Nucleon Σ Term in the Chiral Mixing Approach

V. Dmitrašinović
(Institute of Physics, Belgrade, Serbia) collaboration with Hua-Xing Chen and Atsushi Hosaka

Excited QCD 2014, Babin Dol, Bjelašnica,
2nd-8th February, 2014

Table of contents

- INTRODUCTION
- METHOD
- RESULTS
- SUMMARY, CONCLUSIONS

MOTIVATION

- The nucleon Σ term, together with the flavor-singlet nucleon axial coupling constant, i.e., the "nucleon spin problem", has long been viewed as a measure of the "strangeness content", or ($s \bar{s}$) in the nucleon $y=\frac{2\langle N| \bar{s} s|N\rangle}{\langle N| \bar{u} u+\bar{u} u|N\rangle}$. [T. P. Cheng, Phys. Rev. D13, 2161 (1976)]
- A number of experiments (SAMPLE, HAPPEX, G0, etc.) have measured the strangeness content in nucleon observables (other than the Σ term), but found no significant signal. [A. Acha et al. (HAPPEX Collaboration), Phys. Rev. Lett. 98, 032301 (2007). D. Androic et al. (G0 Collaboration), Phys. Rev. Lett. 104, 012001 (2010)]

FACTS

- The pion-nucleon Σ term

$$
\Sigma_{\pi N}=\frac{1}{3} \delta^{a b}\langle N|\left[Q_{5}^{a},\left[Q_{5}^{b}, H_{\chi \mathrm{SB}}\right]\right]|N\rangle
$$

can be extracted from measured πN elastic scattering partial wave amplitudes; most extracted values lie in the range 55-75 MeV .

- Roughly, $\Sigma_{\pi N}$ ought to equal the number of quarks and antiquarks in the nucleon ("three") times the isospin-averaged current quark mass $\Sigma_{\pi N} \simeq \frac{3}{2}\left(m_{u}^{0}+m_{d}^{0}\right) \simeq 26 \mathrm{MeV}$, (values from around a.d. 1976).
- Any deviation of $\Sigma_{\pi N}$ from 26 MeV was interpreted as an increase of Zweig-rule-breaking in the nucleon, i.e., as an increased $s \bar{s}$ content of the nucleon.

QUESTIONS

- Q: Why is the nucleon $\Sigma_{\pi N}$ term so large?
- Q: Can we reconcile the large nucleon $\Sigma_{\pi N}$ term (and the small spin content) of the nucleon with zero observed (hidden) strangeness content, and how?

(ONE POSSIBLE) ANSWER

- A: The method of baryon chiral multiplet mixing rather naturally gives a large Σ term ($\geq 55 \mathrm{MeV}$) with zero (hidden) strangeness content and a low (observed) value of the "spin content" of the nucleon.

METHOD:Mixing of baryon chiral multiplets

- Chiral symmetry of QCD is spontaneously broken; consequently the physical nucleon is a linear superposition ("mixture") of different non-exotic chiral multiplets:

$$
|N\rangle=\sin \theta|(6,3)\rangle+\cos \theta(\cos \varphi|(3, \overline{3})\rangle+\sin \varphi|(\overline{3}, 3)\rangle)
$$

- Here $(6,3)$ stands for $[(6,3)+(3,6)],(3, \overline{3})=[(3, \overline{3})+(\overline{3}, 3)]$ and $(3, \overline{3})=[(3, \overline{3})+(\overline{3}, 3)]$ are chiral $S U_{L}(3) \times S U_{R}(3)$ multiplets.
- The $(8,1)=[(8,1)+(1,8)]$ and $(1,8)=[(1,8)+(8,1)]$ chiral $S U_{L}(3) \times S U_{R}(3)$ multiplets lead to wrong anomalous magnetic moments - hence phenomenologically forbidden.
- Mixing angles θ, φ "parametrize" the effects of QCD dynamical chiral symmetry breaking on the nucleon.

