
EXPLOITING VECTORIZATION WITH ISPC
Roberto A. Vitillo (LBNL)

8/14/2013 Concurrency Forum Meeting

1

• Single Instruction, Multiple Data:

‣ processor throughput is increased
by handling multiple data in
parallel

‣ exploiting SIMD is increasingly
becoming more important on
Xeons (see AVX-512)

‣ exploiting SIMD is mandatory to
achieve reasonable performances
on the Xeon PHI

Source: “Computer Architecture, A Quantitative Approach”

SIMD
WHY IT MATTERS

2

MEET ISPC

• Intel SPMD Program Compiler (ISPC) extends a C-based language with “single
program, multiple data” (SPMD) constructs

• An ISPC program describes the behavior of a single program instance

‣ even though a “gang” of them is in reality being executed

‣ gang size is usually no more than 2-4x the native SIMD width of the machine

• For CUDA affectionados

‣ ISPC Program is similar to a CUDA thread

‣ An ISPC gang is similar to a CUDA warp

3

SPMD PARADIGM
Execution of a SPMD program with a gang size of 4

• Observations:

‣ diverging control flow reduces the
utilization of vector instructions

‣ vectorization adds masking
overhead

4

HELLO WORLD

export void simple(uniform float vin[], uniform float vout[],
 uniform int count) {
 foreach (index = 0 ... count) {
 float v = vin[index];
 if (v < 3.)
 v = v * v;
 else
 v = sqrt(v);
 vout[index] = v;
 }
}

simple.ispc, compiled with ispc
#include <stdio.h>
#include "simple.h"

int main() {
 float vin[16], vout[16];
 for (int i = 0; i < 16; ++i)
 vin[i] = i;

 simple(vin, vout, 16);

 for (int i = 0; i < 16; ++i)
 printf("%d: simple(%f) = %f\n", i, vin[i], vout[i]);
}

main.c, compiled with GCC

uniform variable is shared among program instances

make function available to be called from application
code

each program instance has a private instance of a
non-uniform variable (a.k.a. varying variable)

ispc function is called like any other function
from the C/C++ application

foreach expresses a parallel computation

5

DEBUGGING SUPPORT
BEYOND GDB

foreach(k = 0 ... 6){
 int i = k * 7;

 print("%\n", i);

 double* dR = &P[i];
 double* dA = &P[i+3];

 ...
}

Prints [0, 7, 14, 21, 28, 35, ((42)), ((49))]

0 7 14 21 28 35 (42) (49)

Inactive Program Instances

gang size of 8

6

DEBUGGING SUPPORT
PERFORMANCE WARNINGS

export void foo(uniform float * uniform A, uniform int n){
 foreach(i = 0 ... n){
 A[i*8] *= A[i*8];
 }
}

7

MATRIX MULTIPLICATION
EXPLOITING HORIZONTAL VECTORIZATION WITH SMALL MATRICES

0

1

3

4

5

7

8

6.4

3.3

ISPC vs GCC DGEMM
ISPC vs GCC SGEMM

inline void mxm(uniform float * uniform A,
 uniform float * uniform B,
 uniform float * uniform C,
 uniform int M,
 uniform int N,
 uniform int K,
 uniform int nmat,
 int idx)
{
 for(uniform int i = 0; i < M; i++){
 for(uniform int j = 0; j < N; j++){
 float sum = 0;

 for(uniform int k = 0; k < K; k++){
 sum += A[i*K*nmat + k*nmat + idx] * B[k*N*nmat + j*nmat + idx];
 }

 C[i*N*nmat + j*nmat + idx] = sum;
 }
 }
}

export void gemm(uniform float * uniform A,
 uniform float * uniform B,
 uniform float * uniform C,
 uniform int M,
 uniform int N,
 uniform int K,
 uniform int nmat)
{
 foreach(i = 0 ... nmat){
 mxm(A, B, C, M, N, K, nmat, i);
 }
}

xGEMM 5x5 speedup over 1000 matrices (GCC 4.8 -O3, Ivy Bridge)
8

MATRIX MULTIPLICATION
EXPLOITING HORIZONTAL VECTORIZATION WITH SMALL MATRICES

0

1

3

4

5

7

8

7.6

3.7

ISPC vs GCC DGEMM
ISPC vs GCC SGEMM

inline void mxm(uniform float * uniform A,
 uniform float * uniform B,
 uniform float * uniform C,
 uniform int M,
 uniform int N,
 uniform int K,
 uniform int nmat,
 int idx)
{
 for(uniform int i = 0; i < M; i++){
 for(uniform int j = 0; j < N; j++){
 float sum = 0;

 for(uniform int k = 0; k < K; k++){
 sum += A[i*K*nmat + k*nmat + idx] * B[k*N*nmat + j*nmat + idx];
 }

 C[i*N*nmat + j*nmat + idx] = sum;
 }
 }
}

export void gemm(uniform float * uniform A,
 uniform float * uniform B,
 uniform float * uniform C,
 uniform int M,
 uniform int N,
 uniform int K,
 uniform int nmat)
{
 foreach(i = 0 ... nmat){
 mxm(A, B, C, M, N, K, nmat, i);
 }
}

xGEMM 5x5 speedup over 1000 matrices (GCC 4.8 -O3, Ivy Bridge)

align
ed memory!

