

LHC Injectors Upgrade

PSB Orbit and PS/PSB fast BCT projects L. Søby

- Relevant Beam parameters
- PS Complex Fast BCTs
 - Proposed technical solutions
 - Specific points about calibration
- PSB Trajectory and Orbit
 - Solution after LS1
 - Final solution when all cables are available
- PSB Extraction BPMs
 - New trajectory pickups and electronics
 - Wide-band pickup in BTP
- Conclusions

Relevant Beam parameters

Parameter	LEIR	PSB (per Ring)	PS	SPS
Particle Types	Pb54+	р	р	р
Revolution Frequency [kHz]	360 - 1422	599 – 1750 – 1810 ⁽¹⁾	436647.3424-	43.4
			476824.1330	
Main RF Frequency(ies) [MHz]	0.36 - 2.84	C02: 0.6 - 2; C04: 1.2 - 3.9;	3.0565 - 10.0133, 13,	
		C16: 5 - 16	20,40 80, 200	
Momentum Range [GeV/c/charge]	0.341 - 1.44	0.31 - 2.12 - 2.78 ⁽¹⁾	2.12- 2.78 ⁽¹⁾ -26	14 - 450
Kinetic Energy Range [GeV/u]	0.0042 - 0.072	0.05 - 1.4 - 2 ⁽¹⁾	1.4 - 2 ⁽¹⁾ - 25.07	214 - 450
Gamma	1.005 - 1.08	1.053 - 2.4791 - 3.1315 ⁽¹⁾	2.479 - 3.131 ⁽¹⁾ - 28.14	16 - 480
Cycle Length [s]	2.4 – 600 (typ 3.6)	1.2	1.2, 2.4, 3.6	3.6 to 100
Harmonic Number	1, 2	1-2	7 - 420	4620
Number of Bunches	1, 2	1 - 2	1 - 420	1, 576 ⁽²⁾ , 4200 ⁽³⁾
Total Beam Intensity Range [e10	0.5, 10	0.5 - 900 – 1400 <mark>(2500)</mark>	0.2 - 4000	0.2 - 7200
charges]				
Bunch Intensity Range [e10 charges]	0.2, 5	0.5 - 900 – 1400 <mark>(2500)</mark>	0.2 - 1000	0.2 - 50
Bunch Length [ns] at 4 sigmas	250 - 2000	75 - 250	3.5 - 280	1-5
Bunch Spacing [ns]	350 - 1350	286, 327, ~580, 16000 ⁽⁴⁾	0, 25, 50, 75, 100, 150, ⁽⁶⁾	5, 25, 50, n*25, 23000
Normalised Emittances [um -1 σ rms]	0.5	H 0.3 - 15	H 0.3 - 20	H 0.4 - 11.0
		V 0.2 - 8	V 0.2 - 15	V 0.4 - 8.0

For the Injectors Rings

⁽¹⁾ After PSB upgrade to 2 GeV.

⁽²⁾ 2 batches of 25ns LHC beam for scrubbing.

 $^{(3)}$ 5 ns bunch spacing beams.

(4) After extraction

⁽⁵⁾ The bunch spacing is variable as the revolution period changes during acceleration. It varies from a maximum spacing of 2300 for single bunch at low energy to 5 for the 200 MHz recaptured CT/MTE beams.

Please	refer	to	the	detailed	tables	for	the	full	range	(https://edms.cern.ch/document/115 7752) ;

LHC Injectors Upgrade

Transfer Line Intensity Specifications

Derived Parameter: Beam Intensity in Transfer Lines: Total Charges

Expected interface:

Should publish after the last injection/extraction an array of total number of charges crossing the monitors during each transfer (injection/extraction) and on a given cycle

Expected Performance:

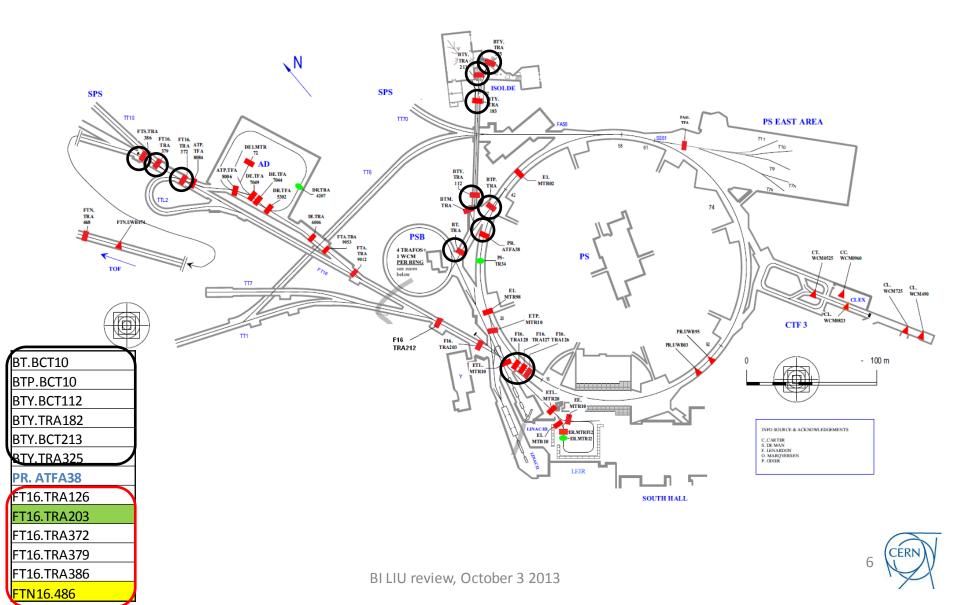
Derived Parameter: Beam Intensity in Transfer Lines 3/3: Bunch by Bunch

Expected interface:

Should publish an array containing the intensity per bunch Expected Performance:

Parameter	PSB
Absolute Accuracy (RMS)	2% + 5e8 charges
Resolution = detectable drop between consecutive measurement windows (RMS)	2e8 charges

Remark: It is presently not possible to provide calibrated intensity values for bunches spaced by less than 25nsec with 2% accuracy.


Need ~30ns-35 bunch spacing.

Presently bunch by bunch measurements are NOT requested.

https://edms.cern.ch/nav/P:CERN-0000077383:V0/P:CERN-0000094107:V0/TAB3



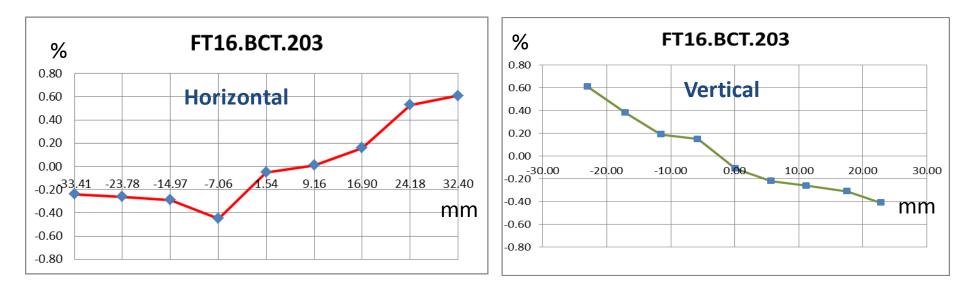
Fast BCT locations (PS complex)

Proposed Technology: BCT Upgrades

SPS type BCT but with new toroid, qualified on FT16.BCT203

By installing same type BCTs everywhere we will:

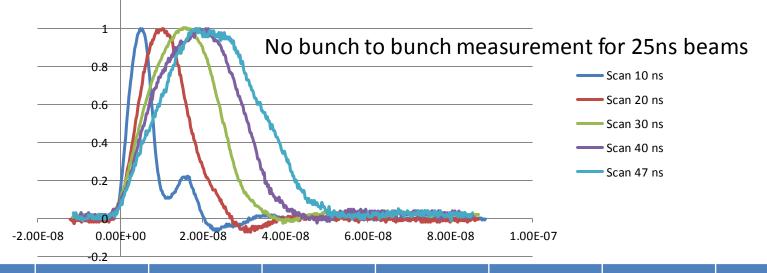
- Have same amplitude and phase response over a larger frequency range, i.e. same bunch length response (see later)
- The new design also has reduced beam position dependency (see later)



