Nucleon Σ Term in the Chiral Mixing Approach

V. Dmitrašinović (Institute of Physics, Belgrade, Serbia) collaboration with Hua-Xing Chen and Atsushi Hosaka

> Excited QCD 2014, Babin Dol, Bjelašnica, 2nd-8th February, 2014

Table of contents

- INTRODUCTION
- METHOD
- RESULTS
- SUMMARY, CONCLUSIONS

MOTIVATION

- ► The nucleon Σ term, together with the flavor-singlet nucleon axial coupling constant, i.e., the "nucleon spin problem", has long been viewed as a measure of the "strangeness content", or $(s\bar{s})$ in the nucleon $y = \frac{2\langle N|\bar{s}s|N\rangle}{\langle N|\bar{u}u+\bar{u}u|N\rangle}$. [T. P. Cheng, Phys. Rev. D13, 2161 (1976)]
- A number of experiments (SAMPLE, HAPPEX, G0, etc.) have measured the strangeness content in nucleon observables (other than the Σ term), but found no significant signal. [A. Acha et al. (HAPPEX Collaboration), Phys. Rev. Lett. 98, 032301 (2007). D. Androic et al. (G0 Collaboration), Phys. Rev. Lett. 104, 012001 (2010)]

FACTS

• The pion-nucleon Σ term

$$\Sigma_{\pi N} = rac{1}{3} \delta^{ab} \langle N | [Q_5^a, [Q_5^b, H_{\chi ext{SB}}]] | N
angle$$

can be extracted from measured πN elastic scattering partial wave amplitudes; most extracted values lie in the range 55 -75 MeV.

- ► Roughly, $\Sigma_{\pi N}$ ought to equal the number of quarks and antiquarks in the nucleon ("three") times the isospin-averaged current quark mass $\Sigma_{\pi N} \simeq \frac{3}{2} \left(m_u^0 + m_d^0 \right) \simeq 26$ MeV, (values from around a.d. 1976).
- Any deviation of Σ_{πN} from 26 MeV was interpreted as an increase of Zweig-rule-breaking in the nucleon, i.e., as an increased ss̄ content of the nucleon.

QUESTIONS

- Q: Why is the nucleon $\Sigma_{\pi N}$ term so large?
- Q: Can we reconcile the large nucleon Σ_{πN} term (and the small spin content) of the nucleon with zero observed (hidden) strangeness content, and how?

(ONE POSSIBLE) ANSWER

A: The method of baryon chiral multiplet mixing rather naturally gives a large Σ term (≥ 55 MeV) with zero (hidden) strangeness content and a low (observed) value of the "spin content" of the nucleon.

METHOD: Mixing of baryon chiral multiplets

 Chiral symmetry of QCD is spontaneously broken; consequently the physical nucleon is a linear superposition ("mixture") of different non-exotic chiral multiplets:

$$|N\rangle = \sin \theta |(6,3)\rangle + \cos \theta (\cos \varphi |(3,\bar{3})\rangle + \sin \varphi |(\bar{3},3)\rangle)$$

- ▶ Here (6,3) stands for [(6,3) + (3,6)], (3,3) = [(3,3) + (3,3)] and (3,3) = [(3,3) + (3,3)] are chiral SU_L(3) × SU_R(3) multiplets.
- ► The (8,1) = [(8,1) + (1,8)] and (1,8) = [(1,8) + (8,1)] chiral SU_L(3) × SU_R(3) multiplets lead to wrong anomalous magnetic moments - hence phenomenologically forbidden.
- Mixing angles θ, φ "parametrize" the effects of QCD dynamical chiral symmetry breaking on the nucleon.

Baryon chiral multiplets from three-quark interpolators

- The q³ interpolators fall into (6,3), (3,3), (3,3), (8,1) and (1,8) chiral SU_L(3) × SU_R(3) multiplets (T. D. Cohen, X. D. Ji, PRD 55, 6870 (1997)).
- We used the following, and many other non-local three-quark interpolators (PRD.81.054002):

$$\begin{array}{lll} N_1 &=& (\tilde{q}q)q, \\ N_2 &=& (\tilde{q}\gamma_5 q)\gamma_5 q, \\ N_3 &=& (\tilde{q}\gamma_\mu q)\gamma^\mu q, \\ N_4 &=& (\tilde{q}\gamma_\mu \gamma_5 \tau^i q)\gamma^\mu \gamma_5 \tau^i q, \\ N_5 &=& (\tilde{q}\sigma_{\mu\nu} \tau^i q)\sigma^{\mu\nu} \tau^i q, \end{array}$$

(here q̃ = q^TCγ₅(iτ₂)) to explicitly calculate their chiral SU_L(3) × SU_R(3) transformation properties, i.e., chiral commutators.