Baryon chiral multiplets from three-quark interpolators

- The q^{3} interpolators fall into $(6,3),(3, \overline{3}),(3, \overline{3}),(8,1)$ and $(1,8)$ chiral $S U_{L}(3) \times S U_{R}(3)$ multiplets (T. D. Cohen, X. D. Ji, PRD 55, 6870 (1997)).
- We used the following, and many other non-local three-quark interpolators (PRD.81.054002):

$$
\begin{aligned}
& N_{1}=(\tilde{q} q) q, \\
& N_{2}=\left(\tilde{q} \gamma_{5} q\right) \gamma_{5} q, \\
& N_{3}=\left(\tilde{q} \gamma_{\mu} q\right) \gamma^{\mu} q, \\
& N_{4}=\left(\tilde{q} \gamma_{\mu} \gamma_{5} \tau^{i} q\right) \gamma^{\mu} \gamma_{5} \tau^{i} q, \\
& N_{5}=\left(\tilde{q} \sigma_{\mu \nu} \tau^{i} q\right) \sigma^{\mu \nu} \tau^{i} q,
\end{aligned}
$$

- (here $\left.\tilde{q}=q^{T} C \gamma_{5}\left(i \tau_{2}\right)\right)$ to explicitly calculate their chiral $S U_{L}(3) \times S U_{R}(3)$ transformation properties, i.e., chiral commutators.

Chiral multiplets' properties

TABLE I. The Abelian and the non-Abelian axial charges $(+$ sign indicates naive, - sign mirror transformation properties) and the non-Abelian chiral multiplets of $J^{P}=\frac{1}{2}$, Lorentz representation $\left(\frac{1}{2}, 0\right)$ nucleon and Δ fields; see Refs. [15-18].

Case	Field	$g_{A}^{(0)}$	$g_{A}^{(1)}$	F	D	$S U_{L}(3) \times S U_{R}(3)$
I	$N_{1}-N_{2}$	-1	+1	0	+1	$(3, \overline{3}) \oplus(\overline{3}, 3)$
II	$N_{1}+N_{2}$	+3	+1	+1	0	$(8,1) \oplus(1,8)$
III	$N_{1}^{\prime}-N_{2}^{\prime}$	+1	-1	0	-1	$(\overline{3}, 3) \oplus(3, \overline{3})$
IV	$N_{1}^{\prime}+N_{2}^{\prime}$	-3	-1	-1	0	$(1,8) \oplus(8,1)$
0	$\partial_{\mu}\left(N_{3}^{\mu}+\frac{1}{3} N_{4}^{\mu}\right)$	+1	$+\frac{5}{3}$	$+\frac{2}{3}$	+1	$(6,3) \oplus(3,6)$

- Table shows the isovector $g_{A}^{(1)}$, the flavor singlet $g_{A}^{(0)}$, and SU(3) octet F, D, axial couplings. Use them in mixing

$$
\begin{aligned}
\frac{5}{3} \sin ^{2} \theta+\cos ^{2} \theta\left(g_{A}^{(1)} \cos ^{2} \varphi+g_{A}^{(1) \prime} \sin ^{2} \varphi\right) & =1.267 \\
\sin ^{2} \theta+\cos ^{2} \theta\left(g_{A}^{(0)} \cos ^{2} \varphi+g_{A}^{(0) \prime} \sin ^{2} \varphi\right) & =0.33 \pm 0.08
\end{aligned}
$$

Explicit breaking of chiral symmetry

- $S U_{L}(3) \times S U_{R}(3)$ symmetry is not exact: it is broken by both the current quark mass terms and the EM interactions.
- How can we separate out this explicit chiral symmetry breaking from the spontaneous symmetry breaking?
- The commutator of the QCD axial charge Q_{5}^{a} and the total Hamiltonian $H=H_{\chi \text { conserv. }}+H_{\chi S B}$ is only sensitive to the explicit chiral symmetry breaking part $H_{\chi S B}$

$$
\left[Q_{5}^{b}, H\right]=\left[Q_{5}^{b}, H_{\chi \mathrm{SB}}\right]
$$

- Chiral symmetry breaking ("current") nucleon mass term can be deduced from the current quark mass term:

$$
\mathcal{H}_{\chi S B}^{\mathrm{N}}=\sum_{i=1}^{3} \bar{N}_{i} M_{N_{i}}^{0} N_{i}
$$

