Model-independent analysis of scenarios with vector-like quarks

Luca Panizzi

University of Southampton, UK

What are vector-like fermions?

 and where do they appear?The left-handed and right-handed chiralities of a vector-like fermion ψ transform in the same way under the SM gauge groups $S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

What are vector-like fermions?

 and where do they appear?The left-handed and right-handed chiralities of a vector-like fermion ψ transform in the same way under the SM gauge groups $S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

Why are they called "vector-like"?

What are vector-like fermions?

 and where do they appear?The left-handed and right-handed chiralities of a vector-like fermion ψ transform in the same way under the SM gauge groups $S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

Why are they called "vector-like"?

$$
\mathcal{L}_{W}=\frac{g}{\sqrt{2}}\left(J^{\mu+} W_{\mu}^{+}+J^{\mu-} W_{\mu}^{-}\right) \quad \text { Charged current Lagrangian }
$$

What are vector-like fermions?

 and where do they appear?The left-handed and right-handed chiralities of a vector-like fermion ψ transform in the same way under the SM gauge groups $S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

Why are they called "vector-like"?

$$
\mathcal{L}_{W}=\frac{g}{\sqrt{2}}\left(J^{\mu+} W_{\mu}^{+}+J^{\mu-} W_{\mu}^{-}\right) \quad \text { Charged current Lagrangian }
$$

- SM chiral quarks: ONLY left-handed charged currents

$$
J^{\mu+}=J_{L}^{\mu+}+J_{R}^{\mu+} \quad \text { with } \quad\left\{\begin{array}{l}
J_{L}^{\mu+}=\bar{u}_{L} \gamma^{\mu} d_{L}=\bar{u} \gamma^{\mu}\left(1-\gamma^{5}\right) d=V-A \\
J_{R}^{\mu+}=0
\end{array}\right.
$$

What are vector-like fermions?

and where do they appear?

The left-handed and right-handed chiralities of a vector-like fermion ψ transform in the same way under the SM gauge groups $S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

Why are they called "vector-like"?

$$
\mathcal{L}_{W}=\frac{g}{\sqrt{2}}\left(J^{\mu+} W_{\mu}^{+}+J^{\mu-} W_{\mu}^{-}\right) \quad \text { Charged current Lagrangian }
$$

- SM chiral quarks: ONLY left-handed charged currents

$$
J^{\mu+}=J_{L}^{\mu+}+J_{R}^{\mu+} \quad \text { with } \quad\left\{\begin{array}{l}
J_{L}^{\mu+}=\bar{u}_{L} \gamma^{\mu} d_{L}=\bar{u} \gamma^{\mu}\left(1-\gamma^{5}\right) d=V-A \\
J_{R}^{\mu+}=0
\end{array}\right.
$$

- vector-like quarks: BOTH left-handed and right-handed charged currents

$$
J^{\mu+}=J_{L}^{\mu+}+J_{R}^{\mu+}=\bar{u}_{L} \gamma^{\mu} d_{L}+\bar{u}_{R} \gamma^{\mu} d_{R}=\bar{u} \gamma^{\mu} d=V
$$

What are vector-like fermions?

and where do they appear?

The left-handed and right-handed chiralities of a vector-like fermion ψ transform in the same way under the SM gauge groups $S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

Vector-like quarks in many models of New Physics

- Warped or universal extra-dimensions KK excitations of bulk fields
- Composite Higgs models VLQ appear as excited resonances of the bounded states which form SM particles
- Little Higgs models partners of SM fermions in larger group representations which ensure the cancellation of divergent loops
- Gauged flavour group with low scale gauge flavour bosons required to cancel anomalies in the gauged flavour symmetry
- Non-minimal SUSY extensions

VLQs increase corrections to Higgs mass without affecting EWPT

SM and a vector-like quark

$\mathcal{L}_{M}=-M \bar{\psi} \psi \quad$ Gauge invariant mass term without the Higgs

SM and a vector-like quark

$\mathcal{L}_{M}=-M \bar{\psi} \psi \quad$ Gauge invariant mass term without the Higgs