Chiral multiplets' properties

TABLE I. The Abelian and the non-Abelian axial charges (+ sign indicates naive, - sign mirror transformation properties) and the non-Abelian chiral multiplets of $J^P = \frac{1}{2}$, Lorentz representation $(\frac{1}{2}, 0)$ nucleon and Δ fields; see Refs. [15–18].

Case	Field	$g_{A}^{(0)}$	$g_{A}^{(1)}$	F	D	$SU_L(3) \times SU_R(3)$
I	$N_1 - N_2$	-1	+1	0	+1	(3, 3) ⊕ (3, 3)
II	$N_1 + N_2$	+3	+1	+1	0	(8, 1) ⊕ (1, 8)
III	$N'_1 - N'_2$	+1	-1	0	-1	(3, 3) ⊕ (3, 3)
IV	$N'_1 + N'_2$	-3	-1	-1	0	(1, 8) ⊕ (8, 1)
0	$\partial_{\mu}(N_{3}^{\mu} + \frac{1}{3}N_{4}^{\mu})$	+1	$+\frac{5}{3}$	$+\frac{2}{3}$	+1	(6, 3) ⊕ (3, 6)

Table shows the isovector g_A⁽¹⁾, the flavor singlet g_A⁽⁰⁾, and SU(3) octet F, D, axial couplings. Use them in mixing

$$\frac{5}{3}\sin^2\theta + \cos^2\theta \left(g_A^{(1)}\cos^2\varphi + g_A^{(1)\prime}\sin^2\varphi\right) = 1.267$$

$$\sin^2\theta + \cos^2\theta \left(g_A^{(0)}\cos^2\varphi + g_A^{(0)\prime}\sin^2\varphi\right) = 0.33 \pm 0.08$$

Explicit breaking of chiral symmetry

- ► SU_L(3) × SU_R(3) symmetry is not exact: it is broken by both the current quark mass terms and the EM interactions.
- How can we separate out this explicit chiral symmetry breaking from the spontaneous symmetry breaking?
- ► The commutator of the QCD axial charge Q_5^a and the total Hamiltonian $H = H_{\chi conserv.} + H_{\chi SB}$ is only sensitive to the *explicit* chiral symmetry breaking part $H_{\chi SB}$

$$[Q_5^b, H] = [Q_5^b, H_{\chi SB}].$$

 Chiral symmetry breaking ("current") nucleon mass term can be deduced from the current quark mass term:

$$\mathcal{H}_{\chi SB}^{\mathrm{N}} = \sum_{i=1}^{3} ar{N}_{i} M_{N_{i}}^{0} N_{i}$$

The (current/bare) nucleon mass equals three times the isospin-averaged current quark mass for three-quark interpolators, or more for "higher" interpolators:

$$M_{N_i}^0 \ge 3\bar{m}_q^0 = rac{3}{2} \left(m_u^0 + m_d^0
ight)$$

Dashen's double commutator

 Double commutator of axial charges Q₅^a and Hamiltonian H_{\carcolor SB} measures the explicit chiral symmetry breaking!

$$\Sigma = \frac{1}{3} \delta^{ab} [Q_5^a, [Q_5^b, H_{\chi \mathrm{SB}}]]$$

- From this point on we shall work with two light flavors (u, d) only no strange quarks. Therefore we shall use SU_L(2) × SU_R(2) multiplets instead of SU_L(3) × SU_R(3) multiplets: (1, ¹/₂) ↔ (6, 3), (¹/₂, 0) ↔ (3, 3), (0, ¹/₂) ↔ (3, 3).
- Must evaluate this double commutator in each chiral multiplet.

