HIGGS COMPOSITENESS: CURRENT STATUS AND FUTURE STRATEGIES

Roberto Contino
CERN \& EPFL Lausanne

CERN Theory Colloquium - 4 December, 2013

Outline

- Strong vs Weak EWSB
- Current Status of Higgs Compositeness:

1. Higgs mass
2. EW Precision Tests
3. Impact of Searches for top partners
4. Impact of data on Higgs couplings

- Future Strategies

Strong vs Weak EWSB

In the $\{\mathrm{SM}-\mathrm{H}\}$

$$
A\left(W_{L} W_{L} \rightarrow W_{L} W_{L}\right)=A(\chi \chi \rightarrow \chi \chi) \sim \frac{E^{2}}{v^{2}} \equiv g^{2}(E)
$$

In the $\{S M-H\}+H$

$$
\begin{aligned}
& \text { ' } \\
& A \sim \frac{E^{2}}{v^{2}}\left(1-c_{V}^{2}\right)-c_{V}^{2} \frac{m_{h}^{2}}{v^{2}} \frac{s}{s-m_{h}^{2}}
\end{aligned}
$$

In the $\{\mathrm{SM}-\mathrm{H}\}$

$$
A\left(W_{L} W_{L} \rightarrow W_{L} W_{L}\right)=A(\chi \chi \rightarrow \chi \chi) \sim \frac{E^{2}}{v^{2}} \equiv g^{2}(E)
$$

In the $\{S M-H\}+H$

Elementary Higgs:

$$
c_{V}=1
$$

$$
\begin{aligned}
& A \sim \frac{E^{2}}{v^{2}}\left(1-c_{V}^{2}\right)-c_{V}^{2} \frac{m_{h}^{2}}{v^{2}} \frac{s}{s-m_{h}^{2}} \\
& \quad=0
\end{aligned}
$$

In the $\{\mathrm{SM}-\mathrm{H}\}$

In the $\{S M-H\}+H_{i}$

$$
\begin{gathered}
A \sim \frac{E^{2}}{v^{2}}\left(1-\sum_{i} c_{V i}^{2}\right)+\ldots \\
=0
\end{gathered}
$$

Elementary Higgses: (more than one)

- $\delta c_{V i} \sim O(1)$ possible
- sum rule:

$$
\sum_{i} c_{V i}^{2}=1
$$

Composite Higgs:

coupling strength grows with energy and saturates at $g_{*} \lesssim 4 \pi$

Energy cartoon:

Analogy with $\pi \pi$ scattering in QCD: $\quad h \leftrightarrow \sigma$
Q: why light and narrow?

Analogy with $\pi \pi$ scattering in QCD: $\quad h \leftrightarrow \sigma$

Q: why light and narrow?

A: the Higgs is itself a (pseudo) NG boson
Georgi \& Kaplan, '80
Kaplan, Georgi, Dimopoulos
ex: $\quad \frac{S O(5)}{S O(4)} \rightarrow \quad 4 \mathrm{NGBs} \quad$ transforming as a $(2,2)$ of $\mathrm{SO}(4) \sim \operatorname{SU}(2)_{\mathrm{Lx}} \operatorname{SU}(2)_{\mathrm{R}}$
Agashe, RC, Pomarol NPB 719 (2005) 165

$$
f^{2}\left|\partial_{\mu} e^{i \pi / f}\right|^{2}=(\partial \pi)^{2}+\frac{(\pi \partial \pi)^{2}}{f^{2}}+\frac{\pi^{2}(\pi \partial \pi)^{2}}{f^{4}}+\ldots
$$

Analogy with $\pi \pi$ scattering in QCD: $\quad h \leftrightarrow \sigma$
Q: why light and narrow?

A: the Higgs is itself a (pseudo) NG boson
Georgi \& Kaplan, '80
Kaplan, Georgi, Dimopoulos
ex: $\quad \frac{S O(5)}{S O(4)} \rightarrow \quad 4 \mathrm{NGBs} \quad$ transforming as a $(2,2)$ of $\mathrm{SO}(4) \sim \operatorname{SU}(2)_{\mathrm{Lx}} \mathrm{SU}(2)_{\mathrm{R}}$
Agashe, RC, Pomarol NPB 719 (2005) 165

$$
f^{2}\left|\partial_{\mu} e^{i \pi / f}\right|^{2}=\left|D_{\mu} H\right|^{2}+\frac{c_{H}}{2 f^{2}}\left[\partial_{\mu}\left(H^{\dagger} H\right)\right]^{2}+\frac{c_{H}^{\prime}}{2 f^{4}}\left(H^{\dagger} H\right)\left[\partial_{\mu}\left(H^{\dagger} H\right)\right]^{2}+\ldots
$$

Giudice et al. JHEP 0706 (2007) 045

Analogy with $\pi \pi$ scattering in QCD: $\quad h \leftrightarrow \sigma$
Q: why light and narrow?

A: the Higgs is itself a (pseudo) NG boson
Georgi \& Kaplan, '80
Kaplan, Georgi, Dimopoulos
ex: $\quad \frac{S O(5)}{S O(4)} \rightarrow \quad 4 \mathrm{NGBs} \quad$ transforming as a $(2,2)$ of $\mathrm{SO}(4) \sim \operatorname{SU}(2)_{\mathrm{Lx}} \operatorname{SU}(2)_{\mathrm{R}}$
Agashe, RC, Pomarol NPB 719 (2005) 165

$$
f^{2}\left|\partial_{\mu} e^{i \pi / f}\right|^{2}=\left|D_{\mu} H\right|^{2}+\frac{c_{H}}{2 f^{2}}\left[\partial_{\mu}\left(H^{\dagger} H\right)\right]^{2}+\frac{c_{H}^{\prime}}{2 f^{4}}\left(H^{\dagger} H\right)\left[\partial_{\mu}\left(H^{\dagger} H\right)\right]^{2}+\ldots
$$

Giudice et al. JHEP 0706 (2007) 045

1. $O\left(v^{2} / f^{2}\right)$ shifts in tree-level Higgs couplings. $\quad \mathrm{Ex}: \quad c_{V}=1-c_{H}\left(\frac{v}{f}\right)^{2}+\ldots$

Analogy with $\pi \pi$ scattering in QCD: $\quad h \leftrightarrow \sigma$

Q: why light and narrow?

A: the Higgs is itself a (pseudo) NG boson
Georgi \& Kaplan, '80
Kaplan, Georgi, Dimopoulos
ex: $\quad \frac{S O(5)}{S O(4)} \rightarrow \quad 4 \mathrm{NGBs} \quad$ transforming as a $(2,2)$ of $\mathrm{SO}(4) \sim \operatorname{SU}(2)_{\mathrm{LxS}} \operatorname{SU}(2)_{\mathrm{R}}$
Agashe, RC, Pomarol NPB 719 (2005) 165

$$
f^{2}\left|\partial_{\mu} e^{i \pi / f}\right|^{2}=\left|D_{\mu} H\right|^{2}+\frac{c_{H}}{2 f^{2}}\left[\partial_{\mu}\left(H^{\dagger} H\right)\right]^{2}+\frac{c_{H}^{\prime}}{2 f^{4}}\left(H^{\dagger} H\right)\left[\partial_{\mu}\left(H^{\dagger} H\right)\right]^{2}+\ldots
$$

Giudice et al. JHEP 0706 (2007) 045
2. Scatterings involving the Higgs also grow with energy

$$
A(W W \rightarrow h h) \sim \frac{s}{v^{2}}\left(c_{V}^{2}-c_{2 V}\right)
$$

- Hypothesis:
each SM fermion couples to a composite fermionic operator with the same $S U(3)_{c} x S U(2)_{\llcorner } x U(1)_{y}$ quantum numbers

$$
\mathcal{L}=\lambda_{L} \bar{q}_{L} O_{R}+\lambda_{R} \bar{u}_{R} O_{L}+h . c .
$$

\square Hypothesis: each SM fermion couples to a composite fermionic operator with the same $S U(3)_{c} x S U(2)_{\llcorner x U(1) y ~ q u a n t u m ~ n u m b e r s ~}^{\text {n }}$

$$
\mathcal{L}=\lambda_{L} \bar{q}_{L} O_{R}+\lambda_{R} \bar{u}_{R} O_{L}+\text { h.c. }
$$

Quark masses need two such couplings

$$
m_{q} \sim \frac{\lambda_{L}(\mu) \lambda_{R}(\mu)}{g_{*}} v
$$

$$
\mu \sim m_{*}
$$

\square Hypothesis: each SM fermion couples to a composite fermionic operator with the same $S U(3)_{c} x S U(2){ }_{\llcorner } x U(1)_{y}$ quantum numbers

$$
\mathcal{L}=\lambda_{L} \bar{q}_{L} O_{R}+\lambda_{R} \bar{u}_{R} O_{L}+\text { h.c. }
$$

