Intriguing relations between the LECs of Wilson χ-PT and spectra of the Wilson Dirac operator

Savvas Zafeiropoulos

February 2014
Excited QCD 2014 Bjelasnica Mountain, Sarajevo

Outline

- Motivation-The Goals
- Wilson Fermions- Wilson χ-PT
- Introduction of the Model
- LECs and the spectrum of D_{W}
- Conclusions and Outlook

Motivation-The Goals

- Facilitate simulations in the deep chiral regime by an exact, analytical understanding of the average behavior of the smallest eigenvalues
- Chiral symmetry breaking from lattice spacing
- Stability of lattice simulations

Motivation-The Goals

- Facilitate simulations in the deep chiral regime by an exact, analytical understanding of the average behavior of the smallest eigenvalues

■ Chiral symmetry breaking from lattice spacing

- Stability of lattice simulations

Motivation-The Goals

- Facilitate simulations in the deep chiral regime by an exact, analytical understanding of the average behavior of the smallest eigenvalues
- Chiral symmetry breaking from lattice spacing
- Stability of lattice simulations

Wilson Fermions- Wilson χ-PT

Fermions on the lattice- Origin of doublers

- The momentum space propagator (free theory)

$$
\left.D(p)\right|_{m=0} ^{-1}=\frac{-i a^{-1} \sum_{\mu} \gamma_{\mu} \sin \left(p_{\mu} a\right)}{a^{-2} \sum_{\mu} \sin \left(p_{\mu} a\right)^{2}} \xrightarrow{a \rightarrow 0} \underbrace{-i \sum_{\mu} \gamma_{\mu} p_{\mu}}_{p^{2}}
$$

- In the continuum one pole at $p=(0,0,0,0)$

■ On the lattice additional poles whenever all components are either $p_{\mu}=0$ or $p_{\mu}=\pi / a$
■ Our lattice Dirac operator has 15 unphysical poles (doublers) at $p=(\pi / a, 0,0,0),(0, \pi / a, 0,0), \ldots,(\pi / a, \pi / a, \pi / a, \pi / a)$

A No-go theorem

Nielsen and Ninomiya (1980)
It is not possible to construct a lattice fermion action that is
■ Local

- Undoubled
- correct continuum limit
- chirally symmetric $\left\{D, \gamma_{5}\right\}=0$

Wilson Fermions

Break chiral symmetry explicitly
Wilson (1977)

- add the lattice discretization of the Laplacian $-\frac{a}{2} \partial_{\mu} \partial_{\mu}$

- for components with $p_{\mu}=0$ it vanishes

■ for each component with $p_{\mu}=\pi / a$ provides an extra contribution 2/a

- It acts like an additional "effective" mass term so the total mass of the doublers is $m+2 l / a$
- in the naive continuum limit $a \rightarrow 0$ the doublers become very heavy and decouple from the theory

Wilson Fermions

Break chiral symmetry explicitly
Wilson (1977)

- add the lattice discretization of the Laplacian $-\frac{a}{2} \partial_{\mu} \partial_{\mu}$
- $D(p)=m \mathbf{1}+\frac{i}{a} \sum_{\mu=1}^{4} \gamma_{\mu} \sin p_{\mu} a+\mathbf{1} \frac{1}{a} \sum_{\mu=1}^{4}\left(1-\cos p_{\mu} a\right)$
- for components with $p_{\mu}=0$ it vanishes
- for each component with $p_{\mu}=\pi / a$ provides an extra contribution $2 / a$
- It acts like an additional "effective" mass term so the total mass of the doublers is $m+2 l / a$
- in the naive continuum limit $a \rightarrow 0$ the doublers become very heavy and decouple from the theory

Wilson Fermions

Break chiral symmetry explicitly
Wilson (1977)

- add the lattice discretization of the Laplacian $-\frac{a}{2} \partial_{\mu} \partial_{\mu}$
- $D(p)=m \mathbf{1}+\frac{i}{a} \sum_{\mu=1}^{4} \gamma_{\mu} \sin p_{\mu} a+\mathbf{1} \frac{1}{a} \sum_{\mu=1}^{4}\left(1-\cos p_{\mu} a\right)$
- for components with $p_{\mu}=0$ it vanishes
- for each component with $p_{\mu}=\pi / a$ provides an extra contribution $2 / a$
- It acts like an additional "effective" mass term so the total mass of the doublers is $m+2 l / a$
- in the naive continuum limit $a \rightarrow 0$ the doublers become very heavy and decouple from the theory

