Probing nucleons with photons at the quark level

Gernot Eichmann
University of Giessen, Germany

Excited QCD, Bjelasnica Mountain, Sarajevo
February 7, 2014

Motivation

Goal: compute hadron properties (ground state \& excitations, form factors, scattering amplitudes, etc.) from quark-gluon substructure in QCD.

QCD's Green functions \leftrightarrow "Dyson-Schwinger approach":
Nonperturbative, covariant, low and high energies, light and heavy quarks. But: truncations!

- Baryon spectroscopy from three-body Faddeev equation

GE, Alkofer, Krassnigg, Nicmorus, PRL 104 (2010)

- Elastic \& transition form factors for N and Δ

GE, PRD 84 (2011); GE, Fischer, EPJ A48 (2012);
GE, Nicmorus, PRD 85 (2012); Sanchis-Alepuz et al., PRD 87 (2013), ...

- Nucleon Compton scattering

GE, Fischer, PRD 85 (2012) \& PRD 87 (2013)

- Tetraquark interpretation for σ meson

Heupel, GE, Fischer, PLB 718 (2012)

- Three-gluon vertex from its DSE GE, Williams, Alkofer, Vujinovic, 1402.1365
- Quark-gluon vertex from its DSE Hopfer, Windisch, GE, Alkofer, in preparation
\rightarrow see talk by Milan Vujinovic
\rightarrow see talk by Markus Hopfer

Dyson-Schwinger equations

QCD Lagrangian:

quarks, gluons (+ ghosts)

$$
\mathcal{L}=\bar{\psi}(x)(i \not \partial+g \mathscr{A}-M) \psi(x)-\frac{1}{4} F_{\mu \nu}^{a} F_{a}^{\mu \nu}
$$

QCD \& hadron properties are encoded in QCD's Green functions.
Their quantum equations of motion are the Dyson-Schwinger equations (DSEs):

- Quark propagator:

$$
0^{-1}
$$

$=$ \qquad -1

- Quark-gluon vertex:
- Gluon propagator:
- Gluon selfinteractions, ghosts,...


```
morm
```

morm
= mmom

```







\section*{Dyson-Schwinger equations}

\section*{QCD Lagrangian:}
quarks, gluons (+ ghosts)
\[
\mathcal{L}=\bar{\psi}(x)(i \not \partial+g \mathscr{A}-M) \psi(x)-\frac{1}{4} F_{\mu \nu}^{a} F_{a}^{\mu \nu}
\]

QCD \& hadron properties are encoded in QCD's Green functions.
Their quantum equations of motion are the Dyson-Schwinger equations (DSEs):
- Quark propagator:
\[
-<^{-1}
\]
- Quark-gluon vertex:

- Gluon propagator:
```

