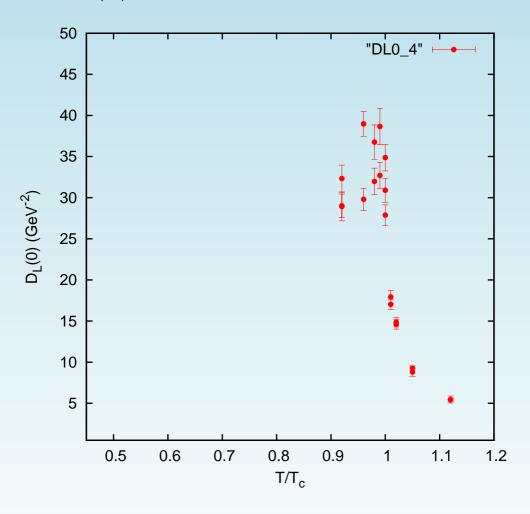
Clearly, the thing that stands out more about T_c is the presence of very large finite-size corrections, but the (large-volume) behavior of D_L itself seems to be smooth around the critical region

Discussion

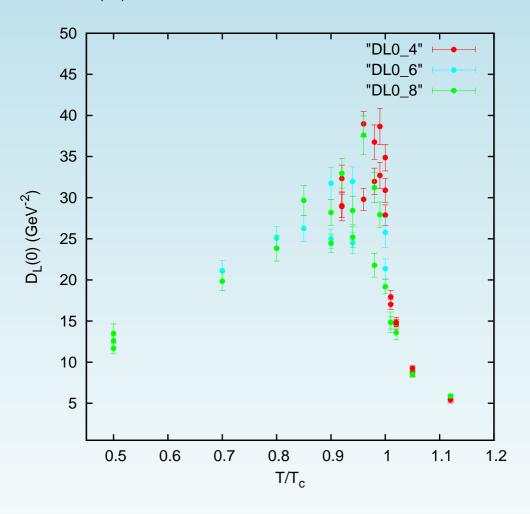
Clearly, the thing that stands out more about T_c is the presence of very large finite-size corrections, but the (large-volume) behavior of D_L itself seems to be smooth around the critical region

 \Rightarrow To get an idea let us consider $D_L(0)$ as a function of the temperature

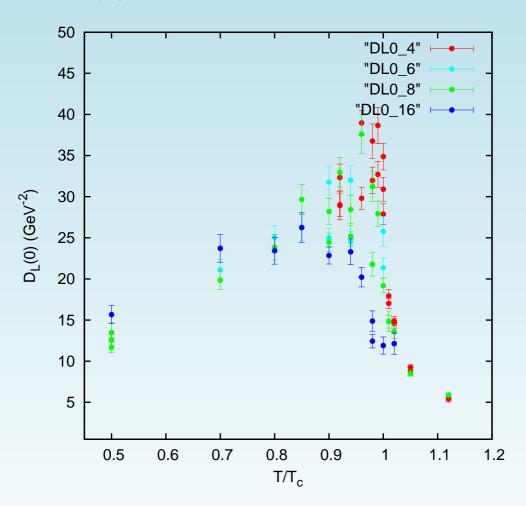
IR plateau [from $D_L(0)$]:



IR plateau [from $D_L(0)$]:

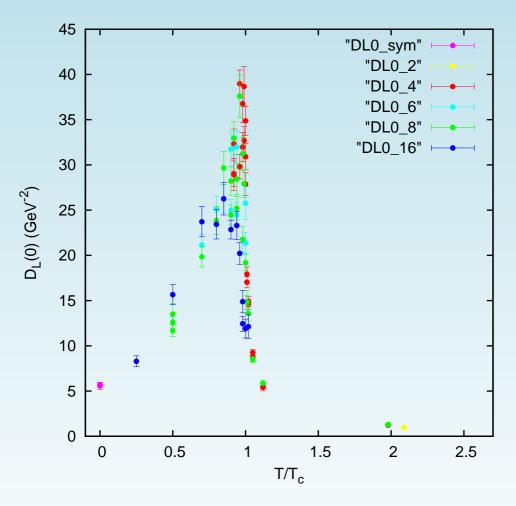


IR plateau [from $D_L(0)$]:



Peak at T_c for $N_t = 4 \Rightarrow$ finite maximum at 0.9 T_c for $N_t = 16$

IR plateau [from $D_L(0)$]: all T

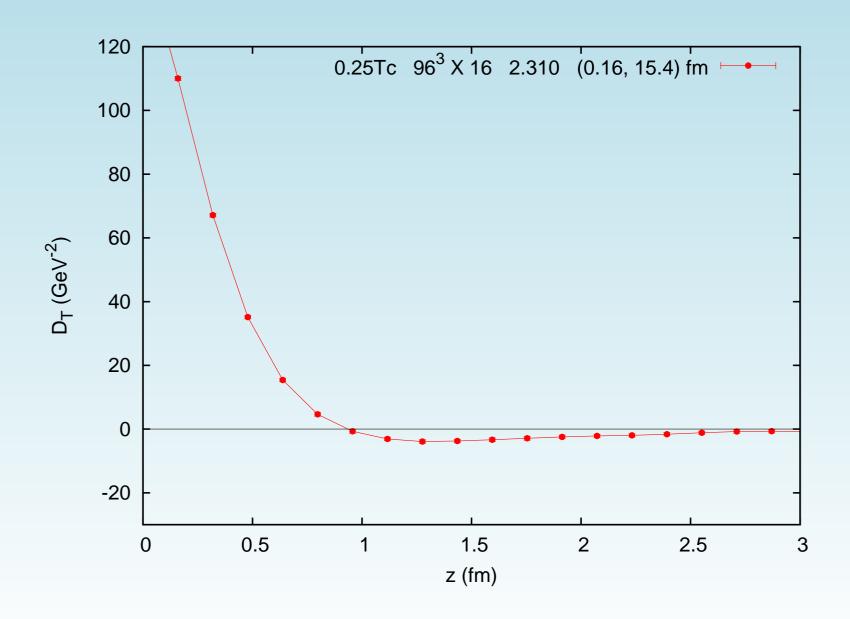


Peak at T_c for $N_t = 4 \Rightarrow$ finite maximum at 0.9 T_c for $N_t = 16$

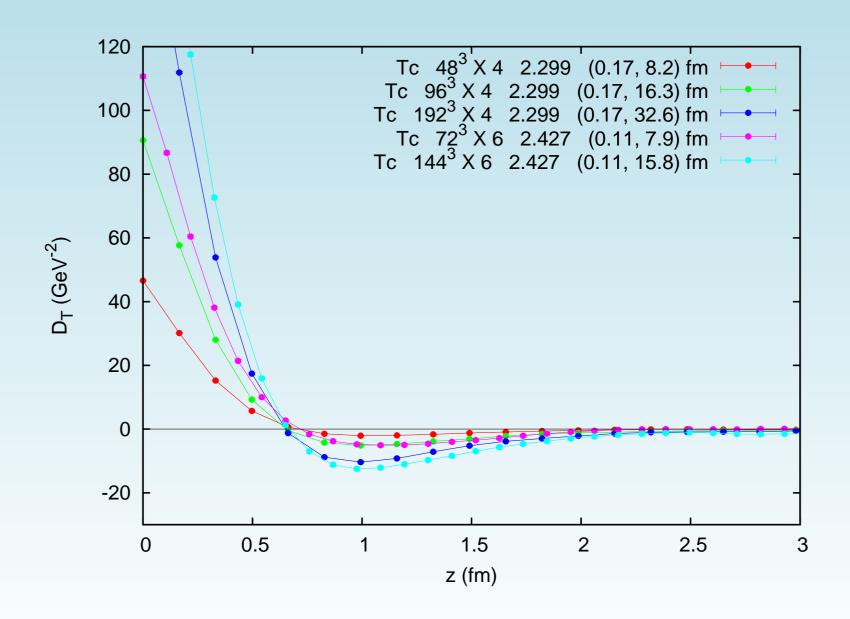
Electric and Magnetic Masses vs. T

T/T_c	$N_s^3 \times N_t$	$m_R^{(E)}$	$m_I^{(E)}$	$m_R^{(M)}$	$m_I^{(M)}$
0	$64^3 \times 64$	0.83 GeV	0.43 GeV	0.86 GeV	0.51 GeV
0.25	$96^3 \times 16$	0.61 GeV	0.28 GeV	0.57 GeV	0.28 GeV