Wilson Fermions

Break chiral symmetry explicitly
Wilson (1977)

- add the lattice discretization of the Laplacian $-\frac{a}{2} \partial_{\mu} \partial_{\mu}$
- $D(p)=m \mathbf{1}+\frac{i}{a} \sum_{\mu=1}^{4} \gamma_{\mu} \sin p_{\mu} a+\mathbf{1} \frac{1}{a} \sum_{\mu=1}^{4}\left(1-\cos p_{\mu} a\right)$
- for components with $p_{\mu}=0$ it vanishes

■ for each component with $p_{\mu}=\pi / a$ provides an extra contribution $2 / a$

- It acts like an additional "effective" mass term so the total
mass of the doublers is $m+2 l / a$
- in the naive continuum limit $a \rightarrow 0$ the doublers become very heavy and decouple from the theory

Break chiral symmetry explicitly
Wilson (1977)

- add the lattice discretization of the Laplacian $-\frac{a}{2} \partial_{\mu} \partial_{\mu}$
- $D(p)=m \mathbf{1}+\frac{i}{a} \sum_{\mu=1}^{4} \gamma_{\mu} \sin p_{\mu} a+\mathbf{1} \frac{1}{a} \sum_{\mu=1}^{4}\left(1-\cos p_{\mu} a\right)$
- for components with $p_{\mu}=0$ it vanishes

■ for each component with $p_{\mu}=\pi / a$ provides an extra contribution $2 / a$

- It acts like an additional "effective" mass term so the total mass of the doublers is $m+2 l / a$
- in the naive continuum limit $a \rightarrow 0$ the doublers become very heavy and decouple from the theory

Wilson Fermions

Break chiral symmetry explicitly
Wilson (1977)

- add the lattice discretization of the Laplacian $-\frac{a}{2} \partial_{\mu} \partial_{\mu}$
- $D(p)=m \mathbf{1}+\frac{i}{a} \sum_{\mu=1}^{4} \gamma_{\mu} \sin p_{\mu} a+\mathbf{1} \frac{1}{a} \sum_{\mu=1}^{4}\left(1-\cos p_{\mu} a\right)$
- for components with $p_{\mu}=0$ it vanishes
- for each component with $p_{\mu}=\pi / a$ provides an extra contribution $2 / a$
- It acts like an additional "effective" mass term so the total mass of the doublers is $m+2 l / a$
- in the naive continuum limit $a \rightarrow 0$ the doublers become very heavy and decouple from the theory

Wilson Chiral Perturbation Theory

■ Wilson term breaks χ - symmetry explicitly

- Lattice spacing effects lead to new terms in χ - PT

■ ϵ - regime where in the thermodynamic, chiral and continuum limit $m V \Sigma, z V \Sigma$ and $a^{2} V W_{i}$ kept fixed

- At order a^{2} it involves three Low Energy Constants (LECs)

where the action is

Wilson Chiral Perturbation Theory

■ Wilson term breaks χ - symmetry explicitly
■ Lattice spacing effects lead to new terms in $\chi-P T$
Sharpe and Singleton (1998), Rupak and Shoresh (2002), Baer,Rupak and Shoresh (2004)

- - regime where in the thermodynamic, chiral and continuum limit $m V \Sigma, z V \Sigma$ and $a^{2} V W_{i}$ kept fixed

■ At order a^{2} it involves three Low Energy Constants (LECs)

where the action is
m

Wilson Chiral Perturbation Theory

- Wilson term breaks χ - symmetry explicitly
- Lattice spacing effects lead to new terms in $\chi-P T$

Sharpe and Singleton (1998), Rupak and Shoresh (2002), Baer,Rupak and Shoresh (2004)

- ϵ - regime where in the thermodynamic, chiral and continuum limit $m V \Sigma, z V \Sigma$ and $a^{2} V W_{i}$ kept fixed
- At order a^{2} it involves three Low Energy Constants (LECs)

$$
Z_{N_{f}}(m, z ; a)=\int_{\mathcal{M}} d U \operatorname{det}^{\nu} U e^{-S[U]}
$$

where the action is

$$
\begin{aligned}
S=- & \frac{m}{2} \Sigma V \operatorname{tr}\left(U+U^{\dagger}\right)-\frac{z}{2} \Sigma V \operatorname{tr}\left(U-U^{\dagger}\right)+a^{2} V W_{6}\left[\operatorname{tr}\left(U+U^{\dagger}\right)\right]^{2} \\
& +a^{2} V W_{7}\left[\operatorname{tr}\left(U-U^{\dagger}\right)\right]^{2}+a^{2} V W_{8} \operatorname{tr}\left(U^{2}+U^{\dagger^{2}}\right) .
\end{aligned}
$$