9

KALMAN FILTER
TRACKING

• The Kalman filter method is intended
for finding the optimum estimation r of
an unknown vector rt according to the
measurements mk, k=1...n, of the vector
rt.

• Plenty of linear algebra operations so
it’s a good use case for vectorization.

• Caveats:

‣ tracks have different number of hits
(use sorting)

‣ an hit can be 1 or 2 dimensional
(serialize branching)

10

KALMAN FILTER
100 EVENTS, ~100 TRACKS WITH ~10 HITS EACH

0

1

3

4

5

7

8

KalmanFilter speedup (double precision), Ivy Bridge

5.3

3.4

ISPC vs scalar GSL with AoS to SoA conversion
ISPC vs scalar GSL assuming data is preconverted

export void startFilter(uniform KalmanFilter * uniform filter,
 uniform KalmanFilterParameter * uniform param){
 foreach(i = 0 ... filter->ntracks){
 filterTrack(filter, param, i);
 }
}

inline void filterTrack(uniform KalmanFilter * uniform filter,
 uniform KalmanFilterParameter * uniform param,
 int i){
 ...
 for(uniform int h = 0; h < param->max_hit_count; h++){
 if(h >= param->hit_count[i])
 continue;

 predictState(filter, param, h, i);
 predictCovariance(filter, param, h, i);

 if(param->hits[h].is2Dim[i]){
 ...
 correctGain2D(filter, i);
 correctState2D(filter, i);
 correctCovariance2D(filter, i);
 }else{
 ...
 correctGain1D(filter, i);
 correctState1D(filter, i);
 correctCovariance1D(filter, i);
 }
 }
 ...
}

11

WHAT ABOUT OPENCL?
FIRST IMPRESSIONS

• Intel’s OpenCL embeds an implicit vectorization module which has some similarities with ISPC but...

‣ ISPC warns the user if an inefficient data access pattern is detected

‣ the programmer can specify in ISPC which code has to be executed serially and which one has to be
vectorized (for vs foreach loop)

‣ variables can be declared as uniform or varying in ISPC

‣ ISPC supports lightweight kernel calls while in OpenCL an API call to a driver must be made

• OpenCL has native support for the Xeon PHI

‣ ISPC will support the Xeon PHI natively when LLVM will

• Porting code from ISPC to OpenCL and vice versa is relatively easy

‣ OpenCL comes with some boilerplate code though

‣ task parallelism compositing with TBB works with ISPC and OpenCL

‣ but ISPC is easier to compose with an arbitrary task scheduler while OpenCL requires device fission

12

WHAT ABOUT OPENCL?
FIRST IMPRESSIONS

__kernel void gemm(__global float *A,
 __global float *B,
 __global float *C,
 const int M,
 const int N,
 const int K,
 const int num){
 const int idx = get_global_id(0);

 if(idx >= num)
 return;

 for(int i = 0; i < M; i++){
 for(int j = 0; j < N; j++){
 float sum = 0;

 for(int k = 0; k < K; k++){
 sum += A[i*K*num + k*num + idx] * B[k*N*num + j*num + idx];
 }

 C[i*N*num + j*num + idx] = sum;
 }
 }
}

.LBB0_8:
 movslq! %esi, %rsi
 vmovups! (%rdi,%rsi,4), %xmm2
 movslq! %ebp, %rbp
 vmovups! (%rcx,%rbp,4), %xmm3
 vmulps! %xmm2, %xmm3, %xmm2
 vaddps! %xmm2, %xmm1, %xmm1
 addl! %edx, %ebp
 addl! %eax, %esi
 decl! %r11d
 jne! .LBB0_8

.LBB0_8:
 movslq! %r11d, %r11
 vmovups! (%r14,%r11,4), %ymm2
 movslq! %esi, %rsi
 vmovups! (%r12,%rsi,4), %ymm3
 vmulps! %ymm2, %ymm3, %ymm2
 vaddps! %ymm2, %ymm1, %ymm1
 addl! %edx, %esi
 addl! %r13d, %r11d
 decl! %r10d
 jne! .LBB0_8

AVX

AVX 2
W

hy
is i

t n
ot

usi
ng

Bottom Line: too early for numbers

25
6 b

it r
egi

ste
rs?

13

FINAL THOUGHTS
THE VECTORIZATION FINAL SOLUTION?

• ISPC is by far the best option I have seen to exploit vectorization

‣ it gives the programmer an abstract machine model to reason about

‣ it warns about inefficient memory accesses (aka gathers and scatters)

• In other words, it’s not going to get much easier than that but...

‣ full C++ support would be a welcome addition

‣ linear algebra operations need to be reimplemented

• ISPC is stable, extremely well documented and open source

• For more information visit http://ispc.github.io
14

http://ispc.github.io
http://ispc.github.io

15

BACKUP

16

MEMORY MATTERS
• Addressing modes

‣ SSEx and AVX1 do not support strided accesses pattern and gather-scatter accesses which force
the compiler to generate scalar instructions

‣ Even when “fancy” access patterns are supported (e.g. IMCI and AVX2) a penalty is paid

‣ Convert your arrays of structures to structures of arrays

• Memory alignment

‣ Unaligned memory access may generate scalar instructions for otherwise vectorizable code

‣ Vectorized loads from unaligned memory suffer from a penalty

‣ The penalty decreased over the years and may become negligible in the future

‣ Align data in memory to the width of the SIMD unit if possible

17