Quark masses need two such couplings

$$
m_{q} \sim \frac{\lambda_{L}(\mu) \lambda_{R}(\mu)}{g_{*}} v
$$

$$
\mu \sim m_{*}
$$

Similar to linear couplings of elementary gauge fields:

$$
\mathcal{L}=g A_{\mu} J^{\mu}
$$

\square Hypothesis: each SM fermion couples to a composite fermionic operator with the same $S U(3)_{c} x S U(2)_{\llcorner x U(1) y ~ q u a n t u m ~ n u m b e r s ~}^{\text {n }}$

- Fermionic operators can excite composite fermions at low energy:
same as for a conserved current:

$$
\langle 0| O|\chi\rangle=\lambda f
$$

$$
\langle 0| J_{\mu}|\rho\rangle=\epsilon_{\mu}^{r} f_{\rho} m_{\rho}
$$

- Fermionic operators can excite composite fermions at low energy:
same as for a conserved current:

$$
\begin{aligned}
& \left.\begin{array}{c}
\text { vector-like composite fermion } \\
\downarrow \\
\langle 0| O|\chi\rangle
\end{array}\right)=\lambda f
\end{aligned}
$$

$$
\langle 0| J_{\mu}|\rho\rangle=\epsilon_{\mu}^{r} f_{\rho} m_{\rho}
$$

- Fermionic operators can excite composite fermions at low energy:
same as for a conserved current:

- Linear couplings imply mass mixings:

$$
\mathcal{L}=\bar{\psi} i \not \partial \psi+\bar{\chi}\left(i \not \nabla-m_{*}\right) \chi+\lambda f \bar{\psi} U(\pi) \chi+h . c .
$$

rotating to mass eigenbasis:

$$
\binom{\psi}{\chi} \rightarrow\left(\begin{array}{cc}
\cos \varphi & \sin \varphi \\
\sin \varphi & \cos \varphi
\end{array}\right)\binom{\psi}{\chi} \quad \tan \varphi=\frac{\lambda f}{m_{*}}
$$

φ parametrizes the degree of compositeness of the SM fermions

$$
\begin{aligned}
|\mathrm{SM}\rangle & =\cos \varphi|\psi\rangle+\sin \varphi|\chi\rangle \\
|\operatorname{heavy}\rangle & =-\sin \varphi|\psi\rangle+\cos \varphi|\chi\rangle
\end{aligned}
$$

Higgs mass

Can a 125 GeV Higgs be composite?

Structure of the Higgs Potential

$$
V(h)=\frac{m_{*}^{4}}{g_{*}^{2}} \frac{N_{c}}{8 \pi^{2}}\left[\lambda^{2} \sum_{i} A_{i}(h / f)+\lambda^{4} \sum_{i} B_{i}(h / f)+\ldots\right]
$$

$A_{i}(x), B_{i}(x) \quad \mathrm{SO}(4)$ structures
\rightarrow trigonometric functions: $\sin ^{2}(x)$
$\sin ^{4}(x)$!

$$
h \equiv \sqrt{H^{\dagger} H}
$$

explicit

$$
\frac{S O(5)}{S O(4)}=S^{4} \quad \begin{gathered}
\text { vacuum manifold } \\
\text { the } 4 \text {-sphere }
\end{gathered}
$$

Structure of the Higgs Potential

$$
V(h)=\frac{m_{*}^{4}}{g_{*}^{2}} \frac{N_{c}}{8 \pi^{2}}\left[\lambda^{2} \sum_{i} A_{i}(h / f)+\lambda^{4} \sum_{i} B_{i}(h / f)+\ldots\right]
$$

$$
h \equiv \sqrt{H^{\dagger} H}
$$

explicit breaking of Goldstone
symmetry (spurion couplings)
$A_{i}(x), B_{i}(x) \quad \mathrm{SO}(4)$ structures
\rightarrow trigonometric functions: $\sin ^{2}(x)$
$\sin ^{4}(x)$:

Structure of the Higgs Potential

loop integral saturated at the compositeness scale
$V(h)=\frac{m_{*}^{4}}{g_{*}^{2}} \frac{N_{c}}{8 \pi^{2}} \underbrace{\lambda^{2} \sum_{i} A_{i}(h / f)+\lambda_{i}^{4} \sum_{i} B_{i}} \begin{gathered}\text { explicit breaking of Goldstone } \\ \text { symmetry (spurion couplings) }\end{gathered}$
$A_{i}(x), B_{i}(x) \quad \mathrm{SO}(4)$ structures

$$
h \equiv \sqrt{H^{\dagger} H}
$$

explicit breaking

vacuum manifold is the 4 -sphere

Structure of the Higgs Potential

loop integral saturated at the compositeness scale

$$
V(h)=\frac{m_{*}^{4}}{g_{*}^{2}} \frac{N_{c}}{8 \pi^{2}}\left[\lambda^{2} \sum_{i} A_{i}(h / f)+\lambda^{4} \sum_{i} B_{i}(h / f)+\ldots\right]
$$

explicit breaking of Goldstone
symmetry (spurion couplings)
$A_{i}(x), B_{i}(x) \quad \mathrm{SO}(4)$ structures
\rightarrow trigonometric functions: $\sin ^{2}(x)$

$$
\sin ^{4}(x)
$$

!

- To get EWSB ($0<x \ll \pi$) at least two SO(4) structures are needed plus some tuning

$$
F T=O\left(\frac{v^{2}}{f^{2}}\right)
$$

- If EWSB is triggered at $O\left(\lambda^{2}\right)$

$$
\begin{aligned}
V(h) & \simeq \frac{m_{*}^{4}}{g_{*}^{2}} \frac{N_{c}}{8 \pi^{2}} \lambda_{L, R}^{2} A\left(\frac{h}{f}\right) \\
m_{h}^{2} & \sim \frac{N_{c}}{4 \pi^{2}} \frac{m_{*}^{2}}{f^{2}} \lambda_{L, R}^{2} v^{2}
\end{aligned}
$$

- If EWSB is triggered at $O\left(\lambda^{2}\right)$
$\underbrace{t_{L, R}} \quad V(h) \simeq \frac{m_{*}^{4}}{g_{*}^{2}} \frac{N_{c}}{8 \pi^{2}} \lambda_{L, R}^{2} A\left(\frac{h}{f}\right)$

$$
m_{h}^{2} \sim \frac{N_{c}}{4 \pi^{2}} g_{*}^{3} y_{t} v^{2}=\left(330 \mathrm{GeV} \times\left(\frac{g_{*}}{3}\right)^{3 / 2}\right)^{2}
$$

- If EWSB is triggered at $O\left(\lambda^{2}\right)$
$\underbrace{t_{L, R}} \quad V(h) \simeq \frac{m_{*}^{4}}{g_{*}^{2}} \frac{N_{c}}{8 \pi^{2}} \lambda_{L, R}^{2} A\left(\frac{h}{f}\right)$

$$
m_{h}^{2} \sim \frac{N_{c}}{4 \pi^{2}} g_{*}^{3} y_{t} v^{2}=\underbrace{\left.330 \mathrm{GeV} \nsim\left(\frac{g_{*}}{3}\right)^{3 / 2}\right)^{2}}
$$

Higgs tends to be too heavy (unless $g_{*} \sim 1$)

- If EWSB is triggered at $O\left(\lambda^{2}\right)+t_{\mathrm{R}}$ fully composite
$V(h) \simeq \frac{m_{*}^{4}}{g_{*}^{2}} \frac{N_{c}}{8 \pi^{2}} \lambda_{L}^{2} A\left(\frac{h}{f}\right)$
$m_{h}^{2} \sim \frac{N_{c}}{4 \pi^{2}} \frac{m_{*}^{2}}{f^{2}} \lambda_{L}^{2} v^{2}$

$$
{m_{L}}_{2}^{\sim} \sim \frac{N_{c}}{4 \pi^{2}} g_{*}^{2} y_{t}^{2} v^{2}=\left(175 \mathrm{GeV} \times\left(\frac{g_{*}}{3}\right)\right)^{2}
$$

\square If EWSB is triggered at $O\left(\lambda^{2}\right)+t_{\mathrm{R}}$ fully composite

$$
\begin{aligned}
& V(h) \simeq \frac{m_{*}^{4}}{g_{*}^{2}} \frac{N_{c}}{8 \pi^{2}} \lambda_{L}^{2} A\left(\frac{h}{f}\right) \\
& m_{h}^{2} \sim \frac{N_{c}}{4 \pi^{2}} \frac{m_{*}^{2}}{f^{2}} \lambda_{L}^{2} v^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \lambda_{L} \simeq y_{t} \\
& m_{h}^{2} \sim \frac{N_{c}}{4 \pi^{2}} g_{*}^{2} y_{t}^{2} v^{2}=\left(175 \mathrm{GeV} \times\left(\frac{g_{*}}{3}\right)\right)^{2}
\end{aligned}
$$