- The (current/bare) nucleon mass equals three times the isospin-averaged current quark mass for three-quark interpolators, or more for "higher" interpolators:

$$
M_{N_{i}}^{0} \geq 3 \bar{m}_{q}^{0}=\frac{3}{2}\left(m_{u}^{0}+m_{d}^{0}\right)
$$

Dashen's double commutator

- Double commutator of axial charges Q_{5}^{a} and Hamiltonian $H_{\chi S B}$ measures the explicit chiral symmetry breaking!

$$
\Sigma=\frac{1}{3} \delta^{a b}\left[Q_{5}^{a},\left[Q_{5}^{b}, H_{\chi \mathrm{SB}}\right]\right]
$$

- From this point on we shall work with two light flavors (u, d) only - no strange quarks. Therefore we shall use $S U_{L}(2) \times S U_{R}(2)$ multiplets instead of $S U_{L}(3) \times S U_{R}(3)$ multiplets: $\left(1, \frac{1}{2}\right) \leftrightarrow(6,3),\left(\frac{1}{2}, 0\right) \leftrightarrow(3, \overline{3}),\left(0, \frac{1}{2}\right) \leftrightarrow(\overline{3}, 3)$.
- Must evaluate this double commutator in each chiral multiplet.

RESULTS: Chiral commutators

1. In PRD. 81.054002 we derived the $\left(1, \frac{1}{2}\right)$ commutators:

$$
\begin{aligned}
{\left[Q_{5}^{a}, N_{\left(1, \frac{1}{2}\right)}\right] } & =\gamma_{5}\left(\frac{5}{3} \frac{\tau^{a}}{2} N_{\left(1, \frac{1}{2}\right)}+\frac{2}{\sqrt{3}} T^{a} \Delta_{\left(1, \frac{1}{2}\right)}\right) \\
{\left[Q_{5}^{a}, \Delta_{\left(1, \frac{1}{2}\right)}\right] } & =\gamma_{5}\left(\frac{2}{\sqrt{3}} T^{\dagger a} N_{\left(1, \frac{1}{2}\right)}+\frac{1}{3} t_{(3 / 2)}^{a} \Delta_{\left(1, \frac{1}{2}\right)}\right)
\end{aligned}
$$

2. The $\left(\frac{1}{2}, 0\right)$ and ($0, \frac{1}{2}$) chiral multiplets:

$$
\begin{aligned}
{\left[Q_{5}^{a}, N_{\left(\frac{1}{2}, 0\right)}\right] } & =\gamma_{5} \frac{\tau^{a}}{2} N_{\left(\frac{1}{2}, 0\right)} \\
{\left[Q_{5}^{a}, N_{\left(0, \frac{1}{2}\right)}\right] } & =-\gamma_{5} \frac{\tau^{a}}{2} N_{\left(0, \frac{1}{2}\right)}
\end{aligned}
$$