Random Matrix Theory

■ RMT applied to Physics was born in Nuclear Physics

- Description of the statistical properties of excited energy levels in complex nuclei
= Complex systems, very complicated or even unknown dynamics
- Replace the Hamiltonian by a random matrix H with the same GLOBAL symmetries
- Compute observables by averaging over the ensemble
- Identify universal quantities (independent of the probability distribution)

Random Matrix Theory

■ RMT applied to Physics was born in Nuclear Physics

- Description of the statistical properties of excited energy levels in complex nuclei wigner (1955)
- Complex systems, very complicated or even unknown dynamics
■ Replace the Hamiltonian by a random matrix H with the same GLOBAL symmetries

■ Compute observables by averaging over the ensemble

- Identify universal quantities (independent of the probability distribution)

Random Matrix Theory

■ RMT applied to Physics was born in Nuclear Physics

- Description of the statistical properties of excited energy levels in complex nuclei wigner (1955)
■ Complex systems, very complicated or even unknown dynamics
- Replace the Hamiltonian by a random matrix H with the same GLOBAL symmetries

■ Compute observables by averaging over the ensemble

- Identify universal quantities (independent of the probability distribution)

Random Matrix Theory

■ RMT applied to Physics was born in Nuclear Physics

- Description of the statistical properties of excited energy levels in complex nuclei wigner (1955)
- Complex systems, very complicated or even unknown dynamics
- Replace the Hamiltonian by a random matrix H with the same GLOBAL symmetries
- Compute observables by averaging over the ensemble
- Identify universal quantities (independent of the probability distribution)

Random Matrix Theory

■ RMT applied to Physics was born in Nuclear Physics
■ Description of the statistical properties of excited energy levels in complex nuclei wigner (1955)

- Complex systems, very complicated or even unknown dynamics
- Replace the Hamiltonian by a random matrix H with the same GLOBAL symmetries
- Compute observables by averaging over the ensemble
- Identify universal quantities (independent of the probability distribution)

Random Matrix Theory

■ RMT applied to Physics was born in Nuclear Physics

- Description of the statistical properties of excited energy levels in complex nuclei wigner (1955)
- Complex systems, very complicated or even unknown dynamics
- Replace the Hamiltonian by a random matrix H with the same GLOBAL symmetries
- Compute observables by averaging over the ensemble
- Identify universal quantities (independent of the probability distribution)

γ_{5} - hermiticity

- $D_{W}=\frac{1}{2} \gamma_{\mu}\left(\nabla_{\mu}+\nabla_{\mu}^{*}\right)-\frac{1}{2} a \nabla_{\mu}^{*} \nabla_{\mu}$
- At $a \neq 0$ is non-Hermitian but retains γ_{5}-Hermiticity $D_{W}^{\dagger}=\gamma_{5} D_{W} \gamma_{5}$
■ Eigenvalues of D_{W} because of the γ_{5}-Hermiticity occur in complex conjugate pairs or are real.
- ONLY eigenvectors corresponding to real eigenvalues have non vanishing chirality $\langle k| \gamma_{5}|k\rangle$

γ_{5} - hermiticity

- $D_{W}=\frac{1}{2} \gamma_{\mu}\left(\nabla_{\mu}+\nabla_{\mu}^{*}\right)-\frac{1}{2} a \nabla_{\mu}^{*} \nabla_{\mu}$
- At $a \neq 0$ is non-Hermitian but retains γ_{5}-Hermiticity $D_{W}^{\dagger}=\gamma_{5} D_{W} \gamma_{5}$
- Eigenvalues of D_{W} because of the γ_{5}-Hermiticity occur in complex conjugate pairs or are real.
- ONLY eigenvectors corresponding to real eigenvalues have non vanishing chirality $\langle k| \gamma_{5}|k\rangle$

γ_{5} - hermiticity

- $D_{W}=\frac{1}{2} \gamma_{\mu}\left(\nabla_{\mu}+\nabla_{\mu}^{*}\right)-\frac{1}{2} a \nabla_{\mu}^{*} \nabla_{\mu}$
- At $a \neq 0$ is non-Hermitian but retains γ_{5}-Hermiticity $D_{W}^{\dagger}=\gamma_{5} D_{W} \gamma_{5}$
- Eigenvalues of D_{W} because of the γ_{5}-Hermiticity occur in complex conjugate pairs or are real.
- ONLY eigenvectors corresponding to real eigenvalues have non vanishing chirality