Charged currents both in the left and right sector

SM and a vector-like quark

$\mathcal{L}_{M}=-M \bar{\psi} \psi \quad$ Gauge invariant mass term without the Higgs

Charged currents both in the left and right sector

There can be partners of top and bottom or quarks with exotic charges ($5 / 3,-4 / 3 \ldots$)

SM and a vector-like quark

$\mathcal{L}_{M}=-M \bar{\psi} \psi \quad$ Gauge invariant mass term without the Higgs

Charged currents both in the left and right sector

There can be partners of top and bottom or quarks with exotic charges ($5 / 3,-4 / 3 \ldots$)
They can mix with SM quarks

Dangerous FCNCs \longrightarrow strong bounds on mixing parameters BUT
Many open channels for production and decay of heavy fermions

Rich phenomenology to explore at LHC

Representations and lagrangian terms

Assumption: vector-like quarks couple with SM quarks through Yukawa interactions

Representations and lagrangian terms

Assumption: vector-like quarks couple with SM quarks through Yukawa interactions

	SM $\binom{u}{d}\binom{c}{s}\binom{t}{b}$	Singlets (t^{\prime}) (b)	Doublets $\binom{X}{t^{\prime}}\binom{t^{\prime}}{b^{\prime}}\binom{b^{\prime}}{Y}$	Triplets $\left(\begin{array}{l} X \\ t^{\prime} \\ b^{\prime} \end{array}\right) \quad\left(\begin{array}{l} t^{\prime} \\ b^{\prime} \\ Y \end{array}\right)$
$S U(2)_{L}$	2 and 1	1	2	3
$U(1)_{Y}$	$\begin{gathered} q_{L}=1 / 6 \\ u_{R}=2 / 3 \\ d_{R}=-1 / 3 \end{gathered}$	2/3 -1/3	7/6 $\quad 1 / 6 \quad-5 / 6$	2/3 -1/3
\mathcal{L}_{Y}	$\begin{gathered} -y_{u}^{i} \bar{q}_{L}^{i} H^{c} u_{R}^{i} \\ -y_{d}^{i} \bar{q}_{L}^{i} V_{C K M}^{i, j} H d_{R}^{j} \end{gathered}$	$\begin{aligned} & -\lambda_{u}^{i} \bar{q}_{L}^{i} H^{c} t_{R}^{\prime} \\ & -\lambda_{d}^{i} \bar{q}_{L}^{i} H b_{R}^{\prime} \end{aligned}$	$\begin{aligned} & -\lambda_{u}^{i} \psi_{L} H^{(c)} u_{R}^{i} \\ & -\lambda_{d}^{i} \psi_{L} H^{(c)} d_{R}^{i} \end{aligned}$	$-\lambda_{i} \bar{q}_{L}^{i} \tau^{a} H^{(c)} \psi_{R}^{a}$
\mathcal{L}_{m}		$-M \bar{\psi} \psi$	(gauge invariant sin	vector-like)
Free parameters		$\begin{gathered} 4 \\ M+3 \times \lambda^{i} \end{gathered}$	$\begin{gathered} 4 \text { or } 7 \\ M+3 \lambda_{u}^{i}+3 \lambda_{d}^{i} \end{gathered}$	$\begin{gathered} 4 \\ M+3 \times \lambda^{i} \end{gathered}$

Production channels

Vector-like quarks can be produced in the same way as SM quarks plus FCNCs channels

- Pair production, dominated by QCD and sentitive to the q^{\prime} mass independently of the representation the q^{\prime} belongs to
- Single production, only EW contributions and sensitive to both the q^{\prime} mass and its mixing parameters

Production channels

Pair vs single production, example with non-SM doublet $\left(X_{5 / 3} t^{\prime}\right)$

pair production depends only on the mass of the new particle and decreases faster than single production due to different PDF scaling
current bounds from LHC are around the region where (model dependent) single production dominates

Decays

SM partners

Exotics

Only Charged currents

Not all decays may be kinematically allowed
it depends on representations and mass differences

Searches at the LHC

CMS (t^{\prime})