morom

```
- Gluon selfinteractions, ghosts, ...
\(\qquad\) \(-1\)

- Truncation \(\Rightarrow\) closed system, solveable. Ansätze for Green functions that are not solved (based on pQCD, lattice, FRG, ...)
- Applications:

Origin of confinement, QCD phase diagram, Hadron physics

\section*{Dynamical quark mass}

Fischer, J. Phys. G 32 (2006)
- Dynamical chiral symmetry breaking: generates "constituent-quark masses"
- Realized in quark Dyson-Schwinger eq:


If (gluon propagator \(\times\) quark-gluon vertex) is strong enough ( \(\alpha>\alpha_{\text {crit }}\) ): momentum-dependent quark mass \(M\left(p^{2}\right)\)
- Already visible in simpler models (NJL, Munczek-Nemirovsky)
- Mass generation for light hadrons


\section*{Hadrons: poles in Green functions}
- Quark four-point function:
\(\langle 0| \mathrm{T} \psi\left(x_{1}\right) \bar{\psi}\left(x_{2}\right) \psi\left(x_{3}\right) \bar{\psi}\left(x_{4}\right)|0\rangle\)


Bethe-Salpeter WF:
\(\langle 0| T \psi\left(x_{1}\right) \bar{\psi}\left(x_{2}\right)|H\rangle\)
- Quark six-point function:


Faddeev WF

\section*{Hadrons: poles in Green functions}
- Quark four-point function:
\(\langle 0| \mathrm{T} \psi\left(x_{1}\right) \bar{\psi}\left(x_{2}\right) \psi\left(x_{3}\right) \bar{\psi}\left(x_{4}\right)|0\rangle\)

- Quark six-point function:


\section*{Faddeev WF}
- Quark-antiquark vertices: (Currents: \(J^{\mu}=\bar{\psi} \Gamma^{\mu} \psi\) )
\(\langle 0| \mathrm{T} J^{\mu}(x) \psi\left(x_{1}\right) \bar{\psi}\left(x_{2}\right)|0\rangle\)


Decay constant: \(\langle 0| J^{\mu}|H\rangle\)
- Current correlators:

Quark-photon vertex has \(\rho\)-meson poles: 'vector-meson dominance'
\(\langle 0| \mathrm{T} J^{\mu}(x) J^{\nu}(y)|0\rangle\)
Bethe-Salpeter WF:
\(\langle 0| T \psi\left(x_{1}\right) \bar{\psi}\left(x_{2}\right)|H\rangle\)
are


\section*{Bethe-Salpeter equations}
- Inhomogeneous BSE for quark four-point function:


Analogy: geometric series
\(f(x)=1+x f(x) \quad \Rightarrow \quad f(x)=\frac{1}{1-x}\)
\(|x|<1 \Rightarrow f(x)=1+x+x^{2}+\ldots\)
- Homogeneous BSE for bound-state wave function:

- Inhomogeneous BSE for quark-antiquark vertices:


What's the kernel K?
Related to Green functions via symmetries: CVC, PCAC \(\Rightarrow\) vector, axialvector WTIs

Relate \(\mathbf{K}\) with quark propagator and quark-gluon vertex

\section*{Structure of the kernel}

Rainbow-ladder: tree-level vertex + effective coupling



Ansatz for effective coupling:
Maris, Roberts, Tandy, PRC 56 (1997), PRC 60 (1999)
\[
\alpha\left(k^{2}\right)=\alpha_{\mathrm{IR}}\left(k_{\Lambda^{2}}^{2}, \eta\right)+\alpha_{\mathrm{UV}}\left(k^{2}\right)
\]

Adjust infrared scale \(\Lambda\) to physical observable,
keep width \(\eta\) as parameter
\(\checkmark\) DCSB, CVC, PCAC
\(\Rightarrow\) mass generation
\(\Rightarrow\) Goldstone theorem, massless pion in \(\chi \mathrm{L}\)
\(\Rightarrow\) em. current conservation
\(\Rightarrow\) Goldberger-Treiman
~ No pion cloud, no flavor dependence, no \(U_{A}(1)\) anomaly, no dynamical decay widths


Pion cloud: need infinite summation of t -channel gluons

\section*{Mesons}
- Pseudoscalar \& vector mesons: rainbow-ladder is good.
Masses, form factors, decays, \(\pi \pi\) scattering lengths, PDFs
Maris, Roberts, Tandy, PRC 56 (1997), PRC 60 (1999); Bashir et al., Commun. Theor. Phys. 58 (2012)

Pion is Goldstone boson, satisfies GMOR: \(m_{\pi}{ }^{2} \sim m_{q}\)

- Need to go beyond rainbow-ladder for excited, scalar, axialvector mesons, \(\eta-\eta^{\prime}\), etc.
Fischer, Williams \& Chang, Roberts, PRL 103 (2009)
Alkofer et al., EPJ A38 (2008), Bhagwat et al., PRC 76 (2007)
- Heavy mesons Blank, Krassnigg, PRD 84 (2011)
\(M[\mathrm{GeV}]\)


\section*{Baryons}

Covariant Faddeev equation: kernel contains 2PI and 3PI parts


Current matrix element: \(\langle H| J^{\mu}|H\rangle=\bar{\chi}\left(G^{-1}\right)^{\mu} \chi\)
- Impulse approximation + gauged kernel \(\left(G^{-1}\right)^{\mu}=\left(G_{0}^{-1}\right)^{\mu}-K^{\mu}\)

Kvinikhidze, Blankleider, PRC 60 (1999)
Oettel, Pichowsky, von Smekal, EPJ A 8 (2000)