0.5	$48^3 \times 8$	0.51 GeV	0.13 GeV	0.59 GeV	0.36 GeV
0.7	$96^3 \times 8$	0.31 GeV	0.13 GeV	0.37 GeV	0.24 GeV
0.9	$96^3 \times 16$	0.10 GeV	0.06 GeV	0.15 GeV	0.10 GeV
0.98	$96^3 \times 8$	0.19 GeV	0.10 GeV	0.28 GeV	0.20 GeV
1.0	$96^3 \times 8$	0.23 GeV	0.09 GeV	0.25 GeV	0.19 GeV
1.05	$96^3 \times 8$	0.29 GeV	0.09 GeV	0.24 GeV	0.18 GeV
2.0	$96^3 \times 8$	0.27 GeV	0.07 GeV	0.19 GeV	0.14 GeV

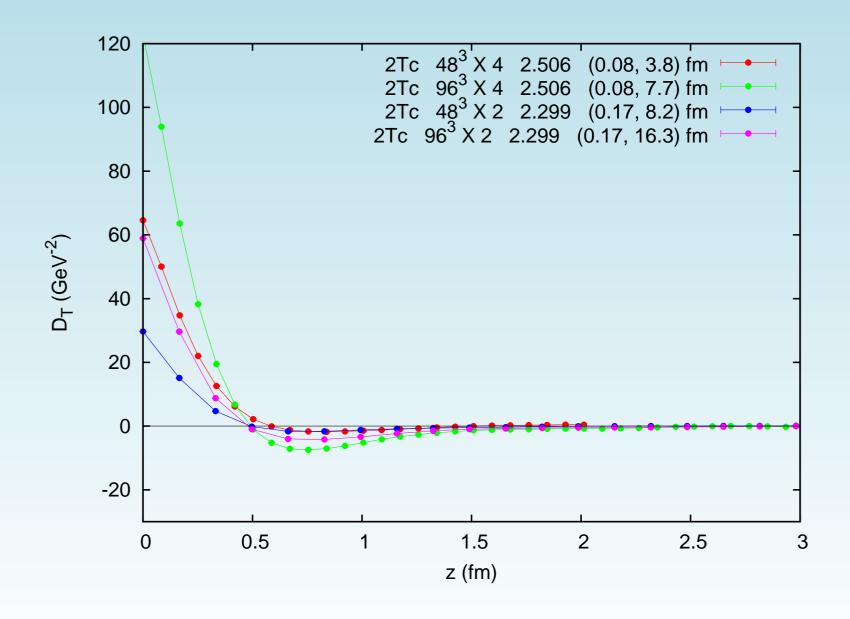
(Real-space) Transverse Gluon at $0.25T_c$



