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• Single Instruction, Multiple Data:

‣ processor throughput is increased 
by handling multiple data in 
parallel

‣ exploiting SIMD is increasingly 
becoming more important on 
Xeons (see AVX-512)

‣ exploiting SIMD is mandatory to 
achieve reasonable performances 
on the Xeon PHI

Source: “Computer Architecture,  A Quantitative Approach”

SIMD
WHY IT MATTERS
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MEET ISPC

• Intel SPMD Program Compiler (ISPC) extends a C-based language with “single 
program, multiple data” (SPMD) constructs

• An ISPC program describes the behavior of a single program instance

‣ even though a “gang” of them is in reality being executed

‣ gang size is usually no more than 2-4x the native SIMD width of the machine

• For CUDA affectionados

‣ ISPC Program is similar to a CUDA thread

‣ An ISPC gang is similar to a CUDA warp
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SPMD PARADIGM
Execution of a SPMD program with a gang size of 4

• Observations:

‣ diverging control flow reduces the 
utilization of vector instructions

‣ vectorization adds masking 
overhead

4



HELLO WORLD

export void simple(uniform float vin[], uniform float vout[],
                   uniform int count) {
    foreach (index = 0 ... count) {
        float v = vin[index];
        if (v < 3.)
            v = v * v;
        else
            v = sqrt(v);
        vout[index] = v;
    }
}

simple.ispc, compiled with ispc
#include <stdio.h>
#include "simple.h"

int main() {
    float vin[16], vout[16];
    for (int i = 0; i < 16; ++i)
        vin[i] = i;
    
    simple(vin, vout, 16);
    
    for (int i = 0; i < 16; ++i)
        printf("%d: simple(%f) = %f\n", i, vin[i], vout[i]);
}

main.c, compiled with GCC

uniform variable is shared among program instances

make function available to be called from application 
code

each program instance has a private instance of a 
non-uniform variable (a.k.a. varying variable)

ispc function is called like any other function 
from the C/C++ application

foreach expresses a parallel computation
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DEBUGGING SUPPORT
BEYOND GDB

foreach(k = 0 ... 6){
    int i = k * 7;
    
    print("%\n", i);
    
    double* dR   = &P[i];
    double* dA   = &P[i+3];
    
    ...
}

Prints [0, 7, 14, 21, 28, 35, ((42)), ((49))]

0 7 14 21 28 35 (42) (49)

Inactive Program Instances

gang size of 8
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DEBUGGING SUPPORT
PERFORMANCE WARNINGS

export void foo(uniform float * uniform A, uniform int n){
    foreach(i = 0 ... n){
        A[i*8] *= A[i*8];
    }
}
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MATRIX MULTIPLICATION
EXPLOITING HORIZONTAL VECTORIZATION WITH SMALL MATRICES
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6.4

3.3

ISPC vs GCC DGEMM
ISPC vs GCC SGEMM

inline void mxm(uniform float * uniform A,
                uniform float * uniform B,
                uniform float * uniform C,
                uniform int M,
                uniform int N,
                uniform int K,
                uniform int nmat,
                int idx)
{
    for(uniform int i = 0; i < M; i++){
        for(uniform int j = 0; j < N; j++){
            float sum = 0;
            
            for(uniform int k = 0; k < K; k++){
                sum += A[i*K*nmat + k*nmat + idx] * B[k*N*nmat + j*nmat + idx];
            }
            
            C[i*N*nmat + j*nmat + idx] = sum;
        }
    }
}

export void gemm(uniform float * uniform A,
                 uniform float * uniform B,
                 uniform float * uniform C,
                 uniform int M,
                 uniform int N,
                 uniform int K,
                 uniform int nmat)
{
    foreach(i = 0 ... nmat){
        mxm(A, B, C, M, N, K, nmat, i);
    }
}

xGEMM 5x5 speedup over 1000 matrices (GCC 4.8 -O3, Ivy Bridge)
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MATRIX MULTIPLICATION
EXPLOITING HORIZONTAL VECTORIZATION WITH SMALL MATRICES
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ISPC vs GCC DGEMM
ISPC vs GCC SGEMM

inline void mxm(uniform float * uniform A,
                uniform float * uniform B,
                uniform float * uniform C,
                uniform int M,
                uniform int N,
                uniform int K,
                uniform int nmat,
                int idx)
{
    for(uniform int i = 0; i < M; i++){
        for(uniform int j = 0; j < N; j++){
            float sum = 0;
            
            for(uniform int k = 0; k < K; k++){
                sum += A[i*K*nmat + k*nmat + idx] * B[k*N*nmat + j*nmat + idx];
            }
            
            C[i*N*nmat + j*nmat + idx] = sum;
        }
    }
}

export void gemm(uniform float * uniform A,
                 uniform float * uniform B,
                 uniform float * uniform C,
                 uniform int M,
                 uniform int N,
                 uniform int K,
                 uniform int nmat)
{
    foreach(i = 0 ... nmat){
        mxm(A, B, C, M, N, K, nmat, i);
    }
}

xGEMM 5x5 speedup over 1000 matrices (GCC 4.8 -O3, Ivy Bridge)

align
ed memory!
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KALMAN FILTER
TRACKING

• The Kalman filter method is intended 
for finding the optimum estimation r of 
an unknown vector rt according to the 
measurements mk, k=1...n, of the vector 
rt.