\section*{Truncation:}
- Quark-quark correlations only (dominant structure in baryons?)
- Rainbow-ladder gluon exchange
- But full Poincaré-covariant structure of Faddeev amplitude retained
\(\rightarrow\) Same input as for mesons, quark from DSE, no additional parameters!

\section*{Baryons}

Covariant Faddeev equation: kernel contains 2PI and 3PI parts


Current matrix element: \(\langle H| J^{\mu}|H\rangle=\bar{\chi}\left(G^{-1}\right)^{\mu} \chi\)
- Impulse approximation + gauged kernel \(\left(G^{-1}\right)^{\mu}=\left(G_{0}^{-1}\right)^{\mu}-K^{\mu}\)


\section*{Truncation:}
- Quark-quark correlations only (dominant structure in baryons?)
- Rainbow-ladder gluon exchange
- But full Poincaré-covariant structure of Faddeev amplitude retained
\(\rightarrow\) Same input as for mesons, quark from DSE, no additional parameters!

\section*{Baryon masses}
- Good agreement with experiment \& lattice. Pion mass is also calculated.
- Same kernel as for mesons, scale set by \(f_{\pi}\). Full covariant wave functions, no further parameters or approximations.
- Masses not sensitive to effective interaction.
- Diquark clustering in baryons:
similar results in quark-diquark approach
Oettel, Alkofer, von Smekal, EPJ A8 (2000)
GE, Cloet, Alkofer, Krassnigg, Roberts, PRC 79 (2009)
- Excited baryons (e.g. Roper): also quark-diquark structure?
Chen, Chang, Roberts, Wan, Wilson, FBS 53 (2012)
- Role of pion cloud?

Sanchis-Alepuz, Fischer, Kubrak, 1401.3183
- Role of three-gluon vertex?

GE, Williams, Alkofer, Vujinovic, 1402.1365


Delta mass:
Sanchis-Alepuz et al., PRD 84 (2011)

Nucleon mass:
GE, Alkofer, Krassnigg, Nicmorus, PRL 104 (2010);
GE, PRD 84 (2011)
\(\rho\)-meson mass:
Maris \& Tandy,
PRC 60 (1999)

\section*{Electromagnetic form factors}

Nucleon charge radii: isovector (p-n) Dirac (F1) radius

- Pion-cloud effects missing in chiral region ( \(\Rightarrow\) divergence!), agreement with lattice at larger quark masses.

Nucleon magnetic moments:
isovector ( \(p-n\) ), isoscalar ( \(p+n\) )

- But: pion-cloud cancels in \(\kappa^{s} \Leftrightarrow\) quark core

Exp: \(\quad \kappa^{s}=-0.12\)
Calc: \(\kappa^{s}=-0.12(1)\)
GE, PRD 84 (2011)

\section*{Nucleon- \(\Delta-\gamma\) transition}

- Magnetic dipole transition \(\left(G_{M}^{*}\right)\) dominant: quark spin flip (s wave). "Core \(+25 \%\) pion cloud"
- Electric \& Coulomb quadrupole transitions small \& negative, encode deformation.

Ratios reproduced without pion cloud:
OAM from relativistic \(\mathbf{p}\) waves in the quark core!
Eichmann \& Nicmorus, PRD 85 (2012)


\section*{Quark-photon vertex}

Current matrix element: \(\langle H| J^{\mu}|H\rangle=\)


Vector WTI \(Q^{\mu} \Gamma^{\mu}(k, Q)=S^{-1}\left(k_{+}\right)-S^{-1}\left(k_{-}\right)\) determines vertex up to transverse parts:
\[
\Gamma^{\mu}(k, Q)=\Gamma_{\mathrm{BC}}^{\mu}(k, Q)+\Gamma_{\mathrm{T}}^{\mu}(k, Q)
\]
- Ball-Chiu vertex, completely specified by
\[
\Sigma_{A}:=\frac{A\left(k_{+}^{2}\right)+A\left(k_{-}^{2}\right)}{2},
\] dressed fermion propagator: Ball, Chiu, PRD 22 (1980)
\[
\Delta_{A}:=\frac{A\left(k_{+}^{2}\right)-A\left(k_{-}^{2}\right)}{k_{+}^{2}-k_{-}^{2}},
\]
\[
\Gamma_{\mathrm{BC}}^{\mu}(k, Q)=i \gamma^{\mu} \Sigma_{A}+2 k^{\mu}\left(i k \Delta_{A}+\Delta_{B}\right)
\]
\[
\Delta_{B}:=\frac{B\left(k_{+}^{2}\right)-B\left(k_{-}^{2}\right)}{k_{+}^{2}-k_{-}^{2}}
\]
- Transverse part: free of kinematic singularities, tensor structures \(\sim Q, Q^{2}, Q^{3}\), contains meson poles Kizilersu, Reenders, Pennington, PRD 92 (1995); GE, Fischer, PRD 87 (2013) \(t_{a b}^{\mu \nu}:=a \cdot b \delta^{\mu \nu}-b^{\mu} a^{\nu}\)
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{Dominant} & \(\tau_{1}^{\mu}=t_{Q Q}^{\mu \nu} \gamma^{\nu}\), \\
\hline & \(\tau_{2}^{\mu}=t_{Q Q}^{\mu \nu} k \cdot Q \frac{i}{2}\left[\gamma^{\nu}, k\right]\), \\
\hline \multirow[t]{2}{*}{Anomalous magnetic moment} & \(\tau_{3}^{\mu}=\frac{i}{2}\left[\gamma^{\mu}, \not Q\right]\), \\
\hline & \(\tau_{4}^{\mu}=\frac{1}{6}\left[\gamma^{\mu}, k, \not \subset Q\right]\), \\
\hline
\end{tabular}
\[
