

LHC Injectors Upgrade

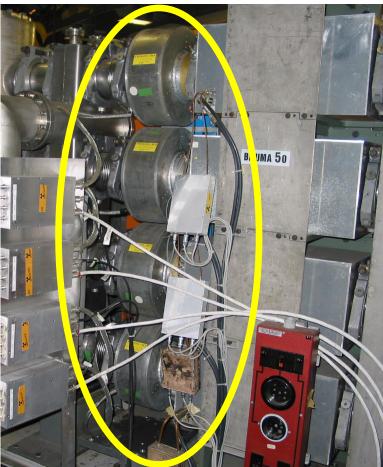
LHC Injectors Upgrade

Linac4 up to PSB injection systems

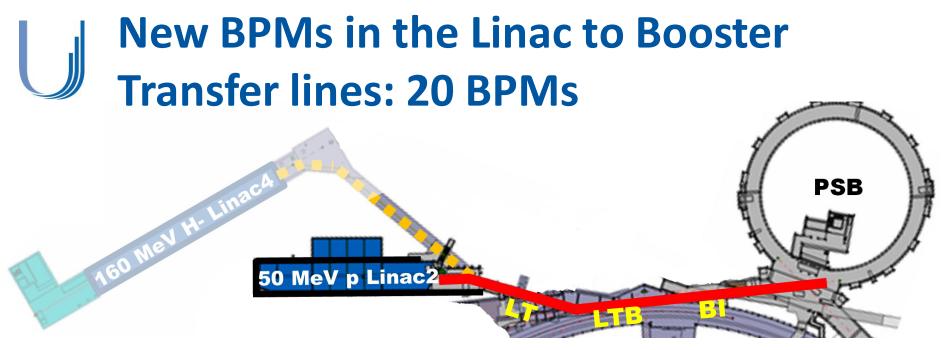
Jocelyn TAN, BE-BI

On behalf of my BI colleagues

- Linac2 to PSB transfer lines
 - Fast BCTs
 - BPMs
- H- INJECTION SYSTEM IN THE PSB
 - BLMs
 - H⁰/H⁻ measurement at injection dump
 - BTV screens at stripping foil
 - SEM-Turn by turn profiles for injection matching
- New requests
- Conclusion


Fast BCTs - Consolidation

- Acquisition chain
 - Upgraded to TRIC
 - Acquisition moved to BOR: All monitors dowstream LT.BHZ20:
 - Planning: completed for LS1
- FBCT Proposed consolidation
 - Motivation: LT, LTB, LBE and LBS monitors are 35-40 years old
 - Budget: 280 kCHF for 7 BCTs
 - Planning: completed for Linac4 connection
 - WP responsible: BI-PI


- BI.BCT10: Dose rate 10µS/h
- BI.BCT20: Dose rate 200µS/h
- Present number of windings N=10
- For ultra short Linac4 pulses \Rightarrow N=20
- No spares
- Plan A:
 - LS1: Dismantle the BCTs for new windings
 - One hour per monitor
 - Collective dose: ~1000μS
- Plan B:
 - New WP request
 - WP responsible: BI-PI
 - 2015 Build four new monitors (mechanics)
 - 2016 Ready for Linac4 connection to PSB
 - Collective dose: $\sim 200 \mu S$
 - Estimated cost 160 kCHF, on LIU budget

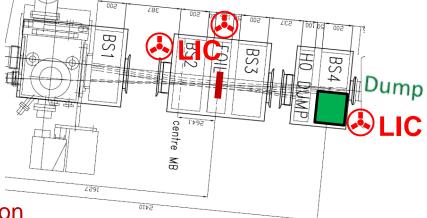
BI.BCT20: Four rings Dose rate **200µS/h**

Courtesy: F. Lenardon

- Motivation
 - Upgrade the LT, LTB and BI trajectory system with the Linac4 standards
- Specifications
 - Measure beam position with resolution /accuracy of 0.1/0.3 mm
 - Relative beam intensity between two BPMs (1% wrt peak current)
 - Beam phase wrt to RF reference (0.5°)
 - Energy via TOF between two BPMs (1 ‰)