ATLAS (t^{\prime})

Bounds from pair production between 600 GeV and 800 GeV depending on the decay channel

Common assumption
only one vector-like quark mixing only with third generation
While most theoretical models predict a new quark sector and, in principle, mixing can be with all families

General mixing: b' pair production

Common assumption
CC: $b^{\prime} \rightarrow t W$
Searches in the same-sign dilepton channel (possibly with b-tagging)

General mixing: b' pair production

Common assumption
CC: $b^{\prime} \rightarrow t W$
Searches in the same-sign dilepton channel (possibly with b-tagging)

If the b^{\prime} decays both into $W t$ and $W q$

There can be less events in the same-sign dilepton channel!

Multiple vector-like quarks

Scenario with X and B (decaying to third generation only)

Multiple vector-like quarks

Scenario with X and B (decaying to third generation only)

Scenario with a bidoublet $\left(\begin{array}{cc}X & T_{1} \\ T_{2} & B\end{array}\right)$ (general mixing)

Multiple vector-like quarks

Scenario with X and B (decaying to third generation only)

Scenario with a bidoublet $\left(\begin{array}{cc}X & T_{1} \\ T_{2} & B\end{array}\right)$ (general mixing)

A given final state can be feeded by different channels! (with different kinematics)

Counting the final states

T pair production $\longrightarrow 6$ possible decays: $W^{+} j \quad W^{+} b \quad$ Zj \quad Zt \quad Hj $\quad \mathrm{Ht}$

Counting the final states

T pair production $\longrightarrow 6$ possible decays: $W^{+} j \quad W^{+} b \quad$ Zj \quad Zt $\quad \mathrm{Hj} \quad \mathrm{Ht}$

$$
P P \rightarrow T \bar{T} \rightarrow\left(\begin{array}{cccccc}
W^{+} j W^{-} j & W^{+} j W^{-} \bar{b} & W^{+} j Z j & W^{+} j Z \bar{t} & W^{+} j H j & W^{+} j H \bar{t} \\
W^{+} b W^{-} j & W^{+} b W^{-} \bar{b} & W^{+} b Z j & W^{+} b Z \bar{t} & W^{+} b H j & W^{+} b H \bar{t} \\
Z j W^{-} j & Z j W^{-} \bar{b} & Z j Z j & Z j Z \bar{t} & Z j H j & Z j H \bar{t} \\
Z t W^{-} j & Z t W^{-} \bar{b} & Z t Z j & Z t Z \bar{t} & Z t H j & Z t H \bar{t} \\
H j W^{-} j & H j W^{-} \bar{b} & H j Z j & H j Z \bar{t} & H j H j & H j H \bar{t} \\
H t W^{-} j & H t W^{-} \bar{b} & H t Z j & H t Z \bar{t} & H t H j & H t H \bar{t}
\end{array}\right)
$$

(only) 36 possible combinations of decays into SM particles! each one with its peculiar kinematics

Counting the final states

T pair production $\longrightarrow 6$ possible decays: $W^{+} j \quad W^{+} b \quad$ Zj \quad Zt $\begin{array}{llll} & H j & H t\end{array}$

$$
P P \rightarrow T \bar{T} \rightarrow\left(\begin{array}{cccccc}
W^{+} j W^{-} j & W^{+} j W^{-} \bar{b} & W^{+} j Z j & W^{+} j Z \bar{t} & W^{+} j H j & W^{+} j H \bar{t} \\
W^{+} b W^{-} j & W^{+} b W^{-} \bar{b} & W^{+} b Z j & W^{+} b Z \bar{t} & W^{+} b H j & W^{+} b H \bar{t} \\
Z j W^{-} j & Z j W^{-} \bar{b} & Z j Z j & Z j Z \bar{t} & Z j H j & Z j H \bar{t} \\
Z t W^{-} j & Z t W^{-} \bar{b} & Z t Z j & Z t Z \bar{t} & Z t H j & Z t H \bar{t} \\
H j W^{-} j & H j W^{-} \bar{b} & H j Z j & H j Z \bar{t} & H j H j & H j H \bar{t} \\
H t W^{-} j & H t W^{-} \bar{b} & H t Z j & H t Z \bar{t} & H t H j & H t H \bar{t}
\end{array}\right)
$$