New Fast BCT toroids from Bergoz

Performance of the prototype (measured)	
Bunch length dependency (0.2 ns – 0.4 ns RMS)	not yet measured*
Beam position dependency (± 5 mm) (40 MHz)	< 0.14% / 5 mm
Beam position dependency (± 5 mm) (Integral)	< 0.2% / 5 mm
Intensity to amplitude linearity	below noise
Transfer impedance (40 MHz)	1.29 V / A
Transfer impedance (Integral)	1.63 V / A
Bandwidth	392 Hz – 61.6 MHz
Output pulse width FWHM	~3.1 ns
Ringing after 20 ns (amplitude)	~1% **

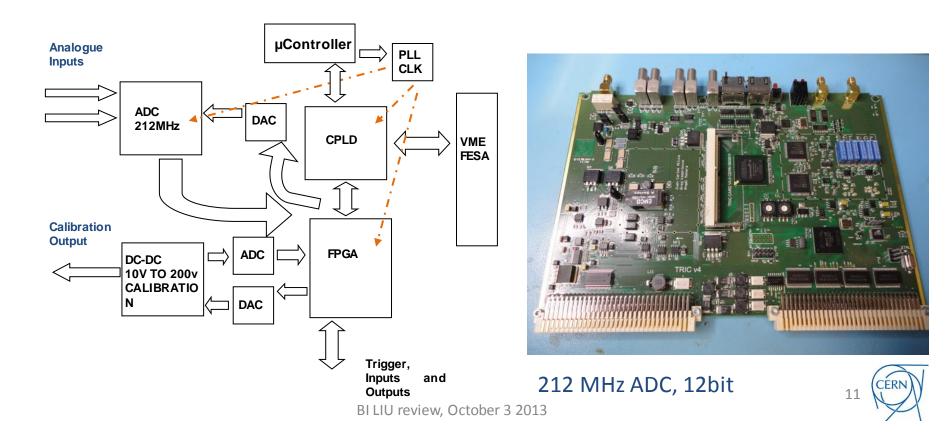
Beam position dependency



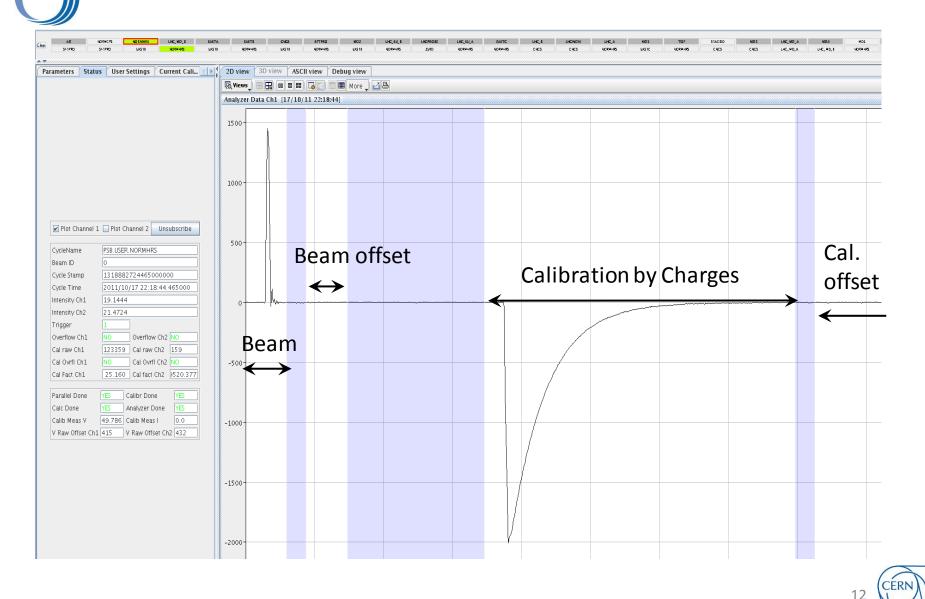
In LHC type BCT, which is same as FT16.BCT212 and FTN.BCT486 (TOF) ~1% per mm.

For FT16.BCT203 we find 1% for ±30mm beam displacement for 4ns bunches ③. For longer bunches this dependency is smaller.