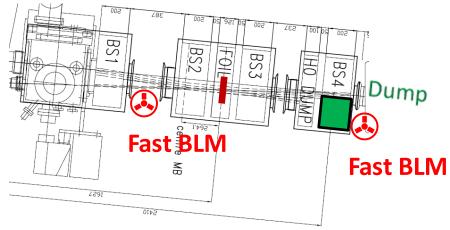
Status of Development

- Commissioning
 - Sept.2012 end of run
 - 1BPM tested with Linac2 beams
- MSWG endorsed the new system on 15/03/2013
- Cabling campain: completed
- Planning LS1
 - Analogue board: teething issues pending
 - Monitor production: on schedule
 - Nov. 2013-Jan.2014: Machine installation
- Concerns
 - Helicoflex seal not specific to this device
 - All devices must pass new outgasing test
 - TE-VSC has limited manpower
- This system has top priority for post-LS1 start-up



- Linac2 to PSB transfer lines
 - Fast BCTs
 - BPMs
- H- INJECTION SYSTEM IN THE PSB
 - BLMs
 - H⁰/H⁻ measurement at injection dump
 - BTV screens at stripping foil
 - SEM-Turn by turn profiles for injection matching
- New requests
- Conclusion

Beam Loss <u>Monitoring</u> in the H⁻ system



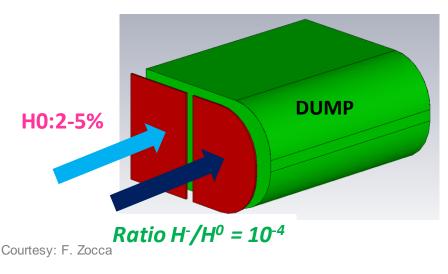
• Specifications

- Monitor foil degradation
- Machine protection : H0/H- dumps designed for 1bad pulse only: 2.5x10¹³ charges, 500 J
- Beam Interlock System : Integration and High reliability
- Resolution time : $2\mu s$
- Low loss threshold : PPM with FESA
- High loss threshold : non-PPM, fully HW-based
- PPM: enable/disable
- Proposed technology: Little Ionization Chambers (LIC)
 - Electronics: Ready
 - BLM support design and integration: Following the new vacuum sectorization, the final design from TE-ABT is needed
- Budget: 100 kCHF

Beam Loss <u>Observation</u> in the H⁻ system

Specifications

- Monitor fast losses and foil degradation
- Optimize stripping efficiency over the injection duration (100µs)
- Resolution time : 100 ns
- Min/Max loss: 2x10¹⁰ / 2.5x10¹³
- PPM acquisition
- Read out under discussion: OASIS, or CIVIDEC, or VFC (BI standard carrier)
- Proposed technology: Diamond detector
- Budget : 150 kCHF



H0/H- current monitor

H⁰/ H⁻ current monitor needed in front of the dump in the BSW4 magnet

- to monitor the efficiency of the stripping foil (detect degradation and failure)
- to allow efficient setting up of the injection
- to protect the dump by providing an interlock signal in case of 10% detected beam load

CONCEPT: plates intercepting the H⁰ and H⁻ ions and acting as a Faraday cup for the stripped electrons (stripping & collection)

LINAC4 Project Document No. L4-T-EP-0003 rev 1.0 CERN Div./Group or Supplier/Contractor Document No. TE/ABT

> EDMS Document No. 1069244

- Robust and simple (lifetime ≈ 20 years, no maintenance)
- Radiation dose of 0.1-1.0 MGy per year
- Vacuum level 10⁻⁹ mbar without beam (10⁻⁸ mbar with beam)
- Withstand the BSW4 pulsed magnetic field of 0.4T and at the same time do not perturb the field by more than ≈ 0.1 %
- Placed as close to the dump as possible (to minimize uncontrolled losses)
- Sensitive areas maximized to cover as much as beam halo as possible
- Withstand the heat load in normal operation condition and a full Linac4 pulse load (2.5×10¹³ H- ions), in case of failure of the stripping foil, on a one-off basis, several times per year
- Dynamic range: 5×10⁷ 5×10¹² ions (for H- and H0 alike)
- Absolute accuracy ± 20 %, relative accuracy ± 10 %
- Time resolution: integral over the full injection time (however better time resolution would be potential advantage for operational diagnostics)