$\mathrm{m}_{\mathrm{H}}=125 \mathrm{GeV}$ implies that top partners are naturally

- not too strongly coupled, hence
- not too heavy

Matsedonskyi, Panico, Wulzer JHEP 1301 (2013) 164
Redi, Tesi JHEP 1210 (2012) 166
Marzocca, Serone, Shu JHEP 1208 (2012) 013
Pomarol, Riva JHEP 1208 (2012) 135
Panico, Redi, Tesi, Wulzer JHEP 1303 (2013) 051
De Simone et al. JHEP 1304 (2013) 004
\square If EWSB is triggered at $O\left(\lambda^{2}\right)+t_{\mathrm{R}}$ fully composite

$$
\begin{aligned}
& V(h) \simeq \frac{m_{*}^{4}}{g_{*}^{2}} \frac{N_{c}}{8 \pi^{2}} \lambda_{L}^{2} A\left(\frac{h}{f}\right) \\
& m_{h}^{2} \sim \frac{N_{c}}{4 \pi^{2}} \frac{m_{*}^{2}}{f^{2}} \lambda_{L}^{2} v^{2}
\end{aligned}
$$

$$
\lambda_{L} \simeq y_{t}
$$

$$
\left.m_{h}^{2} \sim \frac{N_{c}}{4 \pi^{2}} g_{*}^{2} y_{t}^{2} v^{2}=\left(175 \mathrm{GeV} \times\left(\frac{g_{*}}{3}\right)\right)\right)^{2}
$$

$\mathrm{m}_{\mathrm{H}}=125 \mathrm{GeV}$ implies that top partners are naturally

- not too strongly coupled, hence - not too heavy

$$
F T \sim \frac{v^{2}}{f^{2}} \sim \frac{m_{h}^{2}}{m_{*}^{2}} \frac{4 \pi^{2}}{N_{c} y_{t}^{2}}=\left(\frac{525 \mathrm{GeV}}{m_{*}}\right)^{2}
$$

Redi, Tesi JHEP 1210 (2012) 166
Marzocca, Serone, Shu JHEP 1208 (2012) 013
Pomarol, Riva JHEP 1208 (2012) 135
Panico, Redi, Tesi, Wulzer JHEP 1303 (2013) 051
De Simone et al. JHEP 1304 (2013) 004

- If EWSB is triggered at $O\left(\lambda^{4}\right)$

$$
V(h) \simeq \frac{m_{*}^{4}}{g_{*}^{2}} \frac{N_{c}}{8 \pi^{2}}\left[\lambda_{L, R}^{2} A\left(\frac{h}{f}\right)+\frac{\lambda_{L}^{2} \lambda_{R}^{2}}{g_{*}^{2}} B\left(\frac{h}{f}\right)\right]
$$

- If EWSB is triggered at $O\left(\lambda^{4}\right)$
extra tuning required to suppress

$O\left(\lambda^{2}\right)$ terms down to $O\left(\lambda^{4}\right)$

$$
V(h) \simeq \frac{m_{*}^{4}}{g_{*}^{2}} \frac{N_{c}}{8 \pi^{2}}\left[\lambda_{L, R}^{2} A\left(\frac{h}{f}\right)+\frac{\lambda_{L}^{2} \lambda_{R}^{2}}{g_{*}^{2}} B\left(\frac{h}{f}\right)\right]
$$

- If EWSB is triggered at $O\left(\lambda^{4}\right)$
extra tuning required to suppress
$O\left(\lambda^{2}\right)$ terms down to $O\left(\lambda^{4}\right)$

$$
V(h) \simeq \frac{m_{*}^{4}}{g_{*}^{2}} \frac{N_{c}}{8 \pi^{2}}\left[\lambda_{L, R}^{2} A\left(\frac{h}{f}\right)+\frac{\lambda_{L}^{2} \lambda_{R}^{2}}{g_{*}^{2}} B\left(\frac{h}{f}\right)\right]
$$

$$
m_{h}^{2} \sim \frac{N_{c}}{4 \pi^{2}} \frac{m_{*}^{2}}{f^{2}} \frac{\lambda_{L}^{2} \lambda_{R}^{2}}{g_{*}^{2}} v^{2} \sim \frac{N_{c}}{4 \pi^{2}} g_{*}^{2} y_{t}^{2} v^{2}=\left(175 \mathrm{GeV} \times\left(\frac{g_{*}}{3}\right)\right)^{2}
$$

- If EWSB is triggered at $O\left(\lambda^{4}\right)$
extra tuning required to suppress
$O\left(\lambda^{2}\right)$ terms down to $O\left(\lambda^{4}\right)$

$V(h) \simeq \frac{m_{*}^{4}}{g_{*}^{2}} \frac{N_{c}}{8 \pi^{2}}\left[\lambda_{L, R}^{2} A\left(\frac{h}{f}\right)+\frac{\lambda_{L}^{2} \lambda_{R}^{2}}{g_{*}^{2}} B\left(\frac{h}{f}\right)\right]$

$$
m_{h}^{2} \sim \frac{N_{c}}{4 \pi^{2}} \frac{m_{*}^{2}}{f^{2}} \frac{\lambda_{L}^{2} \lambda_{R}^{2}}{g_{*}^{2}} v^{2} \sim \frac{N_{c}}{4 \pi^{2}} g_{*}^{2} y_{t}^{2} v^{2}=\left(175 \mathrm{GeV} \times\left(\frac{g_{*}}{3}\right)\right)^{2}
$$

$$
F T \sim \frac{v^{2}}{f^{2}} \times \frac{\lambda^{2}}{g_{*}^{2}} \simeq\left(\frac{525 \mathrm{GeV}}{m_{*}}\right)^{2} \times \frac{y_{t}}{g_{*}}
$$

m_{H} automatically lighter but larger tuning to get EWSB

Panico, Redi, Tesi, Wulzer JHEP 1303 (2013) 051

Constraints on c_{V} from EW Precision Tests

fit from: GFitter coll. Eur. Phys. J. C 72 (2012) 2205

$$
\begin{aligned}
\Delta \epsilon_{1} & =-\frac{3}{16 \pi} \frac{\alpha_{e m}}{\cos ^{2} \theta_{W}} \log \frac{\Lambda^{2}}{m_{Z}^{2}} \\
\Delta \epsilon_{3} & =+\frac{1}{12 \pi} \frac{\alpha_{e m}}{4 \sin ^{2} \theta_{W}} \log \frac{\Lambda^{2}}{m_{Z}^{2}}
\end{aligned}
$$

Constraints on c_{V} from EW Precision Tests

fit from: GFitter coll. Eur. Phys. J. C 72 (2012) 2205

$$
\begin{aligned}
& \Delta \epsilon_{1}=-\frac{3}{16 \pi} \frac{\alpha_{e m}}{\cos ^{2} \theta_{W}} \log \frac{\Lambda^{2}}{m_{Z}^{2}} \\
& \Delta \epsilon_{3}=+\frac{1}{12 \pi} \frac{\alpha_{e m}}{4 \sin ^{2} \theta_{W}} \log \frac{\Lambda^{2}}{m_{Z}^{2}}
\end{aligned}
$$

Ciuchini, Franco, Silvestrini, Mishima, arXiv:1 306.4644

Constraints on c_{V} from EW Precision Tests

fit from: GFitter coll. Eur. Phys. J. C 72 (2012) 2205

Precision on cv at the level of $\sim 5 \%$!