γ_{5} - hermiticity

- $D_{W}=\frac{1}{2} \gamma_{\mu}\left(\nabla_{\mu}+\nabla_{\mu}^{*}\right)-\frac{1}{2} a \nabla_{\mu}^{*} \nabla_{\mu}$
- At $a \neq 0$ is non-Hermitian but retains γ_{5}-Hermiticity $D_{W}^{\dagger}=\gamma_{5} D_{W} \gamma_{5}$
- Eigenvalues of D_{W} because of the γ_{5}-Hermiticity occur in complex conjugate pairs or are real.
- ONLY eigenvectors corresponding to real eigenvalues have non vanishing chirality $\langle k| \gamma_{5}|k\rangle$

Eigenvalues of D_{W} with $\nu=5$

$$
\hat{a}_{8}=1
$$

Wilson Dirac operator and RMT

- Partition function of D_{W} with N_{f} flavors:
$Z_{N_{f}}^{R M T, \nu}=\int d D_{W} \operatorname{det}^{N_{f}}\left(D_{W}+m\right) P\left(D_{W}\right)$
- $P\left(D_{W}\right) \rightarrow$ is a Gaussian
- A $: n \times n$ Hermitian
$-B:(n+v) \times(n+v)$ Hermitian
- W
- $m 2_{6}$ and λ_{7} scalar random variables
- At $a=0: D_{W}$ has ν generic zero modes
- At finite a : definition of the index through spectral flow lines or equivalently

Wilson Dirac operator and RMT

- Partition function of D_{W} with N_{f} flavors:
$Z_{N_{f}}^{R M T, \nu}=\int d D_{W} \operatorname{det}^{N_{f}}\left(D_{W}+m\right) P\left(D_{W}\right)$
- $P\left(D_{W}\right) \rightarrow$ is a Gaussian
- $D_{W}=\left(\begin{array}{cc}a A & W \\ W^{\dagger} & a B\end{array}\right)+a m_{6}+a \lambda_{7} \gamma_{5}$ (Damgaard et al (2010), Akemann et al (2010), Kieburg et al $(2011,2012)$
- A : $n \times n$ Hermitian
- $\mathrm{B}:(n+\nu) \times(n+\nu)$ Hermitian
- W: $n \times(n+v)$ Complex
- m_{6} and λ_{7} scalar random variables
= At $a=0: D_{W}$ has v generic zero modes
- At finite a : definition of the index through spectral flow lines
or equivalently

Wilson Dirac operator and RMT

- Partition function of D_{W} with N_{f} flavors:
$Z_{N_{f}}^{R M T, \nu}=\int d D_{W} \operatorname{det}^{N_{f}}\left(D_{W}+m\right) P\left(D_{W}\right)$
- $P\left(D_{W}\right) \rightarrow$ is a Gaussian
- $D_{W}=\left(\begin{array}{cc}a A & W \\ W^{\dagger} & a B\end{array}\right)+a m_{6}+a \lambda_{7} \gamma_{5}$ (Damgaard et al (2010), Akemann et al (2010), Kieburg et al $(2011,2012)$
- A : $n \times n$ Hermitian
- B

■ W : $n \times(n+\nu)$ Complex

- m_{6} and λ_{7} scalar random variables
- At $a=0: D_{W}$ has ν generic zero modes
- At finite a : definition of the index through spectral flow lines
or equivalently

Wilson Dirac operator and RMT

- Partition function of D_{W} with N_{f} flavors:
$Z_{N_{f}}^{R M T, \nu}=\int d D_{W} \operatorname{det}^{N_{f}}\left(D_{W}+m\right) P\left(D_{W}\right)$
- $P\left(D_{W}\right) \rightarrow$ is a Gaussian
- $D_{W}=\left(\begin{array}{cc}a A & W \\ W^{\dagger} & a B\end{array}\right)+a m_{6}+a \lambda_{7} \gamma_{5}$ (Damgaard et al (2010), Akemann et al (2010), Kieburg et al $(2011,2012)$
- A : $n \times n$ Hermitian

■ B : $(n+\nu) \times(n+\nu)$ Hermitian

- W
- m_{6} and λ_{7} scalar random variables
- At $a=0: D_{W}$ has ν generic zero modes
- At finite a : definition of the index through spectral flow lines or equivalently

