-XPLOITING VECTORIZATION WITH I1SPC
Roberto A.Vitillo (LBNL)

8/14/2013 Concurrency Forum Meeting

SIMD

WHY IT MATTERS

* Single Instruction, Multiple Data: -
¥ MIMD*SIMD (32b)
i - MIMD*SIMD (64 b)
» processor throughput Is increased SIMD (320)
by handling multiple data in o
darallel 100}

» exploiting SIMD s increasingly
becoming more important on
Xeons (see AVX-512)

Potential parallel speedup

» exploiting SIMD I1s mandatory to
achieve reasonable performances 1
on the Xeon PHI

2003 2007 2011 2015 2019 2023

Source: “Computer Architecture, A Quantitative Approach”

MEET ISPC

* Intel SPMD Program Compiler (ISPC) extends a C-based language with “single
program, multiple data” (SPMD) constructs

* An ISPC program describes the behavior of a single program instance

» even though a “gang” of them Is In reality being executed

» gang size Is usually no more than 2-4x the native SIMD width of the machine

« For CUDA affectionados

» ISPC Program is similar to a CUDA thread

» An ISPC gang Is similar to a CUDA warp

SPMD PARADIGM

Execution of a SPMD program with a gang size of 4

int £f(int a, int b) {

a0 |al |a2 |a3| < |O|O|O| O
01O O] O |withmask|mOolIm!|Im2lm3
~ |mO{ml [m2|m3

b0 | bl | b2 | b3 | with mask [mO|mIl [m2|m3

1f (a < 0) » |mO|ml|m2|m3
a = O,‘ » | a0 | al | a2 | a3
else > |mO[ml|m2|m3
a += b; » | a0 | al | a2 | a3
return a; » return | a0 | al

« Observations:

» diverging control flow reduces the

utilization of vector instructions

» vectorization adds masking
overhead

a3

HELLO WORLD

uniform variable is shared among program instances

make function available to be called from application

code
export void simple(uniform float vin[], uniform float voutl[],
. uniform int count) {
foreach expresses a parallel computation ey fOreach (index = @ ... count) {
float v = vin[index];
if (v < 3.)
V =V %k V]
else
each program instance has a private instance of a v = sqrt(v);

vout[index] = v;

non-uniform variable (a.k.a. varying variable)

simple.ispc, compiled with ispc
#include <stdio.h>
#include "simple.h"

int main() {
float vin[16], vout[16];
for (int 1 = 0; i < 16; ++1i)

vin[il i;

ispc function is called like any other function
from the C/C++ application

simple(vin, vout, 16);

for (int i = 0; i < 16; ++1i)
printf("%d: simple(%f) = %f\n", i, vin[i], voutl[i]);

main.c, compiled with GCC

DEBUGGING SUPPORT

BEYOND GDB

foreach(k = 0 ... 6){
int 1 =k x 7;

print("s\n", 1i);

Prints [0, /7, [4, 21, 28,55 (G2 MEESEd

4

gang size of 3

doublex dR = &PI[il;
doublex dA = &P[i+3];

0 | 7 | 14|21 |28 35 |(42)]|49

N/

Inactive Program Instances

DEBUGGING SUPPORT

PERFORMANCE WARNINGS

export void foo(uniform float x uniform A, uniform int n){
foreach(i =0 ... n){
A[ix8] %= A[ix8];
I3

v

vitillo@mickey /tmp $ ispc test.ispc -02 -o test.o --target=avx
test.ispc:3:15: Performance Warning: Coalesced gather into 8
loads (8 x l-wide).
Alix8] == A[ix8];

AAAANANN

test.ispc:3:5: Performance Warning: Scatter required to store
value.
A[ix8] == A[1ix%8];

AAAANAANN

MATRIX MULTIPLICATION

EARECERING FORIZONTAL VECTORIZATION WWIIFEESMAE SRS =S

“ |SPC VS GCC DGEMM inline void mxm(uniform float * uniform A,
if float if B,
B ISPC vs GCC SGEMM uniforn float + uniform C,

uniform int M,
uniform int N,
uniform int K,
uniform int nmat,
8 int idx)
{

for(uniform int i = 0; i < M; i++){
for(uniform int j = 0; j < N; j++){
77 float sum = 0;

for(uniform int k = 0; k < K; k++){
sum += A[ixKxnmat + kxnmat + idx] * B[kkNxnmat + jxnmat + idx];
¥

C[ikNxnmat + j*knmat + idx] = sum;

export void gemm(uniform float * uniform A,
uniform float % uniform B,
uniform float % uniform C,
uniform int M,
uniform int N,
uniform int K,
uniform int nmat)
{
foreach(i = @ ... nmat){
mxm(A, B, C, M, N, K, nmat, 1i);
}

by

xGEMM 5x5 speedup over 1000 matrices (GCC 4.8 -O3, lvy Bridge)

MATRIX MULTIPLICATION

EARECERING FORIZONTAL VECTORIZATION WWIIFEESMAE SRS =S

- lSPC VS GCC DGEMM inline void mxm(uniform float * uniform A,
if float if B,
B ISPC vs GCC SGEMM uniforn float + uniform C,

uniform int M,
uniform int N,

uniform int K,
uniform int nmat,

8 int idx)
{
for(uniform int i = 0; i < M; i++){
for(uniform int j = 0; j < N; j++){
:7 float sum = 0;
for(uniform int k = 0; k < K; k++){
sum += A[ixKxnmat + kxnmat + idx] * B[kkNxnmat + jxnmat + idx];
ES }
C[ikNxnmat + j*knmat + idx] = sum;
}
}
4 }

export void gemm(uniform float * uniform A,
uniform float % uniform B,
uniform float % uniform C,
uniform int M,
uniform int N,
uniform int K,
uniform int nmat)
{
foreach(i = @ ... nmat){
mxm(A, B, C, M, N, K, nmat, 1i);
}

by

xGEMM 5x5 speedup over 1000 matrices (GCC 4.8 -O3, lvy Bridge)

KALMAN FILTER

TRACKING

[nitial approximation

ro. Co « [The Kalman filter method Is intended

for finding the optimum estimation r of

A4

— an unknown vector rt according to the
rediction

Fe = ApTe measurements my, k=1..n, of the vector
Ci = Ap_1Cr1 AT, rt

~ Process noise Noise » Plenty of linear algebra operations so

Ch S O Qs it's a good use case for vectorization.