\begin{aligned}
\tau_{5}^{\mu} & =t_{Q Q}^{\mu \nu} i k^{\nu} \\
\tau_{6}^{\mu} & =t_{Q Q}^{\mu \nu} k^{\nu} k \\
\tau_{7}^{\mu} & =t_{Q k}^{\mu \nu} k \cdot Q \gamma^{\nu}, \quad \text { Curtis, Pennington, PRD 42 (1990) } \\
\tau_{8}^{\mu} & =t_{Q k}^{\mu \nu} \frac{i}{2}\left[\gamma^{\nu}, k\right]
\end{aligned}
\]

\section*{Quark-photon vertex}

Structure of quark-photon vertex is reflected in form factors.
Experimentally (sketch):


Calculated:
(Sketch)

- Ball-Chiu part is dominant (em. gauge invariance): charge, magnetic moments
- Transverse part changes slope and charge radii. No pion cloud in RL \(\Rightarrow\) timelike \(\rho\)-meson poles

\section*{Quark-photon vertex}

Structure of quark-photon vertex is reflected in form factors.
Experimentally (sketch):


Calculated:
(Sketch)

- Ball-Chiu part is dominant (em. gauge invariance): charge, magnetic moments
- Transverse part changes slope and charge radii. No pion cloud in RL \(\Rightarrow\) timelike \(\rho\)-meson poles

\section*{Pion form factor}


Spacelike and timelike region:
A. Krassnigg (Schladming 2010) extension of Maris \& Tandy, Nucl. Phys. Proc. Suppl. 161 (2006)

Include pion cloud:
Kubrak et al., in preparation

\section*{Hadron scattering}

Can we extend this to four-body scattering processes?
GE, Fischer, PRD 85 (2012)


Compton scattering, DVCS, \(2 \gamma\) physics

\[
\bar{p} p \rightarrow \gamma \gamma^{*}
\] annihilation


Meson photo- and electroproduction


Meson production


Nucleon-pion scattering


Pion Compton scattering
\(\Rightarrow\) Nonperturbative description of hadron-photon and hadron-meson scattering

\section*{Nucleon Compton scattering}

\[
\begin{aligned}
\tau & =\frac{Q^{2}}{4 M^{2}} \\
\tau^{\prime} & =\frac{Q^{\prime 2}}{4 M^{2}} \\
\operatorname{vcs} / \pi & =\frac{\Delta^{2}}{4 M^{2}} \\
v & =\frac{s-u}{4 M^{2}}=-\frac{\Sigma \cdot P}{M^{2}}
\end{aligned}
\]
\[
Q \cdot Q^{\prime}=0
\]
- RCS, VCS: nucleon polarizabilities


Krupina \& Pascalutsa, PRL 110 (2013)
- DVCS: handbag dominance, GPDs
- Forward limit: structure functions in DIS
- Timelike region: \(\overline{\mathrm{p}}\) annhihilation at PANDA
- Spacelike region: two-photon corrections to nucleon form factors, proton radius puzzle?

\section*{Two-photon corrections}


Arrington et al., Prog. Part. Nucl.Phys. 66 (2011)
- Proton form factor ratio:

Rosenbluth extraction suggested \(G_{E} / G_{M}=\) const., in agreement with perturbative scaling

Polarization data from JLAB showed falloff in \(G_{E} / G_{M}\) with possible zero crossing

Modified pQCD predictions: OAM
Difference likely due to two-photon corrections
Blunden, Melnitchouk, Tjon \& Guichon, Vanderhaeghen, PRL 91 (2003)


- Proton radius puzzle:

Proton radius extracted from Lamb shift in \(\mu \mathrm{H} 4 \%\) smaller than that from eH, would need additional \(\Delta \mathrm{E} \sim 300 \mu \mathrm{eV}\) to agree Pohl et al., Nature 466 , 213 (2010)
Can two-photon offshell corrections explain discrepancy?
Miller, Thomas, Carroll, Rafelski; Carlson, Vanderhaeghen; Birse, McGovern; ...

\section*{Handbag dominance}
- Handbag dominance in DVCS large \(Q^{2} \& s\), small \(t\) : factorization, extract GPDs from handbag diagram

- \(\mathrm{p} \overline{\mathrm{p}}\) annihilation at PANDA@FAIR

Are the concepts developed for lepton scattering (factorization, handbag dominance, GPDs) applicable?
- Is it possible to calculate these processes
 directly within nonperturbative QCD? Wishlist:
- Em. gauge invariance
- Crossing symmetry
- Poincare invariance
- Recover parton picture (handbag, ...)
- Recover hadronic structure (s, u, t-channel resonances)

\section*{Compton scattering}

- All direct measurements in kinematic limits (RCS, VCS, forward limit).
- Em. gauge invariance \(\Rightarrow\) Compton amplitude is fully transverse. Analyticity constrains 1PI part in these limits (low-energy theorem).
- Polarizabilities = coefficients of tensor structures that vanish like \(\sim Q^{\mu} Q^{\prime \nu}, Q^{\mu} Q^{\nu}, Q^{\prime \mu} Q^{\prime \nu}, \ldots\)