Wilson Dirac operator and RMT

- Partition function of D_{W} with N_{f} flavors:
$Z_{N_{f}}^{R M T, \nu}=\int d D_{W} \operatorname{det}^{N_{f}}\left(D_{W}+m\right) P\left(D_{W}\right)$
- $P\left(D_{W}\right) \rightarrow$ is a Gaussian
- $D_{W}=\left(\begin{array}{cc}a A & W \\ W^{\dagger} & a B\end{array}\right)+a m_{6}+a \lambda_{7} \gamma_{5}$ (Damgaard et al (2010), Akemann et al (2010), Kieburg et al $(2011,2012)$
- A : $n \times n$ Hermitian
- $\mathrm{B}:(n+\nu) \times(n+\nu)$ Hermitian
- W : $n \times(n+\nu)$ Complex
- m_{6} and λ_{7} scalar random variables
- At $a=0: D_{W}$ has ν generic zero modes
- At finite a : definition of the index through spectral flow lines or equivalently

Wilson Dirac operator and RMT

- Partition function of D_{W} with N_{f} flavors:

$$
Z_{N_{f}}^{R M T, \nu}=\int d D_{W} \operatorname{det}^{N_{f}}\left(D_{W}+m\right) P\left(D_{W}\right)
$$

- $P\left(D_{W}\right) \rightarrow$ is a Gaussian
- $D_{W}=\left(\begin{array}{cc}a A & W \\ W^{\dagger} & a B\end{array}\right)+a m_{6}+a \lambda_{7} \gamma_{5}$ (Damgaard et al (2010), Akemann et al (2010), Kieburg et al $(2011,2012)$
- A : $n \times n$ Hermitian

■ $\mathrm{B}:(n+\nu) \times(n+\nu)$ Hermitian
■ W : $n \times(n+\nu)$ Complex

- m_{6} and λ_{7} scalar random variables
- At $a=0$: D_{W} has ν generic zero modes
- At finite a : definition of the index through spectral flow lines or equivalently

Wilson Dirac operator and RMT

- Partition function of D_{W} with N_{f} flavors:

$$
Z_{N_{f}}^{R M T, \nu}=\int d D_{W} \operatorname{det}^{N_{f}}\left(D_{W}+m\right) P\left(D_{W}\right)
$$

- $P\left(D_{W}\right) \rightarrow$ is a Gaussian
- $D_{W}=\left(\begin{array}{cc}a A & W \\ W^{\dagger} & a B\end{array}\right)+a m_{6}+a \lambda_{7} \gamma_{5}$ (Damgaard et al (2010), Akemann et al (2010), Kieburg et al $(2011,2012)$
- A : $n \times n$ Hermitian

■ $\mathrm{B}:(n+\nu) \times(n+\nu)$ Hermitian
■ W : $n \times(n+\nu)$ Complex

- m_{6} and λ_{7} scalar random variables
- At $a=0$: D_{W} has ν generic zero modes
- At finite a : definition of the index through spectral flow lines
or equivalently

Wilson Dirac operator and RMT

- Partition function of D_{W} with N_{f} flavors:

$$
Z_{N_{f}}^{R M T, \nu}=\int d D_{W} \operatorname{det}^{N_{f}}\left(D_{W}+m\right) P\left(D_{W}\right)
$$

- $P\left(D_{W}\right) \rightarrow$ is a Gaussian
- $D_{W}=\left(\begin{array}{cc}a A & W \\ W^{\dagger} & a B\end{array}\right)+a m_{6}+a \lambda_{7} \gamma_{5}$ (Damgaard et al (2010),Akemann et al (2010), Kieburg et al $(2011,2012)$
- A : $n \times n$ Hermitian
- B : $(n+\nu) \times(n+\nu)$ Hermitian

■ W : $n \times(n+\nu)$ Complex

- m_{6} and λ_{7} scalar random variables
- At $a=0$: D_{W} has ν generic zero modes
- At finite a : definition of the index through spectral flow lines or equivalently $\nu=\sum_{\lambda_{k}^{W} \in \mathbb{R}} \operatorname{sign}\left(\langle k| \gamma_{5}|k\rangle\right)$ Itoh et al (1987)

Spectral flow

Schematic spectral flow of $D_{5}(m)$ (Figure courtesy of Splittorff and Verbarschot (2010))