Contribution from resonances REQUIRED to relax the bound

Ciuchini, Franco, Silvestrini, Mishima, arXiv:1306.4644

M. Ciuchini, E. Franco, L. Silvestrini,
S. Mishima, arXiv: 1306.4644

- Analyticity and crossing symmetry imply a sum rule on c_{V}

$$
1-c_{V}^{2}=\frac{v^{2}}{6 \pi} \int_{0}^{\infty} \frac{d s}{s}\left(2 \sigma_{I=0}^{t o t}(s)+3 \sigma_{I=1}^{t o t}(s)-5 \sigma_{I=2}^{t o t}(s)\right)
$$

Falkowski, Rychkov, Urbano, JHEP 1204 (2012) 073
Low, Rattazzi, Vichi, JHEP 1004 (2010) 126
$c_{V}>1$ possible only if $\mathrm{I}=2$ ch. dominates $\mathrm{V}_{\mathrm{L}} \mathrm{V}_{\mathrm{L}}$ scattering (requires: doubly-charged scalar resonance)

S parameter $\quad \hat{S}=\hat{S}_{I R}+\hat{S}_{U V}$

$$
\hat{S}_{U V} \sim g^{2} \frac{v^{2}}{f^{2}}\left[\frac{1}{g_{*}^{2}}+N_{c} N_{F} \frac{1}{16 \pi^{2}} \log \left(\frac{\Lambda}{m_{*}}\right)+\ldots\right]
$$

S parameter $\quad \hat{S}=\hat{S}_{I R}+\hat{S}_{U V}$

1-loop contribution from fermions can be large (!)

```
Golden, Randall, NPB 361 (1991) 3
Barbieri, Isidori, Pappadopulo, JHEP O902 (2009) }02
Grojean, Matsedonskyi, Panico, JHEP 1310 (2013)160
Azatov, RC, Di lura, Galloway, PRD 88 (2013) 075019
```

$$
i \int d^{4} x e^{i q \cdot(x-y)}\langle 0| T\left(J_{\mu}(x) J_{\nu}(y)\right)|0\rangle=\left(q^{2} \eta_{\mu \nu}-q_{\mu} q_{\nu}\right) \Pi\left(q^{2}\right) \quad \Pi\left(q^{2}\right)=\int d s \frac{\rho(s)}{q^{2}-s+i \epsilon}
$$

$$
\hat{S}_{U V}=\frac{g^{2}}{4} \sin ^{2} \theta \int \frac{d s}{s}\left[\rho_{L L}(s)+\rho_{R R}(s)-2 \rho_{B B}(s)\right]
$$

$$
\begin{array}{ll}
i \int d^{4} x e^{i q \cdot(x-y)}\langle 0| T\left(J_{\mu}(x) J_{\nu}(y)\right)|0\rangle=\left(q^{2} \eta_{\mu \nu}-q_{\mu} q_{\nu}\right) \Pi\left(q^{2}\right) & \Pi\left(q^{2}\right)=\int d s \frac{\rho(s)}{q^{2}-s+i \epsilon} \\
\hat{S}_{U V}=\frac{g^{2}}{4} \sin ^{2} \theta \int \frac{d s}{s}\left[\rho_{L L}(s)+\rho_{R R}(s)-2 \rho_{B B}(s)\right] & \begin{array}{c}
\text { negative contribution from } \\
\text { spectral function of broken } \\
\text { SO(5)/SO(4) currents }
\end{array}
\end{array}
$$

$$
i \int d^{4} x e^{i q \cdot(x-y)}\langle 0| T\left(J_{\mu}(x) J_{\nu}(y)\right)|0\rangle=\left(q^{2} \eta_{\mu \nu}-q_{\mu} q_{\nu}\right) \Pi\left(q^{2}\right) \quad \Pi\left(q^{2}\right)=\int d s \frac{\rho(s)}{q^{2}-s+i \epsilon}
$$

$$
\hat{S}_{U V}=\frac{g^{2}}{4} \sin ^{2} \theta \int \frac{d s}{s}\left[\rho_{L L}(s)+\rho_{R R}(s)-2 \rho_{B B}(s)\right] \quad \begin{aligned}
& \text { negative contribution from } \\
& \text { spectral function of broken } \\
& \mathrm{SO}(5) / \mathrm{SO}(4) \text { currents }
\end{aligned}
$$

Example: [Azatov, RC, Di lura, Galloway, PRD 88 (2013) 075019]

$$
\psi_{5}=(1,1)+(2,2) \quad \mathcal{L}=\bar{\psi}_{1}\left(i \not D-m_{1}\right) \psi_{1}+\bar{\psi}_{4}\left(i \not \supset-m_{4}\right) \psi_{4}-\zeta \bar{\psi}_{4} \gamma^{\mu} d_{\mu} \psi_{1}+h . c .
$$

$\rho_{L L, R R}$
$\rho_{B B}$

$$
i \int d^{4} x e^{i q \cdot(x-y)}\langle 0| T\left(J_{\mu}(x) J_{\nu}(y)\right)|0\rangle=\left(q^{2} \eta_{\mu \nu}-q_{\mu} q_{\nu}\right) \Pi\left(q^{2}\right) \quad \Pi\left(q^{2}\right)=\int d s \frac{\rho(s)}{q^{2}-s+i \epsilon}
$$

$$
\hat{S}_{U V}=\frac{g^{2}}{4} \sin ^{2} \theta \int \frac{d s}{s}\left[\rho_{L L}(s)+\rho_{R R}(s)-2 \rho_{B B}(s)\right] \quad \begin{aligned}
& \text { negative contribution from } \\
& \text { spectral function of broken } \\
& \mathrm{SO}(5) / \mathrm{SO}(4) \text { currents }
\end{aligned}
$$

Example: [Azatov, RC, Di lura, Galloway, PRD 88 (2013) 075019]

$$
\not A+i \frac{\pi \not \partial \pi}{f^{2}}+\ldots
$$

$$
\psi_{5}=(1,1)+(2,2)
$$

$$
\left.\mathcal{L}=\bar{\psi}_{1}\left(i \not D-m_{1}\right) \psi_{1}+\bar{\psi}_{4} \xlongequal{\uparrow}-m_{4}\right) \psi_{4}-\zeta \bar{\psi}_{4} \gamma^{\mu} d_{\mu} \psi_{1}+h . c .
$$

$\rho_{L L, R R}$
$\rho_{B B}$

fermion contribution can be negative

Best seen using a dispertion relation:

Orgogozo and Rychkov, JHEP 1306 (2013) 014

$$
i \int d^{4} x e^{i q \cdot(x-y)}\langle 0| T\left(J_{\mu}(x) J_{\nu}(y)\right)|0\rangle=\left(q^{2} \eta_{\mu \nu}-q_{\mu} q_{\nu}\right) \Pi\left(q^{2}\right) \quad \Pi\left(q^{2}\right)=\int d s \frac{\rho(s)}{q^{2}-s+i \epsilon}
$$

$$
\hat{S}_{U V}=\frac{g^{2}}{4} \sin ^{2} \theta \int \frac{d s}{s}\left[\rho_{L L}(s)+\rho_{R R}(s)-2 \rho_{B B}(s)\right] \quad \begin{aligned}
& \text { negative contribution from } \\
& \text { spectral function of broken } \\
& \mathrm{SO}(5) / \mathrm{SO}(4) \text { currents }
\end{aligned}
$$

Example: [Azatov, RC, Di lura, Galloway, PRD 88 (2013) 075019]

$$
\not A+i \frac{\pi \not \partial \pi}{f^{2}}+\ldots \quad \frac{\partial_{\mu} \pi}{f}+\ldots
$$

$$
\psi_{5}=(1,1)+(2,2)
$$

$$
\mathcal{L}=\bar{\psi}_{1}\left(i \not D-m_{1}\right) \psi_{1}+\bar{\psi}_{4}\left(i \not \subset-m_{4}\right) \psi_{4}-\zeta \bar{\psi}_{4} \gamma^{4} d_{\mu} \psi_{1}+\text { h.c. }
$$

$\rho_{L L, R R}$

$\rho_{B B}$

fermion contribution can be negative

$$
i \int d^{4} x e^{i q \cdot(x-y)}\langle 0| T\left(J_{\mu}(x) J_{\nu}(y)\right)|0\rangle=\left(q^{2} \eta_{\mu \nu}-q_{\mu} q_{\nu}\right) \Pi\left(q^{2}\right) \quad \Pi\left(q^{2}\right)=\int d s \frac{\rho(s)}{q^{2}-s+i \epsilon}
$$

$$
\hat{S}_{U V}=\frac{g^{2}}{4} \sin ^{2} \theta \int \frac{d s}{s}\left[\rho_{L L}(s)+\rho_{R R}(s)-2 \rho_{B B}(s)\right] \quad \begin{aligned}
& \text { negative contribution from } \\
& \text { spectral function of broken } \\
& \mathrm{SO}(5) / \mathrm{SO}(4) \text { currents }
\end{aligned}
$$

Example: [Azatov, RC, Di lura, Galloway, PRD 88 (2013) 075019]

$$
\not A+i \frac{\pi \not \partial \pi}{f^{2}}+\ldots \quad \frac{\partial_{\mu} \pi}{f}+\ldots
$$

$$
\psi_{5}=(1,1)+(2,2)
$$

$$
\mathcal{L}=\bar{\psi}_{1}\left(i \not D-m_{1}\right) \psi_{1}+\bar{\psi}_{4}\left(i \not \subset-m_{4}\right) \psi_{4}-\zeta \bar{\psi}_{4} \gamma^{4} d_{\mu} \psi_{1}+\text { h.c. }
$$

$\rho_{L L, R R}$

$\rho_{B B}$

fermion contribution can be negative

Best seen using a dispertion relation:

Orgogozo and Rychkov, JHEP 1306 (2013) 014

$$
i \int d^{4} x e^{i q \cdot(x-y)}\langle 0| T\left(J_{\mu}(x) J_{\nu}(y)\right)|0\rangle=\left(q^{2} \eta_{\mu \nu}-q_{\mu} q_{\nu}\right) \Pi\left(q^{2}\right) \quad \Pi\left(q^{2}\right)=\int d s \frac{\rho(s)}{q^{2}-s+i \epsilon}
$$

$$
\hat{S}_{U V}=\frac{g^{2}}{4} \sin ^{2} \theta \int \frac{d s}{s}\left[\rho_{L L}(s)+\rho_{R R}(s)-2 \rho_{B B}(s)\right] \quad \begin{aligned}
& \text { negative contribution from } \\
& \text { spectral function of broken } \\
& \mathrm{SO}(5) / \mathrm{SO}(4) \text { currents }
\end{aligned}
$$

Example: [Azatov, RC, Di lura, Galloway, PRD 88 (2013) 075019]

$$
\not A+i \frac{\pi \not \partial \pi}{f^{2}}+\ldots \quad \frac{\partial_{\mu} \pi}{f}+\ldots
$$

$$
\psi_{5}=(1,1)+(2,2)
$$

$$
\mathcal{L}=\bar{\psi}_{1}\left(i \not D-m_{1}\right) \psi_{1}+\bar{\psi}_{4}\left(i \not \subset-m_{4}\right) \psi_{4}-\zeta \bar{\psi}_{4} \gamma^{4} d_{\mu} \psi_{1}+\text { h.c. }
$$

$\hat{S}_{U V}=\frac{8}{3} \frac{m_{W}^{2}}{16 \pi^{2} f^{2}} N_{c} N_{F}\left(1-|\zeta|^{2}\right) \log \left(\frac{\Lambda^{2}}{m_{(2,2)}^{2}}\right)+$ finite terms
from: Azatov, RC, Di lura, Galloway PRD 88 (2013) 075019

$\mathrm{SO}(5) / \mathrm{SO}(4)$ model:

$$
\begin{aligned}
& \psi_{5}=(1,1)_{2 / 3}+(2,2)_{2 / 3} \\
& \psi_{10}=(2,2)_{-1 / 3}+(1,3)_{-1 / 3}+(3,1)_{-1 / 3}
\end{aligned}
$$

$\mathrm{SO}(5) / \mathrm{SO}(4)$ model:
$\psi_{5}=(1,1)_{2 / 3}+(2,2)_{2 / 3}$
$\psi_{10}=(2,2)_{-1 / 3}+(1,3)_{-1 / 3}+(3,1)_{-1 / 3}$

Ex: for $\quad f=800 \mathrm{GeV} \quad g_{\rho}=3$
$\Delta S_{\rho} \simeq 0.13 \quad \Delta S_{\psi} \simeq 0.8 \times\left(1-|\zeta|^{2}\right) \quad \Rightarrow \quad$ strong sensitivity on ζ

O(10\%) tuning required to go back into the experimental ellipse

T parameter $\quad \hat{T}=\hat{T}_{I R}+\hat{T}_{U V}$

$\hat{T}_{U V} \sim \frac{v^{2}}{f^{2}}\left[\frac{g^{\prime 2}}{16 \pi^{2}} \log \left(\frac{\Lambda}{m_{\rho}}\right)+N_{c} \frac{\lambda_{L}^{2}}{16 \pi^{2}} \frac{\lambda_{L}^{2}}{g_{*}^{2}}+\ldots\right]$

T parameter $\quad \hat{T}=\hat{T}_{I R}+\hat{T}_{U V}$

T parameter $\quad \hat{T}=\hat{T}_{I R}+\hat{T}_{U V}$

T parameter $\quad \hat{T}=\hat{T}_{I R}+\hat{T}_{U V}$

T parameter $\quad \hat{T}=\hat{T}_{I R}+\hat{T}_{U V}$

- Custodial symmetry implies:

1. No \hat{T} at tree-level
2. fermion correction is finite and starts at $O\left(\lambda_{L}^{4}\right)$ (only top partners contribute)

$\Delta \hat{T}>0$ possible though not fully generic

Example: model with $\psi_{4}=(2,2)_{2 / 3}+t_{R}$ composite

Carena, et al. NPB 759 (2006) 202; PRD 76 (2007) 035006 Barbieri et al. PRD 76 (2007) 115008
Lodone JHEP 0812 (2008) 029
Pomarol, Serra, PRD 78 (2008) 074026
Gillioz PRD 80 (2009) 055003
Grojean, Matsedonskyi, Panico, JHEP 1310 (2013) 160
$\mathcal{L}=\bar{q}_{L} i \not D q_{L}+\bar{t}_{R} i \not D t_{R}+\bar{\psi}_{4}\left(i \not \nabla-m_{4}\right) \psi_{4}$

$$
+i \zeta \bar{\psi}_{4}^{i} \gamma^{\mu} d_{\mu}^{i} t_{R}+y_{L t} f \bar{q}_{L} U(\pi) t_{R}+y_{L 4} f \bar{q}_{L} U(\pi) \psi_{4}+\text { h.c. }
$$

Grojean, Matsedonskyi, Panico JHEP 1310 (2013) 160

$\Delta \hat{T}>0$ possible though not fully generic

Example: model with $\psi_{4}=(2,2)_{2 / 3}+t_{R}$ composite

Carena, et al. NPB 759 (2006) 202; PRD 76 (2007) 035006 Barbieri et al. PRD 76 (2007) 115008
Lodone JHEP 0812 (2008) 029
Pomarol, Serra, PRD 78 (2008) 074026
Gillioz PRD 80 (2009) 055003
Grojean, Matsedonskyi, Panico, JHEP 1310 (2013) 160
$\mathcal{L}=\bar{q}_{L} i \not D q_{L}+\bar{t}_{R} i \not D t_{R}+\bar{\psi}_{4}\left(i \not \nabla-m_{4}\right) \psi_{4}$

$$
+i \zeta \bar{\psi}_{4}^{i} \gamma^{\mu} d_{\mu}^{i} t_{R}+y_{L t} f \bar{q}_{L} U(\pi) t_{R}+y_{L 4} f \bar{q}_{L} U(\pi) \psi_{4}+\text { h.c. }
$$

Searches of top partners

- Typical spectrum of top partners

- Typical spectrum of top partners

- Two main production modes:

- Typical spectrum of top partners

- Two main production modes:

- Two-body decay modes:

- Current experimental status in a nutshell

1. Almost all decays looked for
2. Analyses optimized on pair production

ATLAS Preliminary Status: Lepton-Photon 2013
 $\sqrt{s}=8 \mathrm{TeV}$ $\int L d t=14.3 \mathrm{fb}^{-1}$ $\mathrm{Ht}+\mathrm{X}$ [ATLAS-CONF-2013-018] Same-Sign [ATLAS-CONF-2013-051] Zb/t+X [ATLAS-CONF-2013-056] Wb+X [ATLAS-CONF-2013-060]
$\star \operatorname{SU}(2)(\mathrm{T}, \mathrm{B})$ doub.

- $\operatorname{SU}(2)$ singlet

CMS preliminary $\sqrt{\mathrm{s}}=8 \mathrm{TeV} \quad 19.6 \mathrm{fb}^{-1}$

CMS B2G-12-015 CMS B2G-12-012

- Two-body decay modes:

\square Current experimental status in a nutshell

1. Almost all decays looked for

Limits in the $700-800 \mathrm{GeV}$ range

2. Analyses optimized on pair production

ATLAS Preliminary Status: Lepton-Photon 2013

	$\int L d t=14.3 \mathrm{fb}^{-1}$
- 95% CL exp. excl.	
$\mathrm{Ht}+\mathrm{X}$	[ATLAS-CONF-2013-018]
Same-Sign [[ATLAS-CONF-2013-051]
Zb/t+X [[ATLAS-CONF-2013-056]
Wb+X	[ATLAS-CONF-2013-060]
$\star \operatorname{SU}(2)(\mathrm{T}, \mathrm{B})$ doub.	b. SU(2) singlet

$\mathrm{Ht}+\mathrm{X}$ [ATLAS-CONF-2013-018]

 Same-Sign [ATLAS-CONF-2013-051] $\mathrm{Wb}+\mathrm{X}$ [ATLAS-CONF-2013-060]$\star \mathrm{SU}(2)(\mathrm{T}, \mathrm{B})$ doub.