RESULTS: Chiral double commutators

1. The $\left(1, \frac{1}{2}\right)$ chiral multiplet:

$$
\begin{aligned}
{\left[Q_{5}^{b},\left[Q_{5}^{a}, \bar{N}_{\left(1, \frac{1}{2}\right)} N_{\left(1, \frac{1}{2}\right)}\right)\right] } & =\frac{41}{9} \delta^{a b} \bar{N}_{\left(1, \frac{1}{2}\right)} N_{\left(1, \frac{1}{2}\right)} \\
+\bar{\Delta}_{\left(1, \frac{1}{2}\right)}\left(2 \delta^{a b}\right. & \left.-\frac{4}{9}\left\{t_{(3 / 2)}^{a}, t_{(3 / 2)}^{b}\right\}\right) \Delta_{\left(1, \frac{1}{2}\right)}+\ldots \\
{\left[Q_{5}^{b},\left[Q_{5}^{a}, \bar{\Delta}_{\left(1, \frac{1}{2}\right)} \Delta_{\left(1, \frac{1}{2}\right)}\right]\right] } & =\frac{16}{9} \delta^{a b} \bar{N}_{\left(1, \frac{1}{2}\right)} N_{\left(1, \frac{1}{2}\right)} \\
+\bar{\Delta}_{\left(1, \frac{1}{2}\right)}\left(2 \delta^{a b}\right. & \left.-\frac{2}{9}\left\{t_{(3 / 2)}^{a}, t_{(3 / 2)}^{b}\right\}\right) \Delta_{\left(1, \frac{1}{2}\right)}+\ldots
\end{aligned}
$$

2. The $\left(\frac{1}{2}, 0\right)$ and ($0, \frac{1}{2}$) chiral multiplets:

$$
\begin{aligned}
& {\left[Q_{5}^{b},\left[Q_{5}^{a}, \bar{N}_{\left(\frac{1}{2}, 0\right)} N_{\left(\frac{1}{2}, 0\right)}\right]\right]=\delta^{a b} \bar{N}_{\left(\frac{1}{2}, 0\right)} N_{\left(\frac{1}{2}, 0\right)}} \\
& {\left[Q_{5}^{b},\left[Q_{5}^{a}, \bar{N}_{\left(0, \frac{1}{2}\right)} N_{\left(0, \frac{1}{2}\right)}\right]\right]=\delta^{a b} \bar{N}_{\left(0, \frac{1}{2}\right)} N_{\left(0, \frac{1}{2}\right)} .}
\end{aligned}
$$

RESULTS: Sigma terms for different chiral multiplets

1. The $\left(1, \frac{1}{2}\right)$ chiral multiplet Σ term is enhanced:

$$
\Sigma_{\pi N}\left(1, \frac{1}{2}\right)=\frac{41}{9} M_{N\left(1, \frac{1}{2}\right)}^{0}+\frac{16}{9} M_{\Delta\left(1, \frac{1}{2}\right)}^{0}
$$

2. The $\left(\frac{1}{2}, 0\right)$ and ($0, \frac{1}{2}$) Σ terms are "trivial" (i.e. no enhancement)

$$
\begin{aligned}
\Sigma_{\pi N}\left(\frac{1}{2}, 0\right) & =\left\langle N\left(\frac{1}{2}, 0\right)\right| \Sigma\left(\frac{1}{2}, 0\right)\left|N\left(\frac{1}{2}, 0\right)\right\rangle \\
& =M_{\left(\frac{1}{2}, 0\right)}^{0}=\Sigma_{\pi N}\left(0, \frac{1}{2}\right)
\end{aligned}
$$

RESULTS: Nucleon Σ term

- Nucleon Σ term

$$
\begin{aligned}
\Sigma_{\pi N} & =\sin ^{2} \theta\left(\frac{41}{9} M_{N\left(1, \frac{1}{2}\right)}^{0}+\frac{16}{9} M_{\Delta\left(1, \frac{1}{2}\right)}^{0}\right) \\
& +\cos ^{2} \theta\left(\cos ^{2} \varphi M_{N\left(\frac{1}{2}, 0\right)}^{0}+\sin ^{2} \varphi M_{N\left(\frac{1}{2}, 0\right)}^{0}\right)
\end{aligned}
$$

- For simplicity, assume $M_{N\left(1, \frac{1}{2}\right)}^{0}=M_{\Delta\left(1, \frac{1}{2}\right)}^{0}=M_{N\left(\frac{1}{2}, 0\right)}^{0}=M_{N}^{0}$.

$$
\Sigma_{\pi N}=\left(1+\frac{16}{3} \sin ^{2} \theta\right) M_{N}^{0}
$$

- Note that the enhancement term $\frac{16}{3} \sin ^{2} \theta$ is due to the factor $\frac{41+16}{9}=\frac{19}{3} \approx 6.33$ appearing in the $\left[\left(1, \frac{1}{2}\right) \oplus\left(\frac{1}{2}, 1\right)\right]$ chiral multiplet.