Bunch length dependency

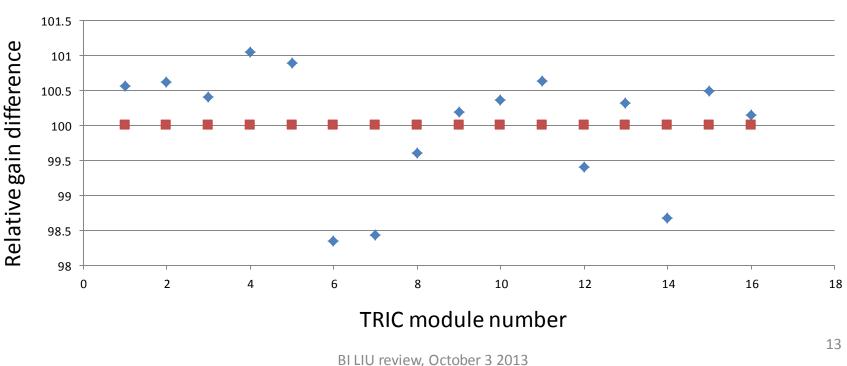


Bunch length	PS DCCT [E10]	FT16.BCT.203 [E10]	FT16.BCT.212 [E10]	FT16.BCT.372 [E10]	(PS Ring- FT16.BCT.203) / PS DCCT	(PS Ring- FT16.BCT.212) / PS DCCT	(PS Ring- FT16.BCT.372) / PS DCCT
4 ns	11.27	11.27	11.67	10.92	<mark>-0.03%</mark>	<mark>-3.61%</mark>	<mark>3.10%</mark>
Sigma	0.97	0.97	1.2	1.04	1.50%	6.67%	3.50%
8 ns	10.5	10.5	10.89	10.14	<mark>-0.42%</mark>	<mark>-4.13%</mark>	<mark>3.00%</mark>
Sigma	0.69	0.91	1.15	0.97	1.55%	7.57%	3.95%
12 ns	10.81	10.86	11.31	10.46	<mark>-0.47%</mark>	<mark>-4.62%</mark>	<mark>3.28%</mark>
Sigma	0.81	0.8	1.18	0.81	1.54%	7.48%	2.44%


TRIC acquisition system

TRIC is a VME64x 6U standard Card used to measure Beam intensity using signals coming from the BCT in the PS complex

- Integrates in digital domain signals using its on board calibrator as a reference.
- Calibration can be either on-line (charges, current) or off-line.
- Different Integration modes (Parallel, Linac) both with offset suppression.
- Installed on all PS complex BCTs after the PSB. After LS1 also on LN2/LN3/LN4 BCTs



TRIC: Expert GUI Software, Parallel integrator

TRIC: Cross calibration

- In order to improve the <u>relative accuracy</u> between FBCTs we have cross calibrated the TRICs, <u>to one reference TRIC</u>, reducing the relative error between them from ± 1.5% to ± 0.2 %
- A new method, <u>using a commercial current reference</u>, should improve this even further and will be applied in LS1 to all TRICs

TRICs TRICs Cross Calibrated

Budgetary Requirements and installations

General cost breakdown (consolidation):

	2013	2014	2015
64275 PS complex Beam transformers & PUs [CHF]	391k	98k	100k
	-70k		

- 2015 budget moved to 2014 to start LN3 BCT upgrade.
- Installations foreseen December 2013 to January 2014. For the moment no showstopper.

LHC Injectors Upgrade

Trajectory specifications

Derived Parameter: Turn by Turn Injection Trajectories in the Ring

Expected Results:

Should publish the H&V positions per monitor at the end of each cycle, for G consecutive gates of length L, during N consecutive turns and acquired from a given time T in the cycle assuming that there is no harmonic change during the selected time window.

Expected Performance:

Parameter	PSB (per ring)
G (number of gates per turn)	1 to 2 bunches
L (gate length)	1 main RF bucket
N (Number of turns)	100
Absolute Accuracy	0.5mm (excl. mech. Offset)
Resolution evolution (RMS) [mm]	0.2mm > 5e10c/bch
	0.5mm > 5e9c/bch

Derived Parameter: Trajectory - Capture Acquisition - in the Ring

Expected Results:

Should publish the H&V positions per monitor at the end of each cycle, for G gates of length L and during N consecutive turns and acquired from a given time or turn T in the cycle assuming that there is no harmonic change during the selected time window.