- Need tensor basis free of kinematic singularities (18 elements). Complicated...

Bardeen, Tung, Phys. Rev. 173 (1968)
Perrottet, Lett. Nuovo Cim. 7 (1973)
Tarrach, Nuovo Cim. 28 A (1975)
Drechsel et al., PRC 57 (1998)
L'vov et al., PRC 64 (2001)
Gorchtein, PRC 81 (2010)
Belitsky, Mueller, Ji, 1212.6674 [hep-ph]

\section*{Tensor basis?}


\section*{Tarrach,}

Nuovo Cim. 28 (1975)
\begin{tabular}{|c|c|}
\hline \(T_{\mathrm{x}}=g_{\text {rus }}\), & \(T_{15}=\left(P_{p} k_{\mu}-P_{p} k_{k_{p}^{\prime}}\right) \hat{K}\), \\
\hline \(T_{3}=k_{r} k_{\beta}^{r}\), & \(T_{1}=\left(P_{v} k_{\mu}^{\prime}+P_{s} k_{v}\right) \hat{K}\), \\
\hline \(T_{\mathrm{s}}=k_{\text {s }} k_{\mu}^{\prime}\), & \(T_{n t}=\left(P_{r}, k_{\mu}^{\prime}-P_{\mu} k_{k}\right) \hat{R}\), \\
\hline \(T_{s}=k_{r} k_{\mu}+k_{r}^{\prime} k_{\mu}^{\prime}\), & \(T_{21}=P_{r} \gamma_{\mu}+P_{u} \gamma_{p}\), \\
\hline \(T_{s}=k_{r} k_{\mu}-k_{r}^{\prime} k_{\mu}^{\prime}\), & \(T_{m}=P_{r} \gamma_{\mu}-P_{n} \gamma_{p}\), \\
\hline \(T_{\varepsilon}=P, P_{\mu}\), & \(T_{n}=k_{r} \gamma_{\mu}+k_{\mu}^{\prime} \gamma_{\nu}\), \\
\hline \(T_{7}=P_{r} k_{A}+P_{s} k_{*}^{\prime}\), & \(T_{s t}=k_{r} \gamma_{\mu}-k_{\mu}^{\prime} \gamma_{\nu}\), \\
\hline \(T_{s}=P_{r} k_{\mu}-P_{\mu} k_{n}^{\prime}\), & \(T_{2 s}=k^{\prime} \gamma_{\mu}+k_{\mu} \gamma_{r}\), \\
\hline \(T_{,}=P_{r} k_{\mu}^{\prime}+P_{r u} k_{r}\), & \(T_{\mathrm{st}}=k^{\prime} \gamma_{\mu}-k_{\mu} \gamma_{r}\), \\
\hline \(T_{19}=P_{p} k_{\mu}^{\prime}-P_{s} k_{p}\), & \(T_{2,}=\left(P_{r} \gamma_{\mu}+P_{\mu} \gamma_{\nu}\right) \hat{\mathrm{K}}-\hat{\mathrm{K}}\left(P_{r} \gamma_{\mu}+P_{s} \gamma_{\gamma}\right)\), \\
\hline \(T_{15}=g_{x i x} \hat{R}\), & \(T_{2 s}=\left(P_{r} \gamma_{\alpha}-P_{\mu} \gamma_{\gamma}\right) \hat{K}-\hat{K}\left(P_{r} \gamma_{\alpha}-P_{s} \gamma_{\beta}\right)\), \\
\hline \(T_{12}=k_{2} k_{\mu}^{\prime} \hat{R}\), & \(T_{30}=\left(k_{r} \gamma_{\mu}+k_{\mu}^{\prime} \gamma_{\nu}\right) \hat{K}-\hat{K}\left(k_{r} \gamma_{\mu}+k_{\mu}^{\prime} \gamma_{\nu}\right)\), \\
\hline \(T_{\mathrm{n}}=k_{v}^{\prime} k_{\mu} \hat{\mathbb{R}}\), & \(T_{3 n}=\left(k_{r} \gamma_{\mu}-k_{\mu}^{\prime} \gamma_{\mu}\right) \hat{R}-\hat{K}\left(k_{r} \gamma_{\mu}-k_{\mu}^{\prime} \gamma_{\mu}\right)\), \\
\hline \(T_{u}=\left(k_{r} k_{N}+k_{r}^{\prime} k_{\mu}^{\prime}\right) \hat{R}\), & \(T_{n}=\left(k_{n}^{\prime} \gamma_{\mu}+k_{\mu} \gamma_{\gamma}\right) \hat{K}-\hat{K}\left(k_{*}^{\prime} \gamma_{\mu}+k_{\alpha} \gamma_{\nu}\right)\), \\
\hline \(T_{1 s}=\left(k_{p} k_{\mu}-k_{s}^{\prime} k_{\mu}^{\prime}\right) \hat{R}\), & \(T_{32}=\left(k_{r}^{\prime} \gamma_{\mu}-k_{\mu} \gamma_{\nu}\right) \hat{K}-\hat{K}\left(k_{*}^{\prime} \gamma_{\mu}-k_{\mu} \gamma_{\mu}\right)\), \\
\hline \(T_{18}=P_{v} P_{n} \hat{K}\), & \(T_{33}=\gamma_{p} \gamma_{s}-\gamma_{s} \gamma_{r}\), \\
\hline \(T_{1 S}=\left(P_{v} k_{\mu}+P_{\mu} k_{\nu}^{\prime}\right) \hat{R}\), & \(T_{3}=\left(\gamma_{v} \gamma_{\mu}-\gamma_{\mu} \gamma_{\nu}\right) \hat{\kappa}+\hat{\mathbb{R}}\left(\gamma_{\mu} \gamma_{\mu}-\gamma_{\mu} \gamma_{\mu}\right)\), \\
\hline
\end{tabular}
\(T_{15}=\left(P_{p} k_{\mu}-P_{p} k_{p}^{\prime}\right) \hat{K}\),
\(T_{1 \Delta}=\left(\boldsymbol{P}_{v} k_{\mu}^{\prime}+\boldsymbol{P}_{\alpha} k_{v}\right) \hat{R}\),
\(=x_{1} n_{\mu}\)

\(T_{1}=k_{1} \boldsymbol{u}_{1}\)
\(T_{a}=P_{\gamma_{n}}-P_{\gamma_{n}}\)
\(T_{n}=k_{n} \gamma_{\mu}+k_{\mu} \gamma_{n}\),
\(T_{s}=k, \gamma_{\mu}-k_{\mu}^{\prime} \gamma_{v}\),
\(T_{\mathrm{s}}=k_{r}^{\prime} \gamma_{\mu}-k_{\mu} \gamma_{r}\),
\(T_{a r}=\left(P_{r} \gamma_{\mu}+P_{\mu} \gamma_{v}\right) \hat{K}-\hat{K}\left(P_{r} \gamma_{\mu}+P_{\alpha} \gamma_{n}\right)\),
\(T_{2 \mathrm{~s}}=\left(P_{r} \gamma_{\alpha}-P_{\mu} \gamma_{\gamma}\right) \hat{K}-\hat{K}\left(P_{r} \gamma_{\mu}-P_{\alpha} \gamma_{\beta}\right)\),
\(-\kappa\left(k_{r} \gamma_{\mu}+k_{\mu} \gamma_{\nu}\right)\)
\(\tilde{n}_{n}=\left(\eta_{n}-x_{n} \gamma_{n}\right) \hat{R}\)
\(T_{22}=\left(k_{r}^{\prime} \gamma_{\mu}-k_{\mu} \gamma_{\gamma}\right) \hat{K}-\hat{K}\left(k_{r}^{\prime} \gamma_{\mu}-k_{\mu} \gamma_{p}\right)\),