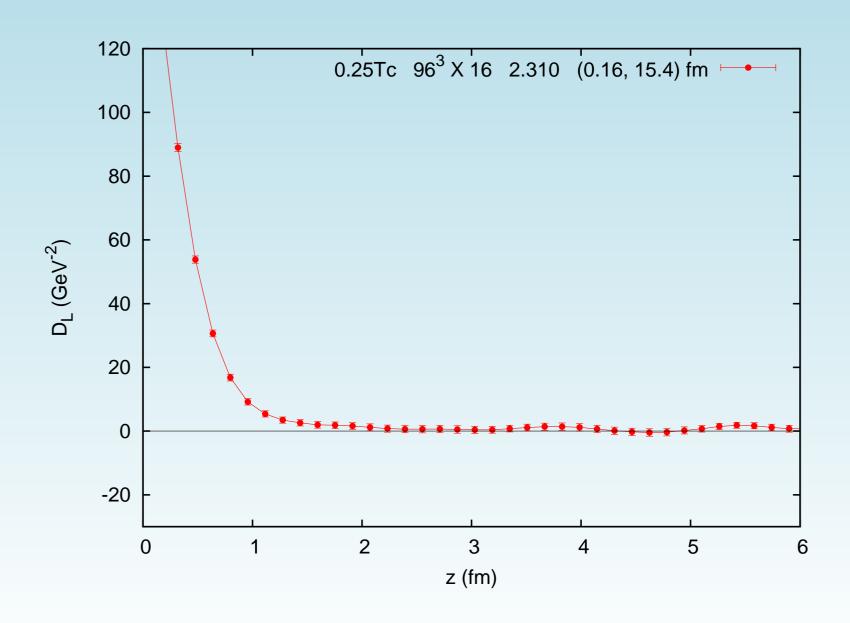
(Real-space) Transverse Gluon at T_c



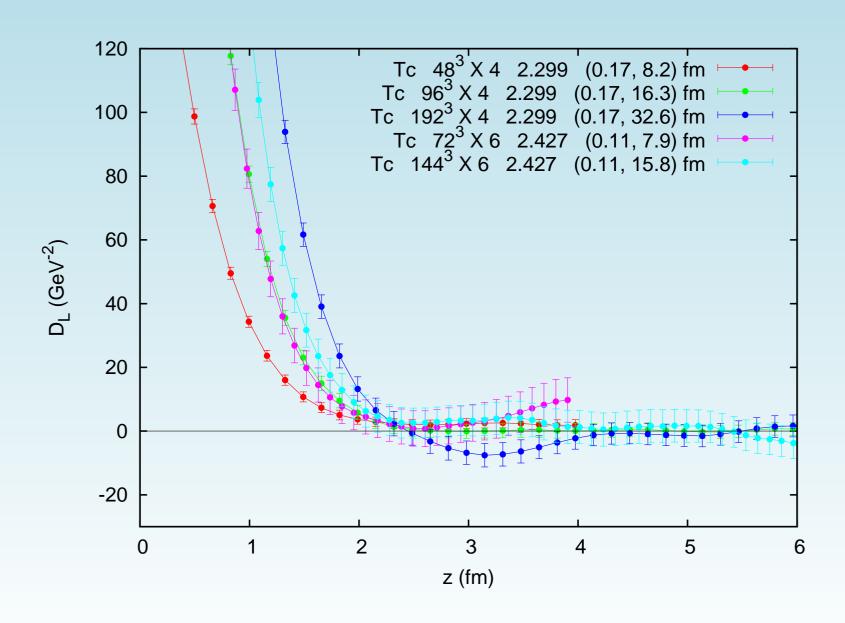
(Real-space) Transverse Gluon at $2T_c$



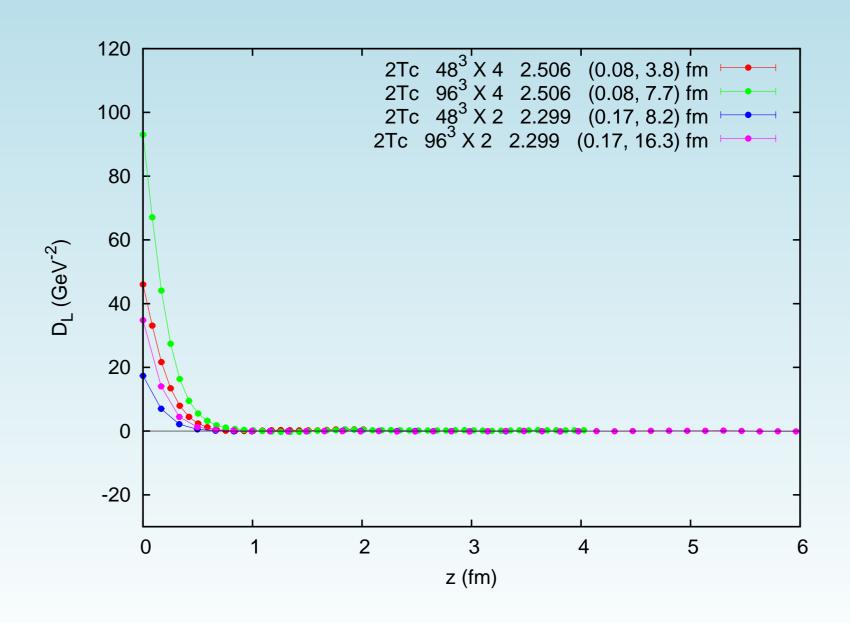
(Real-space) Longitudinal Gluon at $0.25T_c$