- $\mathrm{SU}(2)$ singlet

\square Once recast on (simplified) theory space exp. bounds already exclude a big portion of the natural region

\square Once recast on (simplified) theory space exp. bounds already exclude a big portion of the natural region

\square Once recast on (simplified) theory space exp. bounds already exclude a big portion of the natural region

```
M4, \xi=\frac{\mp@subsup{v}{}{2}}{\mp@subsup{f}{}{2}}=0.2
```

Multiplicity of states, connection among masses and inclusion of single production amplify limits on individual particles

\square Once recast on (simplified) theory space exp. bounds already exclude a big portion of the natural region

Multiplicity of states, connection among masses and inclusion of single production amplify limits on individual particles

1 TeV masses typically excluded
LHC has already eaten up a big part of the natural region

- Improving the limits still possible with current data

Ex: - optimize searches to include single production

- include single-lepton final states
- use boosted jet techniques

Higgs couplings

- LHC data currently set limits on modifications of the Higgs couplings at the 20-30\% level

$$
c_{V}=1+F\left(\frac{v^{2}}{f^{2}}\right)+O\left(\frac{v^{2}}{f^{2}} \frac{g_{G t}^{2}}{g_{*}^{2}}\right)
$$

$$
c_{\psi}=1+F_{\psi}\left(\frac{v^{2}}{f^{2}}, \frac{m_{i}}{m_{j}}\right)+O\left(\frac{v^{2}}{f^{2}} \frac{\lambda^{2}}{g_{*}^{2}}\right)
$$

- LHC data currently set limits on modifications of the Higgs couplings at the 20-30\% level

$$
\begin{gathered}
O\left(v^{2} / f^{2}\right) \text { from Higgs nlom } \\
c_{V}=1+O\left(\frac{v^{2}}{f^{2}}\right)+O\left(\frac{v^{2}}{f^{2}} \frac{g_{Q^{*}}^{2}}{g_{*}^{2}}\right) \\
c_{\psi}=1+F_{\psi}\left(\frac{v^{2}}{f^{2}}, \frac{m_{i}}{m_{j}}\right)+O\left(\frac{v^{2}}{f^{2}} \frac{\lambda^{2}}{g_{*}^{2}}\right)
\end{gathered}
$$

- LHC data currently set limits on modifications of the Higgs couplings at the 20-30\% level

$$
\begin{aligned}
& O\left(v^{2} / f^{2}\right) \text { from Higgs nlom } \\
& c_{V}=1+F\left(\frac{v^{2}}{f^{2}}\right) \\
& \hdashline
\end{aligned}
$$

- LHC data currently set limits on modifications of the Higgs couplings at the 20-30\% level

- LHC data currently set limits on modifications of the Higgs couplings at the 20-30\% level

in the simplest models

- LHC data currently set limits on modifications of the Higgs couplings at the 20-30\% level

in the simplest models

$\xi \equiv \frac{v^{2}}{f^{2}}$
MCHM5:
:---:
NPB 719 (2005) 165

Red points at $\xi \equiv(v / f)^{2}=0.2,0.5,0.8$

$\xi \equiv \frac{v^{2}}{f^{2}}$

MCHM4: $\quad c_{V}=c_{\psi}=\sqrt{1-\xi}$

MCHM5: $\quad c_{V}=\sqrt{1-\xi} \quad c_{\psi}=\frac{1-2 \xi}{\sqrt{1-\xi}}$

RC, DaRold, Pomarol,

PRD 75 (2007) 055014

Carena, Ponton, Santiago, Wagner, PRD 76 (2007) 035006

Minimal Composite Higgs [MCHM5]

- Modifications to loop-level couplings ggh, $\gamma \gamma h$ suppressed due to the Goldstone symmetry

Effective operators violate the Higgs shift symmetry:

$$
H^{i} \rightarrow H^{i}+\zeta^{i}
$$

- Modifications to loop-level couplings ggh, $\gamma \gamma h$ suppressed due to the Goldstone symmetry

$$
\left.\frac{\delta \Gamma}{\Gamma_{S M}}=1+O\left(\frac{v^{2}}{f^{2}}\right)+O\left(\frac{g_{*}^{2} v^{2}}{m_{*}^{2}} \times \frac{\lambda^{2}}{g_{*}^{2}}\right) \right\rvert\,
$$

Large modifications possible in $\Gamma(h \rightarrow Z \gamma)$
Azatov, RC, Di lura, Galloway, PRD 88 (2013) 075019

Relevant operator is $O_{H W}-O_{H B}$
$O_{H B}=\left(D^{\mu} H\right)^{\dagger}\left(D^{\nu} H\right) B_{\mu \nu}$
$O_{H W}=\left(D^{\mu} H\right)^{\dagger} \sigma^{i}\left(D^{\nu} H\right) W_{\mu \nu}^{i}$

1. Invariant under Higgs shift symmetry
2. Odd under LR exchange

Large modifications possible in $\Gamma(h \rightarrow Z \gamma)$
Azatov, RC, Di lura, Galloway, PRD 88 (2013) 075019

Relevant operator is $O_{H W}-O_{H B}$
$O_{H B}=\left(D^{\mu} H\right)^{\dagger}\left(D^{\nu} H\right) B_{\mu \nu}$
$O_{H W}=\left(D^{\mu} H\right)^{\dagger} \sigma^{i}\left(D^{\nu} H\right) W_{\mu \nu}^{i}$

1. Invariant under Higgs shift symmetry
2. Odd under LR exchange

Strong dynamics MUST break LR

Large modifications possible in $\Gamma(h \rightarrow Z \gamma)$
Azatov, RC, Di lura, Galloway, PRD 88 (2013) 075019

$$
\frac{\delta \Gamma(Z \gamma)}{\Gamma_{S M}(Z \gamma)}=O\left(\frac{v^{2}}{f^{2}}\right)+O\left(\frac{g_{*}^{2} v^{2}}{m_{*}^{2}}\right)
$$

Relevant operator is $O_{H W}-O_{H B}$
$O_{H B}=\left(D^{\mu} H\right)^{\dagger}\left(D^{\nu} H\right) B_{\mu \nu}$
$O_{H W}=\left(D^{\mu} H\right)^{\dagger} \sigma^{i}\left(D^{\nu} H\right) W_{\mu \nu}^{i}$

1. Invariant under Higgs shift symmetry
2. Odd under LR exchange

Strong dynamics MUST break LR
$A(h \rightarrow Z \gamma)=A_{S M} \times F(\xi)+\delta A$

$$
\frac{\delta A}{A_{S M}} \sim N_{c} N_{F}\left(\frac{g_{*}^{2} v^{2}}{m_{*}^{2}}\right) \sim N_{c} N_{F} \frac{v^{2}}{f^{2}} \frac{\Delta m_{*}^{2}}{m_{*}^{2}}
$$

Large modifications possible in $\Gamma(h \rightarrow Z \gamma)$
Azatov, RC, Di lura, Galloway, PRD 88 (2013) 075019

$$
\frac{\delta \Gamma(Z \gamma)}{\Gamma_{S M}(Z \gamma)}=O\left(\frac{v^{2}}{f^{2}}\right)+O\left(\frac{g_{*}^{2} v^{2}}{m_{*}^{2}}\right)
$$

Relevant operator is $O_{H W}-O_{H B}$
$O_{H B}=\left(D^{\mu} H\right)^{\dagger}\left(D^{\nu} H\right) B_{\mu \nu}$
$O_{H W}=\left(D^{\mu} H\right)^{\dagger} \sigma^{i}\left(D^{\nu} H\right) W_{\mu \nu}^{i}$

1. Invariant under Higgs shift symmetry
2. Odd under LR exchange

$$
A(h \rightarrow Z \gamma)=A_{S M} \times F(\xi)+\delta A
$$

$$
\frac{\delta A}{A_{S M}} \sim N_{c} N_{F}\left(\frac{g_{*}^{2} v^{2}}{m_{*}^{2}}\right) \sim N_{c} N_{F} \frac{v^{2}}{f^{2}} \frac{\Delta m_{*}^{2}}{m_{*}^{2}}
$$

$$
\left.\begin{array}{l}
\text { shift of tree-level } \\
\begin{array}{l}
\text { Higgs couplings } \\
\text { from nlom }
\end{array} \\
\hline f^{2}
\end{array}\right)
$$

Large modifications possible in $\Gamma(h \rightarrow Z \gamma)$
Azatov, RC, Di lura, Galloway, PRD 88 (2013) 075019

$$
\frac{\delta \Gamma(Z \gamma)}{\Gamma_{S M}(Z \gamma)}=O\left(\frac{v^{2}}{f^{2}}\right)+O\left(\frac{g_{*}^{2} v^{2}}{m_{*}^{2}}\right)
$$

Relevant operator is $O_{H W}-O_{H B}$
$O_{H B}=\left(D^{\mu} H\right)^{\dagger}\left(D^{\nu} H\right) B_{\mu \nu}$
$O_{H W}=\left(D^{\mu} H\right)^{\dagger} \sigma^{i}\left(D^{\nu} H\right) W_{\mu \nu}^{i}$

1. Invariant under Higgs shift symmetry
2. Odd under LR exchange

Strong dynamics MUST break LR

$$
A(h \rightarrow Z \gamma)=A_{S M} \times F(\xi)+\delta A
$$

shift of tree-level
$\begin{array}{c}\text { Higgs couplings } \\ \text { from nlom }\end{array}$

multiplicity of composite states

Large modifications possible in $\Gamma(h \rightarrow Z \gamma)$
Azatov, RC, Di lura, Galloway, PRD 88 (2013) 075019