Y

Filtering « Caveats:
r A uTiv 5 Ty -1
Ky = CiHy (Vi + HyCy Hy:) Measurement

re = T+ Kp(my — Hyry) my. H.. Vi

» tracks have different number of hits
(use sorting)

Cy = (I = Ky Hy)Cy

. (";-
" » an hit can be | or 2 dimensional
Fitted parameters (serialize branching)
n, Chn

10

KALMAN FILTER

|00 EVENTS, ~ 100 TRACKS WITH ~10 HITS EACH

ISPC vs scalar GSL with AoS to SoA conversion
ISPC vs scalar GSL assuming data is preconverted

0

KalmanFilter speedup (double precision), Ivy Bridge

export void startFilter(uniform KalmanFilter x uniform filter,
uniform KalmanFilterParameter x uniform param){
foreach(i = 0 ... filter->ntracks){
filterTrack(filter, param, 1i);
ks

}

inline void filterTrack(uniform KalmanFilter x uniform filter,
uniform KalmanFilterParameter * uniform param,
int i){

for(uniform int h = 0; h < param—>max_hit_count; h++){
if(h >= param->hit_count[i])
continue;

predictState(filter, param, h, i);
predictCovariance(filter, param, h, 1i);

if(param—>hits[h].is2Dim[i]){

correctGain2D(filter, 1i);

correctState2D(filter, i);

correctCovariance2D(filter, 1i);
Yelse{

correctGainlD(filter, 1i);
correctStatelD(filter, 1i);
correctCovariancelD(filter, 1i);
}
}

11

WHAIT ABOUT OPENCL?

FIRST IMPRESSIONS

Intel's OpenCL embeds an implicit vectorization module which has some similarities with ISPC but...

» ISPC warns the user Iif an inefficient data access pattern is detected

» the programmer can specify in ISPC which code has to be executed serially and which one has to be
vectorized (for vs foreach loop)

» variables can be declared as uniform or varying in ISPC

» ISPC supports lightweight kernel calls while in OpenCL an API call to a driver must be made

» OpenCL has native support for the Xeon PHI

» |SPC will support the Xeon PHI natively when LLVM will
Porting code from ISPC to OpenCL and vice versa is relatively easy

» OpenCL comes with some boilerplate code though

» task parallelism compositing with TBB works with ISPC and OpenCL

» but ISPC is easier to compose with an arbitrary task scheduler while OpenCL requires device fission

12

WHAIT ABOUT OPENCL?

FIRST IMPRESSIONS
AVX

.LBBO_8:
movslq %esi, %rsi
vMmovups (%rdi,%rsi,4), S%xmm2
movslq %sebp, %rbp
vmovups (%rcx,%rbp,4), %xmm3
vmulps %XmMm2, %xmm3, S%xmm2
__kernel void gemm(__global float A, vaddps %Xmm2, Sxmml, Sxmml

addl %edx, %ebp
addl %eax, %esi
decl %rilld

jne .LBB0O_38

__global float *B,
_global float *C,
const int M,
const int N,
const int K,
const int num){
const int idx = get_global_id(

0);

if(idx >= num)
return;

for(int i = 0; i < M; i++){
for(int j = 0; j < N; j++){

float sum = 0; A\/X 2

for(int k = 0; k < K; k++){

sum += A[ixKknum + kxnum + idx] * B[kkNknum + j*xnum + idx]; _LBBO 8:
; movslq %rlld, %rll
vmovups (%ri14,%srl1l,4), Symm2

CLikN.num + j*knum + idx] = sum;

movslq %esi, %rsi

vmovups (%r12,%rsi,4), %ymm3
vmulps Ssymm2, Symm3, Ssymm2
vaddps Ssymm2, Symml, Ssymml

addl %edx, %esi
addl %ri13d, %rlld
decl %rilod

jne .LBBO_8

Bottom Line: too early for numbers

FINAL THOUGHTS

THEVECTORIZATION FINAL SOLUTION?

ISPC is by far the best option | have seen to exploit vectorization

» It gives the programmer an abstract machine model to reason about

» It warns about inefficient memory accesses (aka gathers and scatters)
In other words, it's not going to get much easier than that but...

» full C++ support would be a welcome addition

» linear algebra operations need to be reimplemented

ISPC is stable, extremely well documented and open source

For more information visit http://ispc.github.io

14

http://ispc.github.io
http://ispc.github.io

BACKUP

MEMORY MAT TERS

« Addressing modes

» SSEx and AVXI do not support strided accesses pattern and gather-scatter accesses which force
the compliler to generate scalar instructions

» Even when “fancy” access patterns are supported (e.g. IMCl and AV.X2) a penalty is paid

» Convert your arrays of structures to structures of arrays

« Memory alignment
» Unaligned memory access may generate scalar instructions for otherwise vectorizable code
» Vectorized loads from unaligned memory suffer from a penalty

» The penalty decreased over the years and may become negligible in the future

» Align data in memory to the width of the SIMD unit if possible

17