\(T_{34}=\left(\gamma_{v} \gamma_{\mu}-\gamma_{\mu} \gamma_{v}\right) \hat{R}+\hat{R}\left(\gamma_{\nu} \gamma_{\mu}-\gamma_{\mu} \gamma_{v}\right)\),

\section*{Transversality, analyticity and Bose symmetry makes the construction extremely difficult...}
\(\tau_{7}=8 T_{14}-4 P \cdot K T_{21}+P \cdot K T_{34}\),
\(\tau_{\mathrm{B}}=T_{10}+\frac{k^{2}-k^{\prime 2}}{2} T_{23}-P \cdot K T_{23}+\frac{k^{3}+k^{\prime 2}}{8} T_{a 4}\),
\(\tau_{9}=T_{25}-\frac{k^{2}+k^{\prime 2}}{2} T_{22}+P \cdot K T_{24}-\frac{k^{2}-k^{\prime 2}}{8} T_{34}\),
\(\tau_{10}=-8 k \cdot k^{\prime} T_{4}+4 P \cdot K T_{1}+4 M k \cdot k^{\prime} T_{11}-4 M P \cdot K T_{32}-\)
\[
-2 P \cdot K T_{32}-2 k \cdot k^{\prime} P \cdot K T_{38}+M k \cdot k^{\prime} T_{34}^{\prime}
\]
\[
\tau_{11}=T_{18}-k \cdot k^{\prime} T_{22}+P \cdot K T_{26},
\]
\[
\tau_{18}=P \cdot K T_{4}-\frac{k^{2}-k^{\prime 2}}{2} T_{\mathrm{s}}-k \cdot k^{\prime} T_{2}-M T_{14}+M k \cdot k^{\prime} T_{21}-
\]
\[
-M \frac{k^{3}-k^{\prime 2}}{2} T_{25}-\frac{k^{4}+k^{\prime z}}{4} T_{39}-k \cdot k^{\prime} \frac{k^{3}+k^{\prime 3}}{4} T_{\mathrm{si}}
\]
\[
\tau_{1 \mathrm{a}}=P \cdot K T_{5}-\frac{k^{2}+k^{\prime 2}}{2} T_{8}+k \cdot k^{\prime} T_{10}-M T_{15}+M k \cdot k^{\prime} T_{34}-
\]
\[
-M \frac{k^{2}+k^{\prime 3}}{2} T_{36}-\frac{k^{2}-k^{\prime 2}}{4} T_{35}-k \cdot k^{\prime} \frac{k^{z}-k^{\prime 2}}{4} T_{33}
\]
\[
\begin{aligned}
& \tau_{1}=k \cdot k^{\prime} T_{1}-T_{2}, \\
& \tau_{2}=k^{2} k^{\prime 3} T_{1}+k \cdot k^{\prime} T_{2}-\frac{k^{2}+k^{\prime 2}}{2} T_{4}+\frac{k^{2}-k^{\prime 2}}{2} T_{3}, \\
& \tau_{3}=(P \cdot K)^{2} T_{1}+k \cdot k^{\prime} T_{4}-P \cdot K T_{7}, \\
& \tau_{4}=P \cdot K\left(k^{2}+k^{\prime 2}\right) T_{1}-P \cdot K T_{4}-\frac{k^{2}+k^{\prime 2}}{2} T_{9}+\frac{k^{2}-k^{\prime 2}}{2} T_{8}+k \cdot k^{\prime} T_{2}, \\
& \tau_{\mathrm{s}}=-P \cdot K\left(k^{2}-k^{\prime z}\right) T_{1}+P \cdot K T_{5}+\frac{k^{s}-k^{\prime 2}}{2} T_{T}-\frac{k^{2}+k^{\prime 2}}{2} T_{\mathrm{s}}+k \cdot k^{\prime} T_{10}, \\
& \tau_{6}=\boldsymbol{P} \cdot K T_{2}-\frac{k^{1}+k^{\prime 2}}{4} T_{2}-\frac{k^{2}-k^{\prime 2}}{4} T_{10}-M T_{19}+M \frac{k^{2}+k^{\prime 2}}{4} T_{22}- \\
& -M \frac{k^{2}-k^{\prime 2}}{4} T_{34}+\frac{k^{2}-k^{\prime 2}}{8} T_{29}-\frac{k^{2}+k^{\prime 2}}{8} T_{35}-\frac{k^{2} k^{\prime 2}}{4} T_{51},
\end{aligned}
\]

\section*{\(\tau_{14}=2 P \cdot K T_{s}-2 M k+k^{\prime} T_{22}+2 M P \cdot K T_{s 4}-k \cdot k^{\prime} T_{27}+P \cdot K T_{31}\),}
\(\tau_{15}=-\left(k^{2}-k^{\prime 2}\right) T_{9}+\left(k^{4}+k^{\prime 2}\right) T_{s}-2 k \cdot k^{\prime} T_{10}-2 M k \cdot k^{\prime} T_{24}+\)
\(+\boldsymbol{M}\left(k^{2}-k^{\prime 2}\right) T_{26}+\boldsymbol{M}\left(k^{2}+k^{\prime 2}\right) \boldsymbol{T}_{26}-k \cdot k^{\prime} T_{29}+\)
\[
+\frac{k^{2}+k^{\prime 2}}{2} T_{32}+\frac{k^{z}-k^{\prime 2}}{2} T_{32},
\]
\(\tau_{16}=-\left(k^{z}+k^{\prime 2}\right) T_{9}+\left(k^{4}-k^{\prime 2}\right) T_{8}+2 k \cdot k^{\prime} T_{3}-2 M k \cdot k^{\prime} T_{22}+\)
\[
+M\left(k^{4}+k^{\prime 2}\right) T_{25}+M\left(k^{2}-k^{\prime 2}\right) T_{34}-k \cdot k^{\prime} T_{30}+
\]
\[
+\frac{k^{2}-k^{\prime 2}}{2} T_{31}^{\prime}+\frac{k^{2}+k^{\prime 2}}{2} T_{32},
\]
\(\tau_{19}=-4 P \cdot K T_{1}+2 T_{9}+4 M T_{14}-2 M T_{55}+T_{32}+k \cdot k^{\prime} T_{38}\),
\[
\tau_{18}=4 T_{18}-4 P \cdot K T_{25}+k \cdot h^{\prime} T_{34} .
\]
\(\tau_{13}=\frac{1}{k \cdot k^{\prime}}\left[2(P \cdot K)^{2} \tau_{2}+2 k^{2} k^{\prime_{2}} \tau_{3}-P \cdot K\left(k^{4}+k^{\prime 2}\right) \tau_{4}-P \cdot K\left(k^{2}-k^{\prime 2}\right) \tau_{5}\right]=\)
\(=2(P \cdot K)^{2} T_{2}+2 k^{z} k^{\prime 2} T_{n}-P \cdot K\left(k^{2}+k^{\prime 2}\right) T_{2}-P \cdot K\left(k^{2}-k^{\prime 2}\right) T_{40}\),
\(\tau_{s 9}=\frac{1}{4 k \cdot k^{\prime}}\left[\left(k^{2}-k^{\prime 2}\right) \tau_{10}-2\left(k^{2}+k^{\prime 2}\right) \tau_{14}+4 P \cdot K \tau_{15}\right]=\)