Spectral flow of $D_{5}(m)$ for $0 \leq m \leq 8$ for a single instanton on a 8^{4} lattice. (Figure courtesy of Edwards, Heller, Narayanan (1998))

The Eigenvalue Densities

Lattice results vs RMT

$\hat{m}=4.8, \nu=2$
(Damgaard,Heller and Splittorff (2011))

Lattice results vs RMT

The density of real eigenvalues of D_{W}
Damgaard,Heller and Splittorff (2012))

Cumulative eigenvalue distributions of D_{5} with all $W_{6 / 7 / 8}$ included at $\nu=0$
(Deuzeman, Wenger and Wuilloud (2011))

- \hat{a}_{6} and \hat{a}_{7} introduced through the addition of the Gaussian stochastic variable $\widehat{m}_{6}+\widehat{\lambda}_{7} \gamma_{5}$ to D_{W}
- $D=D_{W}+\left(m+\widehat{m}_{6}\right) 1+\widehat{\lambda}_{7} \gamma_{5}$
- When $\hat{a}_{8}=0 D_{W}$ is anti-Hermitian,

■ the eigenvalues of $D_{W}\left(\widehat{\lambda}_{7}, \widehat{m}_{6}\right)=D-m$ are given by
where $i \lambda_{W}$ is an eigenvalue of D_{W}

- \hat{a}_{6} and \hat{a}_{7} introduced through the addition of the Gaussian stochastic variable $\widehat{m}_{6}+\widehat{\lambda}_{7} \gamma_{5}$ to D_{W}
- $D=D_{W}+\left(m+\widehat{m}_{6}\right) \mathbf{1}+\widehat{\lambda}_{7} \gamma_{5}$
- When $\hat{a}_{8}=0 D_{W}$ is anti-Hermitian,

■ the eigenvalues of $D_{W}\left(\widehat{\lambda}_{7}, \widehat{m}_{6}\right)=D-m$ are given by

where $i \lambda_{W}$ is an eigenvalue of D_{W}

- \hat{a}_{6} and \hat{a}_{7} introduced through the addition of the Gaussian stochastic variable $\widehat{m}_{6}+\widehat{\lambda}_{7} \gamma_{5}$ to D_{W}
- $D=D_{W}+\left(m+\widehat{m}_{6}\right) \mathbf{1}+\widehat{\lambda}_{7} \gamma_{5}$
- When $\hat{a}_{8}=0 D_{W}$ is anti-Hermitian,

where $i \lambda_{W}$ is an eigenvalue of D_{W}
- \hat{a}_{6} and \hat{a}_{7} introduced through the addition of the Gaussian stochastic variable $\widehat{m}_{6}+\widehat{\lambda}_{7} \gamma_{5}$ to D_{W}
- $D=D_{W}+\left(m+\widehat{m}_{6}\right) \mathbf{1}+\widehat{\lambda}_{7} \gamma_{5}$
- When $\hat{a}_{8}=0 D_{W}$ is anti-Hermitian,
- the eigenvalues of $D_{W}\left(\widehat{\lambda}_{7}, \widehat{m}_{6}\right)=D-m$ are given by

$$
\widehat{z}_{ \pm}=\widehat{m}_{6} \pm i \sqrt{\lambda_{W}^{2}-\widehat{\lambda}_{7}^{2}}
$$

where $i \lambda_{W}$ is an eigenvalue of D_{W}

Schematic plots of the effects of W_{6} (left plot) and of W_{7} (right plot). W_{6} broadens the spectrum parallel to the real axis according to a Gaussian with width $4 \hat{a}_{6}$, but does not change the continuum spectrum in a significant way. When $W_{7} \neq 0$ and $W_{6}=0$ the purely imaginary eigenvalues invade the real axis through the origin and only the real (green crosses) are broadened by a Gaussian with width $4 \widehat{a}_{7}$

Notice that the two curves for $\widehat{a}_{7}=\widehat{a}_{8}=0.1$ (right plot) are two orders smaller than the other curves (left plot). Notice the soft repulsion of the additional real modes from the origin at large \widehat{a}_{7}. The parameter \widehat{a}_{6} smooths the distribution.