Relevant operator is $\quad O_{H W}-O_{H B}$
$O_{H B}=\left(D^{\mu} H\right)^{\dagger}\left(D^{\nu} H\right) B_{\mu \nu}$
$O_{H W}=\left(D^{\mu} H\right)^{\dagger} \sigma^{i}\left(D^{\nu} H\right) W_{\mu \nu}^{i}$

1. Invariant under Higgs shift symmetry
2. Odd under LR exchange

$$
A(h \rightarrow Z \gamma)=A_{S M} \times F(\xi)+\delta A
$$

shift of tree-level
$\begin{array}{l}\text { Higgs couplings } \\ \text { from nlom }\end{array}$

$\frac{\delta A}{A_{S M}} \sim N_{\downarrow} N_{F}\left(\frac{g_{*}^{2} v^{2}}{m_{*}^{2}}\right) \sim N_{c} N_{F} \frac{v^{2}}{f^{2}} \frac{\Delta m_{*}^{2}}{m_{*}^{2}}$
multiplicity of composite states

Future strategies

Double-Higgs production

Double Higgs Production via gluon fusion

$+$

$+$

Double Higgs Production via gluon fusion

$$
\Delta \mathcal{L}^{(6)}=\frac{\bar{c}_{H}}{2 v^{2}}\left[\partial_{\mu}\left(H^{\dagger} H\right)\right]^{2}+\frac{\bar{c}_{u}}{v^{2}} y_{u} H^{\dagger} H \bar{q}_{L} H^{c} u_{R}-\frac{\bar{c}_{6} \lambda}{v^{2}}\left(H^{\dagger} H\right)^{3}
$$

$+$

$+$

Double Higgs Production via gluon fusion

$$
\Delta \mathcal{L}^{(6)}=\frac{\bar{c}_{H}}{2 v^{2}}\left[\partial_{\mu}\left(H^{\dagger} H\right)\right]^{2}+\frac{\bar{c}_{u}}{v^{2}} y_{u} H^{\dagger} H \bar{q}_{L} H^{c} u_{R}-\frac{\bar{c}_{6} \lambda}{v^{2}}\left(H^{\dagger} H\right)^{3}
$$

$+$

$+$

Double Higgs Production via gluon fusion

$$
\Delta \mathcal{L}^{(6)}=\frac{\bar{c}_{H}}{2 v^{2}}\left[\partial_{\mu}\left(H^{\dagger} H\right)\right]^{2}+\frac{\bar{c}_{u}}{v^{2}} y_{u} H^{\dagger} H \bar{q}_{L} H^{c} u_{R}-\frac{\bar{c}_{6} \lambda}{v^{2}}\left(H^{\dagger} H\right)^{3}
$$

modified Higgs trilinear coupl.
$c_{3} \simeq 1-\frac{3}{2} \bar{c}_{H}+\bar{c}_{6}$
$+$

$+$

Double Higgs Production via gluon fusion

$$
\Delta \mathcal{L}^{(6)}=\frac{\bar{c}_{H}}{2 v^{2}}\left[\partial_{\mu}\left(H^{\dagger} H\right)\right]^{2}+\frac{\bar{c}_{u}}{v^{2}} y_{u} H^{\dagger} H \bar{q}_{L} H^{c} u_{R}-\frac{\bar{c}_{6} \lambda}{v^{2}}\left(H^{\dagger} H\right)^{3}
$$

modified Higgs trilinear coupl.
$c_{3} \simeq 1-\frac{3}{2} \bar{c}_{H}+\bar{c}_{6}$
$+$

$+$

$c_{2 t} \simeq-\frac{1}{2}\left(\bar{c}_{H}+3 \bar{c}_{u}\right)$
New thh quartic vertex

Double Higgs Production via gluon fusion

$$
\Delta \mathcal{L}^{(6)}=\frac{\bar{c}_{H}}{2 v^{2}}\left[\partial_{\mu}\left(H^{\dagger} H\right)\right]^{2}+\frac{\bar{c}_{u}}{v^{2}} y_{u} H^{\dagger} H \bar{q}_{L} H^{c} u_{R}-\frac{\bar{c}_{6} \lambda}{v^{2}}\left(H^{\dagger} H\right)^{3}
$$

modified Higgs trilinear coupl.
$c_{3} \simeq 1-\frac{3}{2} \bar{c}_{H}+\bar{c}_{6}$

Contact vertex from heavy states
$+$

$c_{2 t} \simeq-\frac{1}{2}\left(\bar{c}_{H}+3 \bar{c}_{u}\right)$
$+$

New tthh quartic vertex

High-energy behavior

RC, Ghezzi, Moretti, Panico, Piccinini, Wulzer
JHEP 1208 (2012) 154

$$
\sim \log ^{2}\left(\frac{m_{t}^{2}}{\hat{s}}\right)
$$

Suppression of SM triangle diagrams at high-energy implies:

much better sensitivity on $c_{2 t}$ than c_{3}

[First noticed by:
Dib, Rosenfeld, Zerwekh, JHEP 0605 (2006) 074
Grober and Muhlleitner, JHEP 1106 (2011) 020]

$$
\sigma(p p \rightarrow h h+X)_{S M}=28.7 \mathrm{fb}
$$

$$
\text { (NLO } K=2 \text { incl.) }
$$

$$
\sigma(p p \rightarrow h h+X)_{S M}=28.7 \mathrm{fb}
$$

$$
\text { (NLO } K=2 \text { incl.) }
$$

- $\quad h h \rightarrow b \bar{b} \gamma \gamma$ seems the best channel

Baur, Plehn, Rainwater, PRD 69 (2004) 053004 ATLAS: ATL-PHYS-PUB-2012-004

- $\quad h h \rightarrow b \bar{b} \tau \tau$ promising in the boosted regime

Dolan, Englert, Spannowsky arXiv: 1206.5001

- $\quad h h \rightarrow b \bar{b} W W$ overwhelmed by $t \bar{t}$ background

Dolan, Englert, Spannowsky arXiv: 1206.5001

$$
\sigma(p p \rightarrow h h+X)_{S M}=28.7 \mathrm{fb}
$$

$$
\text { (NLO } K=2 \text { incl.) }
$$

For example: in the MCHM5
$c_{t}=c_{3}=\frac{1-2 \xi}{\sqrt{1-\xi}}$
$c_{2 t}=-2 \xi$

$$
\xi \equiv \frac{v^{2}}{f^{2}}
$$

$$
\sigma(p p \rightarrow h h+X)_{S M}=28.7 \mathrm{fb}
$$

$$
\text { (NLO } K=2 \text { incl.) }
$$

For example: in the MCHM5
$c_{t}=c_{3}=\frac{1-2 \xi}{\sqrt{1-\xi}}$
$c_{2 t}=-2 \xi$

$$
\xi \equiv \frac{v^{2}}{f^{2}}
$$

Precision on couplings

Ex: Injected SM ($\left.c_{+}=c_{3}=1 \quad c_{2+}=0\right)$

- curves at 68\% prob.

RC, Ghezzi, Moretti, Panico, Piccinini, Wulzer JHEP 1208 (2012) 154

Double Higgs-strahlung at an $\mathrm{e}^{+} \mathrm{e}^{-}$linear collider with $\sqrt{s}=500 \mathrm{GeV}-1 \mathrm{TeV}$
[RC, Grojean, Pappadopulo, Rattazzi, Thamm arXiv:1309.7038]

\sqrt{s}	$\sigma_{S M}\left(e^{+} e^{-} \rightarrow h h Z\right)$
500 GeV	0.16 fb
1 TeV	0.12 fb

$$
\delta_{c_{3}}=0
$$

$+$

$+$

$$
\delta_{c_{2 V}} \equiv 1-\frac{c_{2 V}}{c_{V}^{2}} \quad \delta_{c_{3}} \equiv 1-\frac{c_{3}}{c_{V}}
$$

Double Higgs-strahlung at an $\mathrm{e}^{+} \mathrm{e}^{-}$linear collider with $\sqrt{s}=500 \mathrm{GeV}-1 \mathrm{TeV}$
[RC, Grojean, Pappadopulo, Rattazzi, Thamm arXiv:1309.7038]

\sqrt{s}	$\sigma_{S M}\left(e^{+} e^{-} \rightarrow h h Z\right)$
500 GeV	0.16 fb
1 TeV	0.12 fb

$$
\delta_{c_{3}}=0
$$

$+$

$$
\delta_{c_{2 V}} \equiv 1-\frac{c_{2 V}}{c_{V}^{2}} \quad \delta_{c_{3}} \equiv 1-\frac{c_{3}}{c_{V}}
$$

