

Major items from field affected component list

MICE Magnetic shielding review

C.Macwaters 23/9/13

Overview of MICE Hall Model

Overview of MICE Hall Model

Overview of MICE Hall Model

Already planned move for compressors and racks

Survey & Model analysis

- Over 4000MSq full of equipment
- Compiled list of over 130 potentially sensitive items
- Typically included electronics & controls, sensors, power supply, pumps etc.
- Recorded XYZ position in hall

Survey & Model analysis

- Over 4000MSq full of equipment
- Compiled list of over 130 potentially sensitive items
- Typically included electronics & controls, sensors, power supply, pumps etc.
- Recorded XYZ position in hall
- Assessed surrounding field in air value for items from Opera Hall Model 91
- Specific co-ordinates for small items
- Cartesian patches for larger items and spaces

Survey & Model analysis

- Over 4000MSq full of equipment
- Compiled list of over 130 potentially sensitive items
- Typically included electronics & controls, sensors, power supply, pumps etc.
- Recorded XYZ position in hall
- Assessed surrounding field in air value for items from Opera Hall Model 91
- Specific co-ordinates for small items
- Cartesian patches for larger items and spaces
- Evaluated on basis of item field sensitivity and operational risk
- Some items have manufacturers data, some can only assume generic values
- Testing of separate items mostly difficult and costly
- More importance on safety items. Fire, smoke, PPS etc.
- Generally 10 Gauss threshold for further investigation and field mitigation

Highlights from sensitive items list

Object	Location	System	Field in air (G) 240MeV/c Sol	Comment/Action
PPS Trench Magnetic Switch	Trench	PPS	9	Evaluated without consideration of ferrous framework mounted
Fluorescent Lighting	Throughout	Infrastructure	10	Taken at roof height
Smoke Detectors	Throughout	Fire Protection	10	On Ceiling
Filtration System	Trench	Water	10	Just above the air receiver. Sensitive?
Crowcon Gas analyser	North Wall	Infrastructure	10	Move/Shield
Linde Blue Chiller	South East Corner	Decay Solenoid _	10	Pump, fan, PLC
Linde Controls cabinet	South East Corner	Decay Solenoid _	10	PLC, PSU, Relays etc
D10 Board and Isolator	Trench	General Power	15	Removal of board. Water System fed from board will be relocated
208v Transformer	Trench	General Power	15	Relocation 208V Transformer from Trench to RR2
Cranes	Throughout	Infrastructure	16	Will not operated while magnets on
Web Cam	South Wall Ground	Webcams	20	Move/Shield
PH Moving Beam Stop	Beamline	Infrastructure	20	Motor, Isolator & Controls. Check sensitivity
Fire Bell	Trench	Fire Protection	20	Varying field. 10-20G
Grundfos Pumps & controls	Trench	Water	20	Varying field. Inverters and Control JB maybe sensitive. Moving
Air Con Units East	North Wall	Air Conditioning	20	Without ferrous mass modelled. Field gradient 5-20G
MQ9 PSU RACK	Cooling Channel	General Power	27	Proposed Relocation next to MQ8 PSU Rack
Linde Cold Box	South East Corner	Decay Solenoid	30	Non electrical - Pneumatic system. Non sensitive
Distribution Board D14	South Wall Mezz	General Power	40	Change for Redspot Fuse board. Varying region
N.Mezz Ext. Dist. board	North Wall Mezz	General Power	47	Change for Redspot Fuse board
LH2 Gas Panel	South Mezz	LH2	200	Varying field 80-200G
Tracker Cryostats x4		Beamline	700	Varying field 250-700G

Q9 PSU

- Beamline level about 4M away
- Front panel electronics, dials & fans
- Would ideally be relocated limited space
- New longer cable runs

(nodal/inte)

x=-4175.0 y=-1650.0 z=-8830.0

to -9830.0

LH2 Gas Panel

- South mezz floor just above Spectrometer Sol
- Electro-mag valves & Hall effect indicators
- Rearrange routing & non sensitive alternatives
- Will require safety re-assessment
- LH2 turbo & gauges in higher field near AFC

x=2000.0 y=1000.0 z=0.0 to

to 3000 0 2000 0

80 Gauss

LH2 Gas Panel

Large gas panel sited on south mezz floor

 Just above beamline & close proximity to downstream Spectrometer Solenoid

Electro-mag valves, Turbo pump, Vac gauges

Rearrange, alternatives & shiel

80 Gauss

Safety concerns?