Proposed Technology

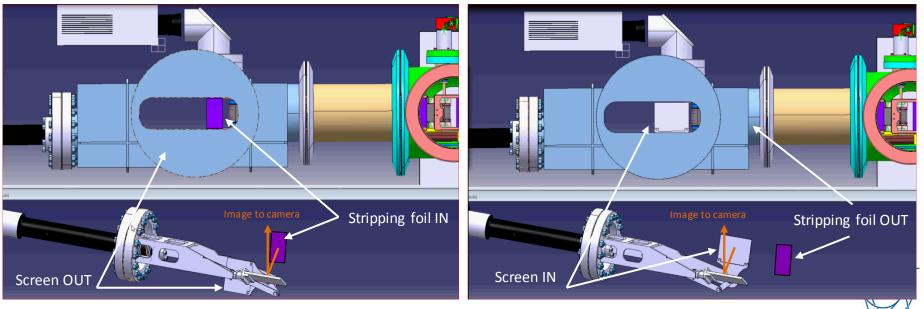
Titanium plates 1 mm thick:

- best compromise between the "high" conductivity needed for the current readout and the "low" conductivity required by the presence of the magnetic field
- 1mm thickness suited to stop all the stripped electrons and tolerated in the presence of the vertical B-field (to avoid current loop in the horizontal plane)
- Acceptable thermal load (150 mW with 2% beam load)
- Low activation (low-Z material)

Comparison study with other materials:

	Material	Conductivity (1/ <u>Ωm)</u> (for signal read-out)	Thermal load (∆T) for a full Linac4 pulse	Melting point	Neutron yield (w.r.t. n° of protons)	Signal Q (e/H ⁻) with NO external fields*	Signal Q (e/Hº) with NO external fields*	Compatibility with BS4 field	
	Graphite	6.1 × 10 ⁴	67 K	3773 К	0.41 %	- 1.83	- 0.90	YES	Fully acceptable
	Aluminum	3.77 × 10 ⁷	50 K	933 K	0.57 %	- 1.63	- 0.80	NO	Acceptable (not ideal)
	Titanium	2.34 × 10 ⁶	80 K	1933 K	0.99 %	- 1.42	- 0.70	YES	Not acceptable
	Copper	5.96 × 10 ⁷	98 K	1356 K	1.0 %	- 1.22	- 0.60	NO	
	Tungsten	1.89 × 10 ⁷	229 К	3683 K	6.4 %	- 0.68	- 0.33	NO	
ψ ψ									13 (CERN))

* taking into account losses due to electron backscattering and secondary emission


Development and commissioning

- Still on-going developments
 - Mechanical integration in the BSW4 magnet (plates support and cabling)
 - Not much flexibility for integration
 - Read-out electronics
 - Interlock circuitry: based on SEM interlock system
 - Feasibility study to add beam horizontal position information (<u>NOT</u> included in the specifications but potential advantage for operation diagnostics)
- Budget: 57 kCHF
- 2014 : Finalize the integration design by Q2
- 2015 : Finalize electronics and interlock by Q4

BTV screen at injection foil

- Foil inspection
- Measure injected beam position and size to steer the beam onto the foil after 1 turn
- Position / size accuracy : 0.2mm / 10%

Development and commissioning

- Collaboration TE-ABT between and BE-BI
 - Mechanism integration
 - Interlock logic between screen and foil: to be defined
- Vidicon tube based camera
- Prototype: 80% to completion
- Budget: 120 kCHF
- 2014: Vacuum test of the prototype / validation
- 2015: Production of 4 BTVs + 2 spares