Log-Log plots of additional real modes vs \hat{a} for $\nu=0,2$

Log-log plots of $N_{\text {add }}$ as a function of \widehat{a}_{8} for $\nu=0$ (left plot) and $\nu=2$ (right plot). W_{6} has no effect on $N_{\text {add }}$. Saturation around zero due to a non-zero value of \widehat{a}_{7}. For $\widehat{a}_{7}=0$ (lowest curves) the average number of additional real modes behaves like $\widehat{a}_{8}^{2 \nu+2}$. Kieburg, Verbaarschot and SZ (2011)

At $\hat{a} \gg 1 \rho_{r}$ develops square root singularities at the boundaries. Finite matrix size+ finite lattice spacing $\rightarrow \rho_{r}$ has a tail dropping off much faster than the size of the support. The dependence on W_{6} and ν is completely lost.

Projected distribution of the complex eigenvalues

 for $\nu=1$

The distribution of the complex eigenvalues projected onto the imaginary axis for $\nu=1$. Notice that \widehat{a}_{6} does not affect this distribution. The comparison of $\widehat{a}_{7}=\widehat{a}_{8}=0.1$ with the continuum result (black curve) shows that $\rho_{\text {cp }}$ is still a good quantity to extract the chiral condensate Σ at small lattice spacing.

Distribution of the chiralities over the real eigenvalues of D_{W}

- Consider the chiral condensate $\Sigma(m) \equiv\left\langle\operatorname{Tr} \frac{1}{D_{W}+m-i \epsilon \gamma_{5}}\right\rangle$.
- How does it relate to the spectrum of D_{W}. The discontinuity of $\Sigma(m)$ across the real axis is given by

Distribution of the chiralities over the real eigenvalues of D_{W}

- Consider the chiral condensate $\Sigma(m) \equiv\left\langle\operatorname{Tr} \frac{1}{D_{W}+m-i \epsilon \gamma_{5}}\right\rangle$.

■ How does it relate to the spectrum of D_{W}. The discontinuity of $\Sigma(m)$ across the real axis is given by

$$
\rho_{\chi}(m) \equiv \frac{1}{2 \pi i}\left\langle\operatorname{Tr}\left[\frac{1}{\left(D_{W}+m\right)-i \epsilon \gamma_{5}}-\frac{1}{\left(D_{W}+m\right)+i \epsilon \gamma_{5}}\right]_{\epsilon \rightarrow 0}\right\rangle
$$

Distribution of the chiralities over the real eigenvalues of D_{W}

- Consider the chiral condensate $\Sigma(m) \equiv\left\langle\operatorname{Tr} \frac{1}{D_{W}+m-i \epsilon \gamma_{5}}\right\rangle$.

■ How does it relate to the spectrum of D_{W}. The discontinuity of $\Sigma(m)$ across the real axis is given by
$\rho_{\chi}(m) \equiv \frac{1}{2 \pi i}\left\langle\operatorname{Tr}\left[\frac{1}{\left(D_{W}+m\right)-i \epsilon \gamma_{5}}-\frac{1}{\left(D_{W}+m\right)+i \epsilon \gamma_{5}}\right]_{\epsilon \rightarrow 0}\right\rangle$

- $\rho_{\chi}(m)=\frac{1}{\pi}\left\langle\left.\sum_{k} \frac{\epsilon\langle k| \gamma_{5}|k\rangle}{\left(\lambda_{k}^{5}(m)\right)^{2}+\epsilon^{2}}\right|_{\epsilon \rightarrow 0}\right\rangle=$
$\left\langle\sum_{\lambda_{k}^{W} \in \mathbb{R}} \delta\left(\lambda_{k}^{W}+\lambda^{W}\right) \operatorname{sign}\left(\langle k| \gamma_{5}|k\rangle\right)\right\rangle$.

Distribution of the chiralities and inverse chiralities over the real eigenvalues of D_{W}

- Similarly, $\rho_{\frac{1}{\chi}}\left(\lambda^{W}\right)=\rho_{5}\left(\lambda^{5}=0, m ; a\right)=\left\langle\sum_{\lambda_{k}^{W} \in \mathbb{R}} \frac{\delta\left(\lambda_{k}^{W}+m\right)}{\left.\left.\left|\langle k| \gamma_{5}\right| k\right\rangle\right\rangle}\right\rangle$.