In 10 to 20 Gauss field

- Smoke detectors
- O2 Gas analyser
- Fire Bells
- PPS magnetic switches
- Likely to function correctly in these fields but as these are part of safety systems would require suitable testing to confirm this.

Other concerns

In 10 to 20+ Gauss field

- Power distribution boards
- Air Conditioning unit
- Water pumps
- These infrastructure components can be moved or alternatives used

Other concerns

In 10 to 20+ Gauss field

- Power distribution boards
- Air Conditioning unit
- Water pumps
- Appreciated some large objects, like this AC unit, assessed without ferrous mass represented in model.
- Also some equipment in high field gradient area.
 Positioning crucial!

Linde Controls

accuracy and placement could lead to an issue.

Sci-Fi Tracker cryostats

Cryocooler

~35mT limit

IMG vacuum

~10mT limit

Power supply

~25mT limit

gauge (hidden)

- 4x Cryostats
- Approx 1M x 1.5M
- High field <150mT
- Next to beamline to maintain efficiency of fibre waveguides
- Access for maintenance

Turbo pump ~5mT limit

- 0.000000E+000

Cryostat positions – plan view

StepIV 240MeV/c solenoid mode. Field in AIR at beam height

Cross sectional view

Length Magn Flux Density T Magnetic Field Magn Scalar Pot A Force

MODEL DATA

Hall_Test_18.op3 TOSCA Magnetostatic Nonlinear materials Simulation No 1 of 1 4254701 elements 6742032 nodes 12 conductors Nodally interpolated fields Activated in global coordina

Field Point Local Coordin Local = Global

FIELD EVALUATIONS

Cartesian CARTESIAN (noc x=-2000.0 to 20

Big Shielding can

- ←Model is only half can!
- All Opera modelling and analysis for cryostat shields by K.Marinov at DL
- KM concluded require can >7cm thick
- Mass approx 7 Tonnes
- Position 0.7M further away in X
- Fibre waveguides unlikely to reach

Shielding Power Supply

Shield concept

Air chimneys 60 x 60mm dia.

540 x 620 x 280mm
AISI 1010, 5 mm steel

- Air chimneys allow bottom-to-top air convection
- Possibility of fans or using compressed air
- Also acts as route for cabling etc.
- All 3 orientations field <20mT which within limits
- Power dissipation would need to be quantified
- Would need careful thought with designing opening & closing features so not to effect performance
- Shield box & chimneys would increase location height
- High field tolerant PSU available but £70K for 4

Shielding Turbo pump

- Pump can tolerate 5mT. Solution is a 10 mm thick AISI 1010 capped cylinder, 300X110 mm.
- 3 orientations checked, analysis shows internal field <5 mT in all.
- Further development allow backing line connection. Cooling requirement air/water tricky?
- Inverted magnetron vac. gauge could be shielded with a similar single can. Re-calibration?

Shielding Tracker Cryocooler

- The field in the shielded volume is well below the target 35 mT
- Apertures required to allow electrical and gas services
- Design would need optimising though presently mass 0.5T + 0.3T!
- Question on need to shield internal parts
- Would severely limit ease and ability to service and work with cryostats

Comments

- Local shielding of items within the hall could work but there is a risk that a critical item could be missed or not shielded to a level where it will operate satisfactorily.
- This issue is hard to resolve fully because of the wide spread stray field, the varying nature and proximity of equipment and without benchmarking, the unknown accuracy of the model.
- The local shielding of the tracker cryostats would be complicated, costly and very restrictive in use.
- The relocation of items and infrastructure to lower field areas around the hall may prove difficult to achieve due to an already lack of space
- The replacement or sourcing of alternative non-field sensitive components could be costly
- There is a lack of experience within MICE for what would be required for the engineering and test of magnetic shields