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Low and high lying meson spectra.

1

2

π ρ ω ηρ π ω ρ ωf a a h b f a a h b f a ρ η π ω ρ a h
21 1 1 1 1 1 2 2 2 22

f
3 3 3 3 3 3 4 4 4 4 4 4

f
5 5 5

...ω
50 00

η
0

.
.
.
..

.

. ..
.
. .

.

.

.
. .. .

. .
.
. ..

M

.
..

.

.

.

.

.
.

The high-lying mesons are from p̄p annihilation at LEAR (Anisovich, Bugg,
Sarantsev,...).
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The quark condensate and the Dirac operator

Banks-Casher: A density of the lowest quasi-zero eigenmodes of the Dirac operator
represents the quark condensate of the vacuum:

< 0|q̄q|0 >= −πρ(0).

Sequence of limits: V → ∞;mq → 0 .

The lattice volume is finite and the spectrum is descrete. We remove an increasing
number of the lowest Dirac modes from the valence quark propagators and study
the effects of the remaining chiral symmetry breaking on the masses of hadrons.

S(k) = S −
∑

i≤k

µ−1|vi >< vi|,

S - standard quark propagator in a given gauge configuration;
µi are the eigenvalues of the manifestly chirally symmetric Dirac operator;
|vi > - eigenvectors;
k number of the removed lowest eigenmodes.
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Extraction of the physical states on the lattice

Assume we have hadrons (states) with energies n = 1, 2, 3, ... with fixed quantum
numbers.

C(t)ij = 〈Oi(t)O
†
j(0)〉 =

∑

n

a
(n)
i a

(n)∗
j e−E(n)t (1)

where

a
(n)
i = 〈0|Oi|n〉 .

The generalized eigenvalue problem:

Ĉ(t)iju
(n)
j = λ(n)(t, t0)Ĉ(t0)iju

(n)
j . (2)

Each eigenvalue and eigenvector corresponds to a given state. If a basis Oi is
complete enough, one extracts energies and "wave functions" of all states.

C(t)iju
(n)
j

C(t)kju
(n)
j

=
a
(n)
i

a
(n)
k

. (3)
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Extraction of the physical states on the lattice

E.g., we want to study the ρ(I = 1, 1−−) spectrum.
Then a basis of interpolators:

OV = q̄(x)τγiq(x);

OT = q̄(x)τσ0iq(x);

with a few different exponential smearings of the quark fields in
spatial directions in the source and sink.

Some lattice details:
• 100 gauge configurations with 2 dynamical flavors with the
overlap Dirac operator from JLQCD.
• L = 1.9 fm; a = 0.12 fm
• mπ = 289 MeV

We subtract the low-lying chiral modes from the valence quarks.
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ρ(I = 1, 1−−) with 10 and 20 eigenmodes subtracted
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The correlators λn(t) ∼ exp (−Ent) for all eigenstates (left) and the effective mass
plots En(t) = log(λn(t)/λn(t+ 1)) for the two lowest four states (right).
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a1(I = 1, 1++) with 10 and 20 eigenmodes subtructed
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The correlators λn(t) ∼ exp (−Ent) for all eigenstates (left) and the effective mass plot
En(t) = log(λn(t)/λn(t+ 1)) for the lowest two states (right).
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b1(I = 1, 1+−) with 10 and 20 eigenmodes subtructed
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The correlators λn(t) ∼ exp (−Ent) for all eigenstates (left) and the effective mass plot
En(t) = log(λn(t)/λn(t+ 1)) for the lowest two states (right).
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What do meson degeneracies and splittings tell us?
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The SU(2)L × SU(2)R × Ci (chiral-parity) multiplets for J = 1 mesons:

(0, 0) : ω(0, 1−−) f1(0, 1++)

( 1
2
, 1
2
)a : h1(0, 1+−) ρ(1, 1−−)

( 1
2
, 1
2
)b : ω(0, 1−−) b1(1, 1+−)

(0, 1) + (1, 0) : a1(1, 1++) ρ(1, 1−−)

The h1, ρ, ω and b1 states would form an irreducible multiplet of the SU(2)L × SU(2)R × U(1)A group.
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Radial spectrum of a dynamical string with J=1

Energy is independent on orientations of the quark spins and on
their spatial and charge parities. These are the energy levels of a

dynamical QCD string.

Enr
= (nr + 1)~ω

~ω = 900± 70MeV
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What do meson degeneracies and splittings tell us?

• Chiral symmetry is restored but confinement is still there

• Hadrons get their large chirally symmetric mass

• Both SU(2)L × SU(2)R and U(1)A get simultaneously restored
(consistent with the instanton mechanism of both breakings)

• A symmetry of a dynamical chirally symmetric string includes
SU(2)L × SU(2)R × U(1)A × U(1)V as a subgroup

• The radial spectrum of the string
Enr

= (nr + 1)~ω, ~ω = 900± 70MeV
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Low and high lying meson spectra.
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The high-lying mesons are from p̄p annihilation at LEAR (Anisovich, Bugg,
Sarantsev,...). Missing parity partners for highest spin states at each band. They
ALL require higher partial wave in p̄p that is strongly (10-100 times) suppressed in
p̄p near threshold. Cannot be seen in p̄p?

Large symmetry: N = n+ J plus chiral symmetry.
An alternative: N = n+ L without chiral symmetry. (Afonin, Shifman-Vainshtein,
Klempt-Zaitsev,...).L is a conserved quantum number ?! Naive string picture with
quarks at the ends is intrinsically inconsistent. L.Ya.Glozman



Is Nambu-Goto string consistent with chiral symmetry?

L.Ya.G., A.V. Nefediev, PRD 76 (2007) 096004; 80 (2009) 057901
A unitary transformation from a chiral basis R in q̄q to the {I; 2S+1LJ} basis :

|R; IJPC〉 =
∑

L

∑

λqλq̄

χRPI
λqλq̄

×

√
2L+ 1

2J + 1
CSΛ

1
2λq

1
2−λq̄

CJΛ
L0SΛ|I;

2S+1LJ 〉.

Examples of fixed L :
a1 : |(0, 1) + (1, 0); 1 1++〉 = |1; 3P1〉 h1 : |(1/2, 1/2)b; 0 1+−〉 = |0; 1P1〉.
However, there are two kinds of ρ-mesons:

|(0, 1) + (1, 0); 1 1−−〉 =

√
2

3
|1; 3S1〉+

√
1

3
|1; 3D1〉,

|(1/2, 1/2)b; 1 1−−〉 =

√
1

3
|1; 3S1〉 −

√
2

3
|1; 3D1〉.

If chiral symmetry is unbroken, fixed L is impossible!
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