Because $\left.\left|\langle k| \gamma_{5}\right| k\right\rangle \mid \leq 1$ we have the inequality

$$
\rho_{\chi}\left(\lambda^{W}\right) \leq \rho_{\text {real }}\left(\lambda^{W}\right) \leq \rho_{5}\left(\lambda^{5}=0, m=\lambda^{W} ; a\right)
$$

Distribution of the chiralities over the real eigenvalues of D_{W}

Lower and upper bounds on $\rho_{\text {real }}\left(\lambda^{W}\right)$

Chirality distribution for $\nu=1$

The distribution is symmetric around the origin. At small \widehat{a}_{8} the distributions for $\left(\widehat{a}_{6}, \widehat{a}_{7}\right)=(1,0.1),(0.1,1)$ are almost the same Gaussian as the analytical result predicts. At large \widehat{a}_{8} the maximum reflects the predicted square root singularity which starts to build up. We have not included the case $\widehat{a}_{6 / 7 / 8}=0.1$ since it exceeds the other curves by a factor of 10 to 100 .

Extracting the LECs of Wilson chPT

Extracting the LECs of Wilson chPT

Please do not read this

(Figure courtesy of M. Kieburg)

$$
x,\left[\operatorname{sen} \left\lvert\,\langle 2|-\cos \left(\frac{-1}{\sqrt{\pi} \frac{z}{n}}\right)\right.\right]
$$

$$
\begin{aligned}
& n(x)=\operatorname{was}_{s}\left[-\frac{n}{2 z^{2}}\left(s-\frac{n^{2} b}{n}\right)^{2}\right] .
\end{aligned}
$$

Extracting the LECs of Wilson chPT

- the average number of the additional real modes for the lowest index:

$$
N_{\mathrm{add}}^{\nu=0} \stackrel{\bar{a} \leqq 1}{=} 2 V \tilde{a}^{2}\left(W_{8}-2 W_{7}\right)
$$

- the width of the Gaussian shaped strip of complex eigenvalues:

$$
2 \sigma \stackrel{\tilde{u} \ll 1}{=} 4 \widetilde{a} \sqrt{\frac{W_{8}-2 W_{6}}{V \Sigma^{2}}},
$$

- the variance of the distribution of chirality over the real eigenvalues:

$$
\left\langle(V \Sigma \tilde{x})^{2}\right\rangle_{\rho_{x}} \stackrel{\widetilde{a} \leqq 1}{=} 8 V \tilde{a}^{2}\left(\nu W_{8}-W_{6}-W_{7}\right), \nu>0 .
$$

(Figure courtesy of M. Kieburg)

Conclusions

－Studied the effect of the three LECs on the spectrum of D_{W} ．
－W_{6} and W_{7} can be interpreted as collective fluctuations of the spectrum while W_{8} induces interactions among all modes．
－Analytical and numerical results of the eigenvalue densities of D_{W}
－At small lattice spacing we propose the following quantities for the extraction of LECs

Conclusions

- Studied the effect of the three LECs on the spectrum of D_{W}.
- W_{6} and W_{7} can be interpreted as collective fluctuations of the spectrum while W_{8} induces interactions among all modes.
- Analytical and numerical results of the eigenvalue densities of D_{W}
- At small lattice spacing we propose the following quantities for the extraction of LECs

Conclusions

- Studied the effect of the three LECs on the spectrum of D_{W}.
- W_{6} and W_{7} can be interpreted as collective fluctuations of the spectrum while W_{8} induces interactions among all modes.
- Analytical and numerical results of the eigenvalue densities of D_{W}
- At small lattice spacing we propose the following quantities for the extraction of LECs

- Studied the effect of the three LECs on the spectrum of D_{W}.
- W_{6} and W_{7} can be interpreted as collective fluctuations of the spectrum while W_{8} induces interactions among all modes.
- Analytical and numerical results of the eigenvalue densities of D_{W}
- At small lattice spacing we propose the following quantities for the extraction of LECs

$$
\tilde{a}^{2} V\left[\begin{array}{ccc}
0 & -2 & 1 \\
-2 & 0 & 1 \\
-1 & -1 & 1 \\
-1 & -1 & 2
\end{array}\right]\left[\begin{array}{c}
W_{6} \\
W_{7} \\
W_{8}
\end{array}\right]=\frac{\pi^{2}}{8}\left[\begin{array}{c}
4 N_{\mathrm{add}}^{\nu=0} / \pi^{2} \\
2 \sigma^{2} / \Delta^{2} \\
\left\langle\widetilde{x}^{2}\right\rangle_{\rho_{\chi}}^{\nu=1} / \Delta^{2} \\
\left\langle\widetilde{x}^{2}\right\rangle_{\rho_{\chi}}^{\nu} / \Delta^{2}
\end{array}\right]
$$

Stay Tuned!

for upcoming results ...

Thank you for your attention!

Collaborators:
Mario Kieburg, Universität Bielefeld Jacobus Verbaarschot, Stony Brook University