Double Higgs-strahlung at an $\mathrm{e}^{+} \mathrm{e}^{-}$linear collider with $\sqrt{s}=500 \mathrm{GeV}-1 \mathrm{TeV}$
[RC, Grojean, Pappadopulo, Rattazzi, Thamm arXiv:1309.7038]

\sqrt{s}	$\sigma_{S M}\left(e^{+} e^{-} \rightarrow h h Z\right)$
500 GeV	0.16 fb
1 TeV	0.12 fb

$$
\delta_{c_{3}}=0
$$

$$
\delta_{c_{2 V}} \equiv 1-\frac{c_{2 V}}{c_{V}^{2}} \quad \delta_{c_{3}} \equiv 1-\frac{c_{3}}{c_{V}}
$$

[Assuming $\left.c_{V}^{2}\left(B R(b \bar{b}) / B R(b \bar{b})_{S M}\right)=1\right]$

Double Higgs-strahlung at an $\mathrm{e}^{+} \mathrm{e}^{-}$linear collider with $\sqrt{s}=500 \mathrm{GeV}-1 \mathrm{TeV}$
[RC, Grojean, Pappadopulo, Rattazzi, Thamm arXiv:1309.7038]

\sqrt{s}	$\sigma_{S M}\left(e^{+} e^{-} \rightarrow h h Z\right)$
500 GeV	0.16 fb
1 TeV	0.12 fb

$$
\delta_{c_{3}}=0
$$

$$
\delta_{c_{2 V}} \equiv 1-\frac{c_{2 V}}{c_{V}^{2}} \quad \delta_{c_{3}} \equiv 1-\frac{c_{3}}{c_{V}}
$$

[Assuming $\left.c_{V}^{2}\left(B R(b \bar{b}) / B R(b \bar{b})_{S M}\right)=1\right]$

Double Higgs-strahlung at an $\mathrm{e}^{+} \mathrm{e}^{-}$linear collider with $\sqrt{s}=500 \mathrm{GeV}-1 \mathrm{TeV}$
[RC, Grojean, Pappadopulo, Rattazzi, Thamm arXiv:1309.7038]

\sqrt{s}	$\sigma_{S M}\left(e^{+} e^{-} \rightarrow h h Z\right)$
500 GeV	0.16 fb
1 TeV	0.12 fb

$$
\delta_{c_{3}}=0
$$

$$
\delta_{c_{2 V}} \equiv 1-\frac{c_{2 V}}{c_{V}^{2}} \quad \delta_{c_{3}} \equiv 1-\frac{c_{3}}{c_{V}}
$$

[Assuming $\left.c_{V}^{2}\left(B R(b \bar{b}) / B R(b \bar{b})_{S M}\right)=1\right]$

Double Higgs-strahlung at an $\mathrm{e}^{+} \mathrm{e}^{-}$linear collider with $\sqrt{s}=500 \mathrm{GeV}-1 \mathrm{TeV}$
[RC, Grojean, Pappadopulo, Rattazzi, Thamm arXiv:1309.7038]

\sqrt{s}	$\sigma_{S M}\left(e^{+} e^{-} \rightarrow h h Z\right)$
500 GeV	0.16 fb
1 TeV	0.12 fb

$$
\delta_{c_{3}}=0
$$

$$
\delta_{c_{2 V}} \equiv 1-\frac{c_{2 V}}{c_{V}^{2}} \quad \delta_{c_{3}} \equiv 1-\frac{c_{3}}{c_{V}}
$$

[Assuming $\left.c_{V}^{2}\left(B R(b \bar{b}) / B R(b \bar{b})_{S M}\right)=1\right]$

Double Higgs production via VBF at a $3 \mathrm{TeV} \mathrm{e}^{+} e^{-}$linear collider (CLIC)
[RC, Grojean, Pappadopulo, Rattazzi, Thamm, arXiv:1309.7038]

$$
\sigma_{S M}\left(e^{+} e^{-} \rightarrow h h \nu \bar{\nu}\right)=0.83 \mathrm{fb}
$$

$\operatorname{dim} 6: \quad O_{H}=\frac{c_{H}}{2 f^{2}} \partial_{\mu}|H|^{2} \partial^{\mu}|H|^{2}$

$$
c_{V}=1-\frac{c_{H}}{2} \frac{v^{2}}{f^{2}}+\left(\frac{3 c_{H}^{2}}{8}-\frac{c_{H}^{\prime}}{4}\right) \frac{v^{4}}{f^{4}}
$$

$\operatorname{dim} 8: \quad O_{H}^{\prime}=\frac{c_{H}^{\prime}}{2 f^{4}}|H|^{2} \partial_{\mu}|H|^{2} \partial^{\mu}|H|^{2}$

$$
c_{2 V}=1-2 c_{H} \frac{v^{2}}{f^{2}}+\left(3 c_{H}^{2}-\frac{3 c_{H}^{\prime}}{2}\right) \frac{v^{4}}{f^{4}}
$$

[Higgs Effective Lagrangian (SILH basis)]

$$
\text { Ex: } \mathrm{SO}(5) / \mathrm{SO}(4)
$$

For a PNGB Higgs the whole series in H / f can be re-summed:

$$
\begin{aligned}
c_{V} & =\sqrt{1-\xi} \\
c_{2 V} & =1-2 \xi
\end{aligned}
$$

$$
\xi=\frac{v^{2}}{f^{2}}
$$

At dimension-6 level:

$$
\Delta c_{2 V}=2 \Delta c_{V}^{2}\left(1+O\left(\Delta c_{V}^{2}\right)\right)
$$

$$
\begin{aligned}
\Delta c_{2 V} & \equiv 1-c_{2 V} \\
\Delta c_{V}^{2} & \equiv 1-c_{V}^{2}
\end{aligned}
$$

A Higgs impostor does not respect this relation (ex: $\Delta c_{2 V}=\Delta c_{V}^{2}$ for a dilaton)

$$
\text { Ex: } \mathrm{SO}(5) / \mathrm{SO}(4)
$$

For a PNGB Higgs the whole series in H / f can be re-summed:

$$
\begin{aligned}
c_{V} & =\sqrt{1-\xi} \\
c_{2 V} & =1-2 \xi
\end{aligned}
$$

$$
\xi=\frac{v^{2}}{f^{2}}
$$

At dimension-6 level:

$$
\Delta c_{2 V}=2 \Delta c_{V}^{2}\left(1+O\left(\Delta c_{V}^{2}\right)\right)
$$

$$
\begin{aligned}
\Delta c_{2 V} & \equiv 1-c_{2 V} \\
\Delta c_{V}^{2} & \equiv 1-c_{V}^{2}
\end{aligned}
$$

A Higgs impostor does not respect this relation (ex: $\Delta c_{2 V}=\Delta c_{V}^{2}$ for a dilaton)

Suppose:
$\Delta c_{V}^{2} \sim \Delta c_{2 V} \sim 10 \%$
Test dim-8
operators

For a PNGB Higgs the whole series in H / f can be re-summed:

$$
\begin{aligned}
c_{V} & =\sqrt{1-\xi} \\
c_{2 V} & =1-2 \xi
\end{aligned}
$$

$$
\xi=\frac{v^{2}}{f^{2}}
$$

At dimension-6 level:

$$
\Delta c_{2 V}=2 \Delta c_{V}^{2}\left(1+O\left(\Delta c_{V}^{2}\right)\right)
$$

A Higgs impostor does not respect this relation (ex: $\Delta c_{2 V}=\Delta c_{V}^{2}$ for a dilaton)

Suppose:
$\Delta c_{V}^{2} \sim \Delta c_{2 V} \sim 10 \%$
Exp. precision $\sim 1 \%$

Test dim-8
operators

Expected precision with $L=1 \mathrm{ab}^{-1}$:
(SM injected)
5% on $c_{2 V}$
30% on c_{3}

Much stronger sensitivity on $c_{2 V}$ than on c_{3}

Conclusions

Conclusions

- The newly discovered particle at 125 GeV looks very much like a Higgs boson, doublet of SU(2)

Conclusions

- The newly discovered particle at 125 GeV looks very much like a Higgs boson, doublet of SU(2)
- Too early to say it is elementary, though (low-energy) compositeness currently not favored by LEP precision tests, searches for top partners and Higgs mass value

Conclusions

- The newly discovered particle at 125 GeV looks very much like a Higgs boson, doublet of SU(2)
- Too early to say it is elementary, though (low-energy) compositeness currently not favored by LEP precision tests, searches for top partners and Higgs mass value
- Strength of EWSB dynamics (and its origin) can be inferred from:
- single-Higgs data (Higgs couplings)
- key scattering processes
for SUSY: \quad coupling to bottom $\left(c_{b}\right) ; \gamma \gamma$ and $g g$ rates; production of Heavy Higgses
for Comp. Higgs: tree-level couplings; $\mathrm{Z} \gamma$ rate; double Higgs production