(only) 36 possible combinations of decays into SM particles! each one with its peculiar kinematics
B pair production $\longrightarrow 6$ possible decays: $W^{-} j \quad W^{-} t \quad \mathrm{Zj} \quad \mathrm{Zb} \quad \mathrm{Hj} \quad \mathrm{Hb}$
36 possible combinations of decays into SM particles

Counting the final states

T pair production $\longrightarrow 6$ possible decays: $W^{+} j \quad W^{+} b \quad$ Zj \quad Zt $\quad \mathrm{Hj} \quad \mathrm{Ht}$

$$
P P \rightarrow T \bar{T} \rightarrow\left(\begin{array}{cccccc}
W^{+} j W^{-} j & W^{+} j W^{-} \bar{b} & W^{+} j Z j & W^{+} j Z \bar{t} & W^{+} j H j & W^{+} j H \bar{t} \\
W^{+} b W^{-} j & W^{+} b W^{-} \bar{b} & W^{+} b Z j & W^{+} b Z \bar{t} & W^{+} b H j & W^{+} b H \bar{t} \\
Z j W^{-} j & Z j W^{-} \bar{b} & Z j Z j & Z j Z \bar{t} & Z j H j & Z j H \bar{t} \\
Z t W^{-} j & Z t W^{-} \bar{b} & Z t Z j & Z t Z \bar{t} & Z t H j & Z t H \bar{t} \\
H j W^{-} j & H j W^{-} \bar{b} & H j Z j & H j Z \bar{t} & H j H j & H j H \bar{t} \\
H t W^{-} j & H t W^{-} \bar{b} & H t Z j & H t Z \bar{t} & H t H j & H t H \bar{t}
\end{array}\right)
$$

(only) 36 possible combinations of decays into SM particles! each one with its peculiar kinematics
B pair production $\longrightarrow 6$ possible decays: $W^{-} j \quad W^{-} t \quad \mathrm{Zj} \quad \mathrm{Zb} \quad \mathrm{Hj} \quad \mathrm{Hb}$ 36 possible combinations of decays into SM particles
X pair production $\longrightarrow W^{+} j \quad W^{+} t$
4 combinations

Y pair production $\longrightarrow W^{-} j \quad W^{-} b$
4 combinations

Counting the final states

T pair production $\longrightarrow 6$ possible decays: $W^{+} j \quad W^{+} b \quad$ Zj \quad Zt $\begin{array}{llll} & H j & H t\end{array}$

$$
P P \rightarrow T \bar{T} \rightarrow\left(\begin{array}{cccccc}
W^{+} j W^{-} j & W^{+} j W^{-} \bar{b} & W^{+} j Z j & W^{+} j Z \bar{t} & W^{+} j H j & W^{+} j H \bar{t} \\
W^{+} b W^{-} j & W^{+} b W^{-} \bar{b} & W^{+} b Z j & W^{+} b Z \bar{t} & W^{+} b H j & W^{+} b H \bar{t} \\
Z j W^{-} j & Z j W^{-} \bar{b} & Z j Z j & Z j Z \bar{t} & Z j H j & Z j H \bar{t} \\
Z t W^{-} j & Z t W^{-} \bar{b} & Z t Z j & Z t Z \bar{t} & Z t H j & Z t H \bar{t} \\
H j W^{-} j & H j W^{-} \bar{b} & H j Z j & H j Z \bar{t} & H j H j & H j H \bar{t} \\
H t W^{-} j & H t W^{-} \bar{b} & H t Z j & H t Z \bar{t} & H t H j & H t H \bar{t}
\end{array}\right)
$$

(only) 36 possible combinations of decays into SM particles! each one with its peculiar kinematics
B pair production $\longrightarrow 6$ possible decays: $W^{-j} \quad W^{-} t \quad \mathrm{Zj} \quad \mathrm{Zb} \quad \mathrm{Hj} \quad \mathrm{Hb}$
36 possible combinations of decays into SM particles
X pair production $\longrightarrow W^{+} j \quad W^{+} t$
4 combinations
Y pair production $\longrightarrow W^{-} j \quad W^{-} b$
4 combinations

There are 80 combinations of decays of (pair produced) VLQs into SM! each one with its kinematic properties!