Planning for BTVs and H0/H- meas, and BLMs (LICs + Diamond)

• End 2015: Half-injection sector test

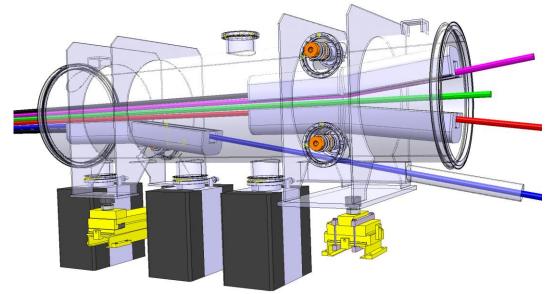
- These instruments should be ready
- Need clarification / installation planning
- Need temporary installation (cables + controls)
- End 2016: Linac4 connection
 - Ready if their cable campain is granted

SEM grids for matching and emittance measurements at injection

- Specifications: based on 3 slides from C. Carli (26th October 2011)
 - injection of half a PSB turn (i.e. 0.5 $\mu s, 2x10^{11}$ protons) to well separate turn-by-turn profiles
 - acquisition of say up to 20 consecutive profiles
 - to avoid burning the wires : Implement an interlock on the pre-chopper to shorten the Linac4 pulse.
 - a pair of monitors (H+V) in one ring is sufficient
 - PPM In/Out (like the sieve) : NOT OK
 - Permament implementation for MDs <u>and</u> operation: VERY DEMANDING
- Mechanical specifications: compact monitor
 - grid size : 20mm
 - 48 graphite wires (\emptyset = 33 μ m)
 - Thick frame for stopping scattered protons

 $\epsilon_{\rm rms}$ of incoming beam 0.5 μ m beam size w/ β mismatch x2 1.1 -2.2 mm rms PSB straight sections $\beta_{\rm T}$ = 5 m

0.4mn


- Status
 - new monitor to be built,
 - WP responsible: section BI-PM
 - Few free straight sections: possible in 4L1
 - Simulations: 5mV Max. over 50 Ω on a wire
 - Study possibility to transport this weak signal through special coaxial lines (25m long) to the amplifiers.
- Budget : 135 KCHF
- Planning
 - 2015 Start electronics development
 - A few cables to be pulled
 - End 2016: Ready for Linac4 connection if signal/noise ratio is good enough

- Linac2 to PSB transfer lines
 - Fast BCTs
 - BPMs
- H⁻ INJECTION SYSTEM IN THE PSB
 - BLMs
 - H⁰/H⁻ measurement at injection dump
 - BTV screens at stripping foil
 - SEM-Turn by turn profiles for injection matching
- New requests
- Conclusion

BI.SMV position plates

- Recent request, no specification, no WP
- Based on existing system: ensure the sliced beams are centered in their respective apertures.
- Metal plates, thickness to be defined for stopping electrons
- No interlock
- Direct signals on OASIS
- WP responsible: BI-PM, in collaboration with TE-ABT
- Planning: Septum design nearly completed ⇒ BI should propose a design ASAP

Schottky signals for energy spread measurements at injection

- Motivation:
 - Limited resolution from the Feshenko monitor in the LBS line
 - For BCMS beams: the PS needs very well defined energy spread
 - Compensate for longitudinal painting
- A schottky monitor in the PSB for ∆E/E at injection, using existing pick-ups.
- Recent request
- No specification, no WP, no planning
- WP responsible: BI-PI

- New baseline for Linac4 to PSB connection: End 2016
- Commissioning in Half-injection sector test: OK if clear planning and temporary installation (cables + controls)
- Time and budget wise, the LIU-PSB WPs presented here can make it, provided the requested cables be pulled
- Some concerns:
 - BI.BCT20: high dose rate, no spare (CONS)
 - SEMs: S/N ratio, development in 2015
 - New WP requests: find resources

LHC Injectors Upgrade

THANK YOU FOR YOUR ATTENTION!