\(=-2\left(k^{2}-k^{\prime 2}\right) T_{s}-2 P \cdot K T_{10}+M\left(k^{2}-k^{\prime 2}\right) T_{21}+M\left(k^{2}+k^{\prime 2}\right) T_{22}-\) \(-2 M P \cdot K T_{94}+\frac{k^{2}+k^{\prime 2}}{2} T_{25}-P \cdot K T_{29}-\)
\[
-P \cdot K \frac{k^{2}-k^{\prime 2}}{2} T_{33}+M \frac{k^{2}-k^{\prime 2}}{4} T_{84}
\]
\(\tau_{21}=\frac{1}{4 k \cdot k^{\prime}}\left[\left(k^{2}+k^{\prime 2}\right) \tau_{\mathrm{n}}-2\left(k^{2}-k^{\prime 2}\right) \tau_{14}+4 P \cdot K \tau_{16}\right]=\)
\(=-2\left(k^{2}+k^{\prime 2}\right) T_{4}+2 P \cdot K T_{v}+M\left(k^{2}+k^{\prime 2}\right) T_{21}+M\left(k^{2}-k^{\prime 2}\right) T_{28}-\) \(-2 M P \cdot K T_{22}+\frac{k^{2}-k^{\prime 2}}{2} T_{32}-P \cdot K T_{30}-\)
\[
-P \cdot K \frac{k^{2}+k^{\prime 2}}{2} T_{33}+M \frac{k^{2}+k^{\prime z}}{4} T_{34} .
\]

\section*{Transverse tensor basis for \(\Gamma^{\mu \nu}\left(p, Q, Q^{\prime}\right)\)}
- Generalize transverse projectors: \(t_{a b}^{\mu \nu}:=a \cdot b \delta^{\mu \nu}-b^{\mu} a^{\nu}\)
\(a, b \in\left\{p, Q, Q^{\prime}\right\}\)
\(\varepsilon_{a b}^{\mu \nu}:=\gamma_{5} \varepsilon^{\mu \nu \alpha \beta} a^{\alpha} b^{\beta}\)
(exhausts all possibilities)
- Apply Bose-(anti-)symmetric combinations
\[
\begin{aligned}
& \mathrm{E}_{ \pm}^{\mu \alpha, \beta \nu}(a, b):=\frac{1}{2}\left(\varepsilon_{Q^{\prime} a^{\prime}}^{\mu \alpha} \varepsilon_{b Q}^{\beta \nu} \pm \varepsilon_{Q^{\prime} b^{\prime}}^{\mu \alpha} \varepsilon_{a Q}^{\beta \nu}\right) \\
& \mathrm{F}_{ \pm}^{\mu \alpha, \beta \nu}(a, b):=\frac{1}{2}\left(t_{Q^{\prime} a^{\prime}}^{\mu \alpha} t_{b Q}^{\beta \nu} \pm t_{Q^{\prime} b^{\prime}}^{\mu \alpha} t_{a Q}^{\beta \nu}\right) \\
& \mathrm{G}_{ \pm}^{\mu \alpha, \beta \nu}(a, b):=\frac{1}{2}\left(\varepsilon_{Q^{\prime} a^{\prime}}^{\mu \alpha} t_{b Q}^{\beta \nu} \pm t_{Q^{\prime} b^{\prime}}^{\mu \alpha} \varepsilon_{a Q}^{\beta \nu}\right)
\end{aligned}
\]
\begin{tabular}{lll} 
& & \(p^{\alpha} \gamma^{\beta}+\gamma^{\alpha} p^{\beta}\) \\
& \(\delta^{\alpha \beta}\) & \(p^{\alpha} \gamma^{\beta}-\gamma^{\alpha} p^{\beta}\) \\
to structures & \(\delta^{\alpha \beta} \not p\) & {\(\left[p^{\alpha} \gamma^{\beta}+\gamma^{\alpha} p^{\beta}, \not p\right]\)} \\
independent & {\(\left[\gamma^{\alpha}, \gamma^{\beta}\right]\)} & {\(\left[p^{\alpha} \gamma^{\beta}-\gamma^{\alpha} p^{\beta}, p p\right]\)} \\
of \(Q, Q^{\prime}:\) & {\(\left[\gamma^{\alpha}, \gamma^{\beta}, \not p\right]\)} & \(p^{\alpha} p^{\beta}\) \\
& & \(p^{\alpha} p^{\beta} \not p\)
\end{tabular}
- obtain 16 quadratic, 40 cubic 16 quartic terms \(\Rightarrow 72\) in total \(\sqrt{ }\)
- no kinematic singularities \(\sqrt{ }\)
- Transverse onshell basis: GE,Fischer, PRD 87 (2013) \& PoS Conf. X (2012)
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{E}_{+}(P, P) \quad(++)\) & \(\widetilde{\mathrm{E}}_{+}(P, P) \quad(-+)\) & \(\mathrm{F}_{+}(P, Q) \quad(-+)\) & \(\widetilde{\mathrm{F}}_{+}(P, Q) \quad(++)\) \\
\hline \(\mathrm{F}_{+}(P, P) \quad(++)\) & \(\widetilde{\mathrm{F}}_{+}(P, P) \quad(-+)\) & \(\mathrm{G}_{+}(P, Q)(-+)\) & \(\widetilde{\mathrm{G}}_{+}(P, Q) \quad(+-)\) \\
\hline \(\mathrm{G}_{+}(P, P)(++)\) & \(\widetilde{\mathrm{G}}_{+}(P, P) \quad(--)\) & \(\mathrm{F}_{-}(P, Q)(+-)\) & \(\widetilde{\mathrm{F}}_{-}(P, Q) \quad(--)\) \\
\hline \(\mathrm{G}_{-}(P, P)(--)\) & \(\widetilde{\mathrm{G}}_{-}(P, P) \quad(++)\) & \(\mathrm{G}_{-}(P, Q)(+-)\) & \(\widetilde{\mathrm{G}}_{-}(P, Q) \quad(-+)\) \\
\hline & & \(\mathrm{F}_{+}(Q, Q)(++)\) & \(\widetilde{\mathrm{F}}_{+}(Q, Q) \quad(-+)\) \\
\hline VVCS & Scalar vertex & & \\
\hline
\end{tabular}
- Simple
- analytic in all limits
- manifest crossing and charge-conjugation symmetry
- scalar \& pion pole only in a few Compton form factors
- Tarrach's basis can be cast in a similar form

\section*{Compton amplitude at quark level}

Baryon's Compton scattering amplitude, consistent with Faddeev equation:
GE, Fischer, PRD 85 (2012)
\[
\langle H| J^{\mu} J^{\nu}|H\rangle=\bar{\chi}\left(G^{-1^{\mu}} G G^{-1^{\nu}}+G^{-1^{\nu}} G G^{-1^{\mu}}-\left(G^{-1}\right)^{\mu \nu}\right) \chi
\]

In rainbow-ladder (+ crossing \& permutation):

- Born (handbag) diagrams: \(G=1+T\)