Efficiencies of searches

Numerical Simulation
MadGraph, CalcHEP, \ldots

| $P P \rightarrow Q \bar{Q} \rightarrow$ final state |
| :--- |\rightarrow Pythia

hadronization \rightarrow detector simulation \rightarrow signal

Efficiencies of searches

Numerical Simulation

| MadGraph, CalcHEP, \ldots |
| :--- | :---: |
| $P P \rightarrow Q \bar{Q} \rightarrow$ final state |\rightarrow Pythia \quad hadronization \rightarrow detector simulation \rightarrow signal

Efficiencies

Efficiencies of searches

Numerical Simulation

| MadGraph, CalcHEP, \ldots |
| :--- | :---: |
| $P P \rightarrow Q \bar{Q} \rightarrow$ final state |\rightarrow Pythia \quad hadronization \rightarrow detector simulation \rightarrow signal

Efficiencies

Knowing the efficiencies for all combinations of final states it is possible to reconstruct any signal
Any model containing any number of VLQs can be analysed in a single framework!

The exclusion confidence level

Example with a fictional search

Observation
310 events

Background
300 events

The exclusion confidence level

Example with a fictional search

Flowchart of the project

Select a benchmark, i.e. number of VLQs of each charge, masses and BRs Exclusion confidence level of the benchmark against data from searches (any search!) using only one simulation

(Very) Preliminary results

Degenerate (TB) doublet

Implemented searches (only CMS temporarily)

α_{T}	L_{P} (monolepton)	SS dileptons	OS dileptons
7 and 8 TeV	7 TeV	7 and 8 TeV	7 TeV

All these searches are SUSY-inspired, but it is ok since we only care about final states!

(T B) doublet mixing only with 1st gen

(1) Stronger bounds when mixing with 3rd generation

2 Bounds in the ballpark of those obtained with direct searches of VLQs
(3) Potential to improve direct searches and to exploit other BSM-inspired searches to test scenarios with VLQ

Remarks and subtleties

- This is a conservative result: a "non-exclusion" result does not mean that the benchmark is allowed. We are neglecting other potentially relevant decays!

Remarks and subtleties

- This is a conservative result: a "non-exclusion" result does not mean that the benchmark is allowed. We are neglecting other potentially relevant decays!

We only consider these topologies

Remarks and subtleties

- This is a conservative result: a "non-exclusion" result does not mean that the benchmark is allowed. We are neglecting other potentially relevant decays!

We only consider these topologies

The following decays have not been considered (model-dependency)

Other new sectors besides the VLQs

Chain decays between VLQs

A dedicated simulation is required for these channels

But if a benchmark is already excluded by this analysis, adding new channels would only increase the exclusion confidence level. The signal of new physics is, at worst, underestimated, therefore an "exclusion" result is robust!

Remarks and subtleties

- This is a conservative result: a "non-exclusion" result does not mean that the benchmark is allowed. We are neglecting other potentially relevant decays! But if a benchmark is already excluded by this analysis, adding new channels would only increase the exclusion confidence level. The signal of new physics is, at worst, underestimated, therefore an "exclusion" result is robust!
- Role of interferences: if there is more than one VLQ with same charge and with close masses and/or widths, the interference effects at the level of amplitude squared cannot be neglected.