(Real-space) Longitudinal Gluon at T_c



(Real-space) Longitudinal Gluon at $2T_c$



■ Transverse gluon propagator shows confinement: violates reflection positivity at all *T*; good fits to Gribov-Stingl form, with comparable real and imaginary parts of pole masses; turn-over in momentum at about 400 MeV; sizeable physical-volume effects; insensitive to transition

Transverse gluon propagator shows confinement: violates reflection positivity at all T; good fits to Gribov-Stingl form, with comparable real and imaginary parts of pole masses; turn-over in momentum at about 400 MeV; sizeable physical-volume effects; insensitive to transition ⇒ (re)confirmation of dimensional-reduction picture (in agreement with other studies)

- Transverse gluon propagator shows confinement: violates reflection positivity at all T; good fits to Gribov-Stingl form, with comparable real and imaginary parts of pole masses; turn-over in momentum at about 400 MeV; sizeable physical-volume effects; insensitive to transition ⇒ (re)confirmation of dimensional-reduction picture (in agreement with other studies)
- Longitudinal gluon propagator: shows no violation of reflection positivity at all $T \neq 0$; masses from complex poles as opposed to $D_L(0)^{-1/2}$ (electric mass is also nontrivial); smooth around the transition; imaginary part seems to get smaller at higher T;

- Transverse gluon propagator shows confinement: violates reflection positivity at all T; good fits to Gribov-Stingl form, with comparable real and imaginary parts of pole masses; turn-over in momentum at about 400 MeV; sizeable physical-volume effects; insensitive to transition ⇒ (re)confirmation of dimensional-reduction picture (in agreement with other studies)
- Longitudinal gluon propagator: shows no violation of reflection positivity at all $T \neq 0$; masses from complex poles as opposed to $D_L(0)^{-1/2}$ (electric mass is also nontrivial); smooth around the transition; imaginary part seems to get smaller at higher T; severe systematic effects for $D_L(p)$ (volume dependence at fixed and small N_t) are strongest at the critical point;

- Transverse gluon propagator shows confinement: violates reflection positivity at all T; good fits to Gribov-Stingl form, with comparable real and imaginary parts of pole masses; turn-over in momentum at about 400 MeV; sizeable physical-volume effects; insensitive to transition ⇒ (re)confirmation of dimensional-reduction picture (in agreement with other studies)
- Longitudinal gluon propagator: shows no violation of reflection positivity at all $T \neq 0$; masses from complex poles as opposed to $D_L(0)^{-1/2}$ (electric mass is also nontrivial); smooth around the transition; imaginary part seems to get smaller at higher T; severe systematic effects for $D_L(p)$ (volume dependence at fixed and small N_t) are strongest at the critical point; large-lattice (and $N_t > 8$) results indicate no singularity of IR plateau; peak turns into a bump, to the left of T_c ...

- Transverse gluon propagator shows confinement: violates reflection positivity at all T; good fits to Gribov-Stingl form, with comparable real and imaginary parts of pole masses; turn-over in momentum at about 400 MeV; sizeable physical-volume effects; insensitive to transition ⇒ (re)confirmation of dimensional-reduction picture (in agreement with other studies)
- Longitudinal gluon propagator: shows no violation of reflection positivity at all $T \neq 0$; masses from complex poles as opposed to $D_L(0)^{-1/2}$ (electric mass is also nontrivial); smooth around the transition; imaginary part seems to get smaller at higher T; severe systematic effects for $D_L(p)$ (volume dependence at fixed and small N_t) are strongest at the critical point; large-lattice (and $N_t > 8$) results indicate no singularity of IR plateau; peak turns into a bump, to the left of $T_c... \Rightarrow$ previously seen peak of $D_L(0)$ at T_c produced by freakishly large systematic effects