- all s- and u-channel nucleon resonances:


\(\checkmark\) crossing symmetry
\(\checkmark\) em. gauge invariance
\(\checkmark\) perturbative processes included
\(\checkmark\) s, t, u channel poles generated in QCD

\section*{Compton amplitude at quark level}

Collect all (nonperturbative!) 'handbag' diagrams: no nucleon resonances, no cat's ears

- not electromagnetically gauge invariant, but comparable to 1 PI ,structure part \({ }^{\prime}\) at nucleon level?
- reduces to perturbative handbag at large photon momenta, but also all t-channel poles included! (scalar, pion, ... )
- represented by full quark Compton vertex, including Born terms. Satisfies inhomogeneous BSE, solved in RL (128 tensor structures)


\section*{Compton amplitude at quark level}

Collect all (nonperturbative!) 'handbag' diagrams: no nucleon resonances, no cat's ears
- not electromagnetically gauge invariant, but comparable to 1 PI ,structure part' at nucleon level?
- reduces to perturbative handbag at large photon momenta, but also all t-channel poles included! (scalar, pion, ... )
- represented by full quark Compton vertex, including Born terms. Satisfies inhomogeneous BSE, solved in RL (128 tensor structures)

Residues at pion pole recover \(\pi \gamma \gamma\) transition form factor \(\sqrt{ }\)

GE \& Fischer, PRD 87 (2013)


Rainbow-ladder result:
Maris \& Tandy, PRC 65 (2002)

(extracted from quark Compton vertex)

(extracted from nucleon Compton amplitude)

\section*{Compton amplitude at quark level}
- Quark Compton vertex has extremely rich structure:
\[
\Gamma^{\mu \nu}\left(p, Q, Q^{\prime}\right)=\sum_{i=1}^{72} f_{i}\left(p^{2}, Q^{2}, Q^{\prime 2}, Q \cdot Q^{\prime}, p \cdot Q, p \cdot Q^{\prime}\right) \tau_{i}^{\mu \nu}\left(p, Q, Q^{\prime}\right)
\]
- Exploit em. gauge invariance: general offshell quark Compton vertex can be written as
- All these will contribute to Compton form factors ( \(\Rightarrow\) polarizabilities, structure functions, GPDs, etc.) Dominant contributions?
\(\Rightarrow\) Born (pure handbag)?
\(\Rightarrow\) WTI, WTI-T (em. gauge invariance) ?
\(\Rightarrow\) Fully transverse part (t-channel poles) ?

\section*{Here be dragons}
- Gauge invariance \(\Leftrightarrow\) transversality:
when inserted in nucleon Compton amplitude, non-transverse terms in quark Compton vertex (in Born, WTI, WTI-T) must be cancelled by those in remaining diagrams (cat's ears, 6 pt function)
- But handbag alone is not gauge-invariant, incomplete calculation can produce singularities in \(Q^{2}, Q^{\prime 2}, Q \cdot Q^{\prime}, P \cdot Q\)



\section*{Here be dragons}
- Gauge invariance \(\Leftrightarrow\) transversality:
when inserted in nucleon Compton amplitude, non-transverse terms in quark Compton vertex (in Born, WTI, WTI-T) must be cancelled by those in remaining diagrams (cat's ears, 6 pt function)
- But handbag alone is not gauge-invariant, incomplete calculation can produce singularities in \(Q^{2}, Q^{\prime 2}, Q \cdot Q^{\prime}, P \cdot Q\)



\section*{Polarizabilities: a first look}


- \(\alpha+\beta\) : dominated by quark Born terms (pure handbag) (here: \(1 / Q \cdot Q^{\prime}\) singularity not yet removed)
- \(\beta\) : cancellation between Born and \(\mathbf{t}\)-channel poles?
no singularity in \(\beta\)

\section*{Summary}

\section*{So far:}
- Structure analysis of Compton scattering
- Nonperturbative calculation of handbag part (Born + t-channel)

\section*{Next:}
- Extract polarizabilities
- Two-photon exchange contribution to form factors
- GPDs \& nucleon PDFs
- Pion electroproduction at quark level
- Nucleon resonances
- Timelike form factors \& processes

\section*{Need to improve:}
- Go beyond rainbow-ladder! (Pion cloud, decay channels, higher n-point functions, ...)
- Deal with quark singularities \(\Rightarrow\) access high \(Q^{2}\), timelike region etc. )

\section*{Thanks for your attention.}

Cheers to my collaborators:
R. Alkofer, C. S. Fischer, W. Heupel, M. Hopfer, A. Krassnigg, S. Kubrak, V. Mader, D. Nicmorus,
H. Sanchis-Alepuz, M. Vujinovic, R. Williams```