RESULTS: Chiral commutators

1. In PRD.81.054002 we derived the $(1, \frac{1}{2})$ commutators:

$$\begin{split} & [Q_5^a, N_{(1,\frac{1}{2})}] = \gamma_5 \left(\frac{5}{3}\frac{\tau^a}{2}N_{(1,\frac{1}{2})} + \frac{2}{\sqrt{3}}T^a \Delta_{(1,\frac{1}{2})}\right), \\ & [Q_5^a, \Delta_{(1,\frac{1}{2})}] = \gamma_5 \left(\frac{2}{\sqrt{3}}T^{\dagger a}N_{(1,\frac{1}{2})} + \frac{1}{3}t^a_{(3/2)}\Delta_{(1,\frac{1}{2})}\right) \end{split}$$

2. The $(\frac{1}{2}, 0)$ and $(0, \frac{1}{2})$ chiral multiplets:

$$[Q_5^a, N_{(\frac{1}{2},0)}] = \gamma_5 \frac{\tau^a}{2} N_{(\frac{1}{2},0)},$$
$$[Q_5^a, N_{(0,\frac{1}{2})}] = -\gamma_5 \frac{\tau^a}{2} N_{(0,\frac{1}{2})}$$

RESULTS: Chiral double commutators

1. The $(1, \frac{1}{2})$ chiral multiplet:

$$\begin{split} \left[Q_5^b, \left[Q_5^a, \bar{N}_{(1,\frac{1}{2})} N_{(1,\frac{1}{2})} \right] &= \frac{41}{9} \delta^{ab} \bar{N}_{(1,\frac{1}{2})} N_{(1,\frac{1}{2})} \\ &+ \bar{\Delta}_{(1,\frac{1}{2})} \left(2 \delta^{ab} - \frac{4}{9} \left\{ t^a_{(3/2)}, t^b_{(3/2)} \right\} \right) \Delta_{(1,\frac{1}{2})} + \dots \\ \left[Q_5^b, \left[Q_5^a, \bar{\Delta}_{(1,\frac{1}{2})} \Delta_{(1,\frac{1}{2})} \right] \right] &= \frac{16}{9} \delta^{ab} \bar{N}_{(1,\frac{1}{2})} N_{(1,\frac{1}{2})} \\ &+ \bar{\Delta}_{(1,\frac{1}{2})} \left(2 \delta^{ab} - \frac{2}{9} \left\{ t^a_{(3/2)}, t^b_{(3/2)} \right\} \right) \Delta_{(1,\frac{1}{2})} + \dots \end{split}$$

2. The $(\frac{1}{2}, 0)$ and $(0, \frac{1}{2})$ chiral multiplets:

$$\begin{bmatrix} Q_5^b, [Q_5^a, \bar{N}_{(\frac{1}{2},0)}N_{(\frac{1}{2},0)}] \end{bmatrix} = \delta^{ab}\bar{N}_{(\frac{1}{2},0)}N_{(\frac{1}{2},0)} \\ \begin{bmatrix} Q_5^b, [Q_5^a, \bar{N}_{(0,\frac{1}{2})}N_{(0,\frac{1}{2})}] \end{bmatrix} = \delta^{ab}\bar{N}_{(0,\frac{1}{2})}N_{(0,\frac{1}{2})}.$$

RESULTS: Sigma terms for different chiral multiplets

1. The $(1, \frac{1}{2})$ chiral multiplet Σ term is enhanced:

$$\Sigma_{\pi N}(1, \frac{1}{2}) = \frac{41}{9} M^0_{N(1, \frac{1}{2})} + \frac{16}{9} M^0_{\Delta(1, \frac{1}{2})}$$

2. The $(\frac{1}{2}, 0)$ and $(0, \frac{1}{2}) \Sigma$ terms are "trivial" (i.e. no enhancement)

$$\begin{split} \Sigma_{\pi N}(\frac{1}{2},0) &= \langle N(\frac{1}{2},0) | \Sigma(\frac{1}{2},0) | N(\frac{1}{2},0) \rangle \\ &= M^{0}_{(\frac{1}{2},0)} = \Sigma_{\pi N}(0,\frac{1}{2}) \end{split}$$

RESULTS: Nucleon Σ term

Nucleon Σ term

$$\begin{split} \Sigma_{\pi N} &= \sin^2 \theta \left(\frac{41}{9} M^0_{N(1,\frac{1}{2})} + \frac{16}{9} M^0_{\Delta(1,\frac{1}{2})} \right) \\ &+ \cos^2 \theta \left(\cos^2 \varphi M^0_{N(\frac{1}{2},0)} + \sin^2 \varphi M^0_{N(\frac{1}{2},0)} \right) \,, \end{split}$$