RESULTS: Nucleon Σ term II

- Chiral mixing tells us

$$
\frac{8}{3} \sin ^{2} \theta=g_{A}^{(0)}+g_{A}^{(3)}
$$

- and the π-nucleon Σ term becomes

$$
\Sigma_{\pi N}=\left(1+2\left(g_{A}^{(0)}+g_{A}^{(3)}\right)\right) \frac{3}{2}\left(m_{u}^{0}+m_{d}^{0}\right)
$$

- PDG2012 has $m_{u}^{0}=2.3 \times 1.35 \mathrm{MeV}$ and $m_{d}^{0}=4.8 \times 1.35$ MeV , yielding $\frac{1}{2}\left(m_{u}^{0}+m_{d}^{0}\right) \approx 4.73 \mathrm{MeV}$ (substantially lower than before - cf. 7.6 MeV in PDG1998)

RESULTS: Discussion I

- Inserting $g_{A}^{(3)}=1.267$ and the quark masses we find

$$
\Sigma_{\pi N}=59.5 \pm 2.3 \mathrm{MeV}
$$

with $g_{A}^{(0)}=0.33 \pm 0.03 \pm 0.05[\mathrm{~W}$. Vogelsang, J. Phys. G 34, S149 (2007)]

- or

$$
\Sigma_{\pi N}=58.0 \pm 4.5 \mathrm{MeV}
$$

with $g_{A}^{(0)}=0.28 \pm 0.16[B$. W. Filippone and X. -D. Ji, Adv. Nucl. Phys. 26, 1 (2001)]

RESULTS: Discussion II

- This is actually an inequality

$$
\Sigma_{\pi N} \geq\left(1+2\left(g_{A}^{(0)}+g_{A}^{(3)}\right)\right) \frac{3}{2}\left(m_{u}^{0}+m_{d}^{0}\right)
$$

when we realize that

$$
M_{N\left(1, \frac{1}{2}\right)}^{0}, M_{\Delta\left(1, \frac{1}{2}\right)}^{0} \geq M_{N\left(\frac{1}{2}, 0\right)}^{0}=M_{N}^{0}=\frac{3}{2}\left(m_{u}^{0}+m_{d}^{0}\right)=14.2 \mathrm{MeV}
$$

RESULTS: Discussion III

- Roughly one half of the total value $(\approx 30 \mathrm{MeV})$ of $\Sigma_{\pi N}$ can be attributed to the Δ d.o.f.: $\frac{16}{9} M_{N}^{0} \sin ^{2} \theta \approx 15 \mathrm{MeV}$ is the "direct" Δ contribution
- and the same amount ($\approx 15 \mathrm{MeV}$) comes about from the "virtual" Δ states.
- Similar results appear in a recent baryon chiral perturbation calculation of Alarcon et al., arXiv:1209.2870 [hep-ph].

SUMMARY

- We calculated $\Sigma_{\pi N}$ in the chiral mixing formalism and found $\Sigma_{\pi N} \geq\left(1+2\left(g_{A}^{(0)}+g_{A}^{(3)}\right)\right) \frac{3}{2}\left(m_{u}^{0}+m_{d}^{0}\right) \simeq 58 \mathrm{MeV}$, four times larger than naively expected.
- Do not need any $\bar{s} s$ content in the nucleon: entire $\Sigma_{\pi N}$ enhancement is due to ($1, \frac{1}{2}$) chiral multiplet, which is also responsible for $g_{A}^{(3)}=1.267$.
- The result also depends on the "spin content of nucleon" $g_{A}^{(0)}=0.28 \pm 0.16$, which is correctly reproduced (not a prediction) in this approach.
- Roughly one half $(\approx 30 \mathrm{MeV})$ of the total value of $\Sigma_{\pi N}$ can be attributed to the Δ degrees-of-freedom.