Remarks and subtleties

- This is a conservative result: a "non-exclusion" result does not mean that the benchmark is allowed. We are neglecting other potentially relevant decays! But if a benchmark is already excluded by this analysis, adding new channels would only increase the exclusion confidence level. The signal of new physics is, at worst, underestimated, therefore an "exclusion" result is robust!
- Role of interferences: if there is more than one VLQ with same charge and with close masses and/or widths, the interference effects at the level of amplitude squared cannot be neglected.

$$
\sigma \propto\left|\mathcal{A}_{1}\right|^{2}+\left|\mathcal{A}_{2}\right|^{2}+\left|\mathcal{A}_{3}\right|^{2}+2 \operatorname{Re}\left[\mathcal{A}_{1} \mathcal{A}_{2}^{*}+\mathcal{A}_{1} \mathcal{A}_{3}^{*}+\mathcal{A}_{2} \mathcal{A}_{3}^{*}\right]
$$

It is possible to estimate the interference effect knowing the total widths and couplings to SM particles!

$$
\sigma_{Q}^{\prime}\left(M_{i}\right)=\sigma_{Q}\left(M_{i}\right)\left(1+\sum_{j \neq i}^{n_{Q}} y_{i j}\right) \quad \text { with } \quad y_{i j}=\frac{2 \operatorname{Re}\left[g_{a} g_{b}^{*} g_{c} g_{d}^{*}\left(\int \mathcal{P}_{i} \mathcal{P}_{j}^{*}\right)^{2}\right]}{g_{a}^{2} g_{b}^{2}\left(\int \mathcal{P}_{i} \mathcal{P}_{i}^{*}\right)^{2}+g_{c}^{2} g_{d}^{2}\left(\int \mathcal{P}_{j} \mathcal{P}_{j}^{*}\right)^{2}}
$$

This expression describes with remarkable accuracy the interference effects in the NWA approximation

Remarks and subtleties

- This is a conservative result: a "non-exclusion" result does not mean that the benchmark is allowed. We are neglecting other potentially relevant decays! But if a benchmark is already excluded by this analysis, adding new channels would only increase the exclusion confidence level. The signal of new physics is, at worst, underestimated, therefore an "exclusion" result is robust!
- Role of interferences: if there is more than one VLQ with same charge and with close masses and/or widths, the interference effects at the level of amplitude squared cannot be neglected.
- Role of quantum mixing between states: if there is more than one VLQ with same charge and with close masses and/or widths, the mixing at loop level can affect the cross-section.

Remarks and subtleties

- This is a conservative result: a "non-exclusion" result does not mean that the benchmark is allowed. We are neglecting other potentially relevant decays! But if a benchmark is already excluded by this analysis, adding new channels would only increase the exclusion confidence level. The signal of new physics is, at worst, underestimated, therefore an "exclusion" result is robust!
- Role of interferences: if there is more than one VLQ with same charge and with close masses and/or widths, the interference effects at the level of amplitude squared cannot be neglected.
- Role of quantum mixing between states: if there is more than one VLQ with same charge and with close masses and/or widths, the mixing at loop level can affect the cross-section.

Diagonalisation of the matrix of the propagators

The matrix is model-dependent: any particle (also new ones) can enter the loops!!

Remarks and subtleties

- This is a conservative result: a "non-exclusion" result does not mean that the benchmark is allowed. We are neglecting other potentially relevant decays! But if a benchmark is already excluded by this analysis, adding new channels would only increase the exclusion confidence level. The signal of new physics is, at worst, underestimated, therefore an "exclusion" result is robust!
- Role of interferences: if there is more than one VLQ with same charge and with close masses and/or widths, the interference effects at the level of amplitude squared cannot be neglected.
- Role of quantum mixing between states: if there is more than one VLQ with same charge and with close masses and/or widths, the mixing at loop level can affect the cross-section.

It's crucial to take into account these issues in order not to overestimate the signal!

Conclusions and Outlook

- After Higgs discovery, Vector-like quarks are a very promising playground for searches of new physics
- Fairly rich phenomenology at the LHC and many possibile channels to explore
\rightarrow Signatures of single and pair production of VL quarks are accessible at current CM energy and luminosity and have been explored to some extent
\rightarrow Current bounds on masses around 600-800 GeV, but searches are not fully optimized for general scenarios.
- Model-independent studies can be performed for pair and single production to analyse scenarios with multiple vector-like quarks (work in progress, results very soon!)