• Plenty of linear algebra operations so 
it’s a good use case for vectorization.

• Caveats:

‣ tracks have different number of hits 
(use sorting)

‣ an hit can be 1 or 2 dimensional 
(serialize branching)
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KALMAN FILTER
100 EVENTS, ~100 TRACKS WITH ~10 HITS EACH
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KalmanFilter speedup (double precision), Ivy Bridge

5.3

3.4

ISPC vs scalar GSL with AoS to SoA conversion
ISPC vs scalar GSL assuming data is preconverted

export void startFilter(uniform KalmanFilter * uniform filter,
                        uniform KalmanFilterParameter * uniform param){
    foreach(i = 0 ... filter->ntracks){
        filterTrack(filter, param, i);
    }
}

inline void filterTrack(uniform KalmanFilter * uniform filter,
                        uniform KalmanFilterParameter * uniform param,
                        int i){
    ...
    for(uniform int h = 0; h < param->max_hit_count; h++){
        if(h >= param->hit_count[i])
            continue;
        
        predictState(filter, param, h, i);
        predictCovariance(filter, param, h, i);
        
        if(param->hits[h].is2Dim[i]){
            ...
            correctGain2D(filter, i);
            correctState2D(filter, i);
            correctCovariance2D(filter, i);
        }else{
            ...
            correctGain1D(filter, i);
            correctState1D(filter, i);
            correctCovariance1D(filter, i);
        }
    }
   ...
}
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WHAT ABOUT OPENCL?
FIRST IMPRESSIONS

• Intel’s OpenCL embeds an implicit vectorization module which has some similarities with ISPC but...

‣ ISPC warns the user if an inefficient data access pattern is detected

‣ the programmer can specify in ISPC which code has to be executed serially and which one has to be 
vectorized (for vs foreach loop)

‣ variables can be declared as uniform or varying in ISPC

‣ ISPC supports lightweight kernel calls while in OpenCL an API call to a driver must be made

• OpenCL has native support for the Xeon PHI

‣ ISPC will support the Xeon PHI natively when LLVM will

• Porting code from ISPC to OpenCL and vice versa is relatively easy

‣ OpenCL comes with some boilerplate code though

‣ task parallelism compositing with TBB works with ISPC and OpenCL

‣ but ISPC is easier to compose with an arbitrary task scheduler while OpenCL requires device fission
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WHAT ABOUT OPENCL?
FIRST IMPRESSIONS

__kernel void gemm(__global float *A,
                   __global float *B,
                   __global float *C,
                   const int M,
                   const int N,
                   const int K,
                   const int num){
    const int idx = get_global_id(0);
    
    if(idx >= num)
        return;
    
    for(int i = 0; i < M; i++){
        for(int j = 0; j < N; j++){
            float sum = 0;
            
            for(int k = 0; k < K; k++){
                sum += A[i*K*num + k*num + idx] * B[k*N*num + j*num + idx];
            }
            
            C[i*N*num + j*num + idx] = sum;
        }
    }
}

.LBB0_8:
    movslq! %esi, %rsi
    vmovups! (%rdi,%rsi,4), %xmm2
    movslq! %ebp, %rbp
    vmovups! (%rcx,%rbp,4), %xmm3
    vmulps! %xmm2, %xmm3, %xmm2
    vaddps! %xmm2, %xmm1, %xmm1
    addl! %edx, %ebp
    addl! %eax, %esi
    decl! %r11d
    jne! .LBB0_8

.LBB0_8:
    movslq! %r11d, %r11
    vmovups! (%r14,%r11,4), %ymm2
    movslq! %esi, %rsi
    vmovups! (%r12,%rsi,4), %ymm3
    vmulps! %ymm2, %ymm3, %ymm2
    vaddps! %ymm2, %ymm1, %ymm1
    addl! %edx, %esi
    addl! %r13d, %r11d
    decl! %r10d
    jne! .LBB0_8
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Bottom Line: too early for numbers
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FINAL THOUGHTS
THE VECTORIZATION FINAL SOLUTION?

• ISPC is by far the best option I have seen to exploit vectorization

‣ it gives the programmer an abstract machine model to reason about

‣ it warns about inefficient memory accesses (aka gathers and scatters)

• In other words, it’s not going to get much easier than that but...

‣ full C++ support would be a welcome addition

‣ linear algebra operations need to be reimplemented

• ISPC is stable, extremely well documented and open source

• For more information visit http://ispc.github.io
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BACKUP
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MEMORY MATTERS
• Addressing modes

‣ SSEx and AVX1 do not support strided accesses pattern and gather-scatter accesses which force 
the compiler to generate scalar instructions

‣ Even when “fancy” access patterns are supported (e.g. IMCI and AVX2) a penalty is paid 

‣ Convert your arrays of structures to structures of arrays

• Memory alignment

‣ Unaligned memory access may generate scalar instructions for otherwise vectorizable code

‣ Vectorized loads from unaligned memory suffer from a penalty

‣ The penalty decreased over the years and may become negligible in the future

‣ Align data in memory to the width of the SIMD unit if possible
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