► For simplicity, assume $M^0_{N(1,\frac{1}{2})} = M^0_{\Delta(1,\frac{1}{2})} = M^0_{N(\frac{1}{2},0)} = M^0_N$.

$$\Sigma_{\pi N} = \left(1 + \frac{16}{3}\sin^2\theta\right) M_N^0.$$

Note that the enhancement term ¹⁶/₃ sin² θ is due to the factor ⁴¹⁺¹⁶/₉ = ¹⁹/₃ ≈ 6.33 appearing in the [(1, ¹/₂) ⊕ (¹/₂, 1)] chiral multiplet.

RESULTS: Nucleon Σ term II

Chiral mixing tells us

$$\frac{8}{3}\sin^2\theta = g_A^{(0)} + g_A^{(3)}$$

• and the π -nucleon Σ term becomes

$$\Sigma_{\pi N} = \left(1 + 2\left(g_A^{(0)} + g_A^{(3)}
ight)
ight)rac{3}{2}\left(m_u^0 + m_d^0
ight)$$

▶ PDG2012 has $m_u^0 = 2.3 \times 1.35$ MeV and $m_d^0 = 4.8 \times 1.35$ MeV, yielding $\frac{1}{2} (m_u^0 + m_d^0) \approx 4.73$ MeV (substantially lower than before - cf. 7.6 MeV in PDG1998)

RESULTS: Discussion I

• Inserting $g_A^{(3)} = 1.267$ and the quark masses we find

$$\Sigma_{\pi N} = 59.5 \pm 2.3 \mathrm{MeV},$$

with $g_A^{(0)} = 0.33 \pm 0.03 \pm 0.05$ [W. Vogelsang, J. Phys. G **34**, S149 (2007)]

or

$$\Sigma_{\pi N} = 58.0 \pm 4.5 \mathrm{MeV},$$

with $g_A^{(0)} = 0.28 \pm 0.16$ [B. W. Filippone and X. -D. Ji, Adv. Nucl. Phys. **26**, 1 (2001)]

RESULTS: Discussion II

This is actually an inequality

$$\Sigma_{\pi N} \ge \left(1 + 2\left(g_A^{(0)} + g_A^{(3)}\right)\right) \frac{3}{2}\left(m_u^0 + m_d^0\right)$$

when we realize that

$$M^{0}_{N(1,\frac{1}{2})}, M^{0}_{\Delta(1,\frac{1}{2})} \ge M^{0}_{N(\frac{1}{2},0)} = M^{0}_{N} = \frac{3}{2} \left(m^{0}_{u} + m^{0}_{d} \right) = 14.2 \text{MeV}$$

RESULTS: Discussion III

- ► Roughly one half of the total value (\approx 30 MeV) of $\Sigma_{\pi N}$ can be attributed to the Δ d.o.f.: $\frac{16}{9}$ $M_N^0 \sin^2 \theta \approx 15$ MeV is the "direct" Δ contribution
- \blacktriangleright and the same amount (≈ 15 MeV) comes about from the "virtual" Δ states.
- Similar results appear in a recent baryon chiral perturbation calculation of Alarcon et al., arXiv:1209.2870 [hep-ph].

SUMMARY

- We calculated $\Sigma_{\pi N}$ in the chiral mixing formalism and found $\Sigma_{\pi N} \ge \left(1 + 2\left(g_A^{(0)} + g_A^{(3)}\right)\right) \frac{3}{2}\left(m_u^0 + m_d^0\right) \simeq 58$ MeV, four times larger than naively expected.
- ► Do not need any \overline{ss} content in the nucleon: entire $\Sigma_{\pi N}$ enhancement is due to $(1, \frac{1}{2})$ chiral multiplet, which is also responsible for $g_A^{(3)} = 1.267$.
- The result also depends on the "spin content of nucleon" $g_A^{(0)} = 0.28 \pm 0.16$, which is correctly reproduced (not a prediction) in this approach.
- ► Roughly one half (\approx 30 MeV) of the total value of $\Sigma_{\pi N}$ can be attributed to the Δ degrees-of-freedom.