Expected Performance:

e:	Parameter	PSB (per ring)				
	G (number of gates-Bunches perturn)	1 to 2				
	L (gate length)	1 main RF bucket				
	N (Number of turns)	N max = 200000 / G 50000 / G				
	Absolute Accuracy	0.5mm (excl. mech. Offset)				
	Resolution (RMS) [mm]	0.2mm > 5e10c/bch				
		0.5mm > 5e9c/bch				

https://edms.cern.ch/nav/P:CERN-0000077383:V0/P:CERN-0000094107:V0/TAB3

Orbit specifications

Derived Parameter: Orbit (+ Gated) over the cycle

Expected Results:

Should publish up to a maximum of N averages of the H&V closed-orbit positions for all monitors at the end of each cycle acquired every X ms over a period with beam that start from MTG event S to another MTG event E.

Expected Performance:

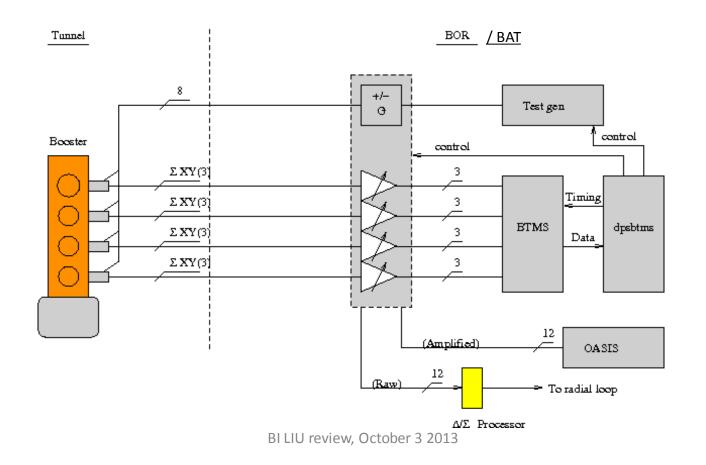
Parameter	PSB (per ring)
N (maximum number of averages)	N = 4000
Absolute Accuracy	0.5mm (excl. mech. Offset)
X (Time between averages) [msec]	1
Resolution (RMS) [mm]	0.2mm > 5e10c/bch
	0.5mm for beam > 5e9c/bch

Derived Parameter: MRP over the cycle

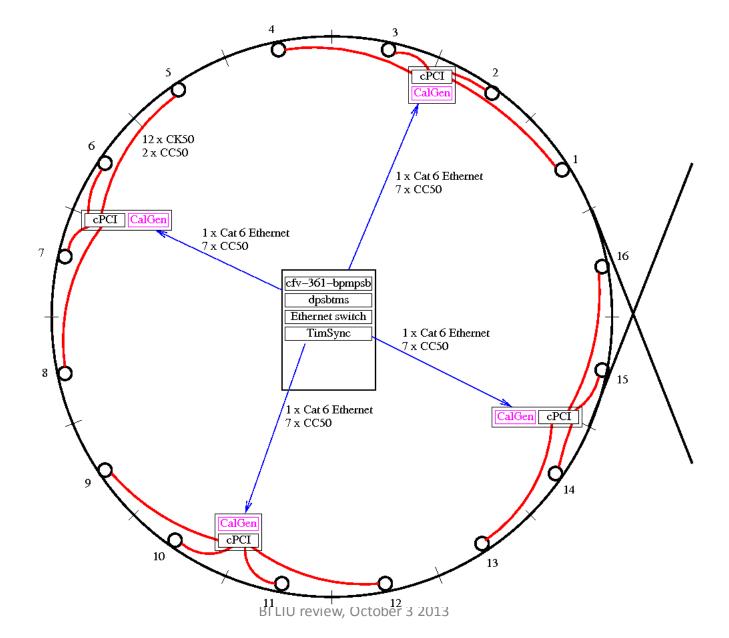
Expected Results:

Should calculate and publish N main radial position averages (i.e. averages of the H orbit positions of all monitors) at the end of each cycle and acquired every X ms over a period with beam that start from MTG event S to another MTG event E.

Expected Performance:

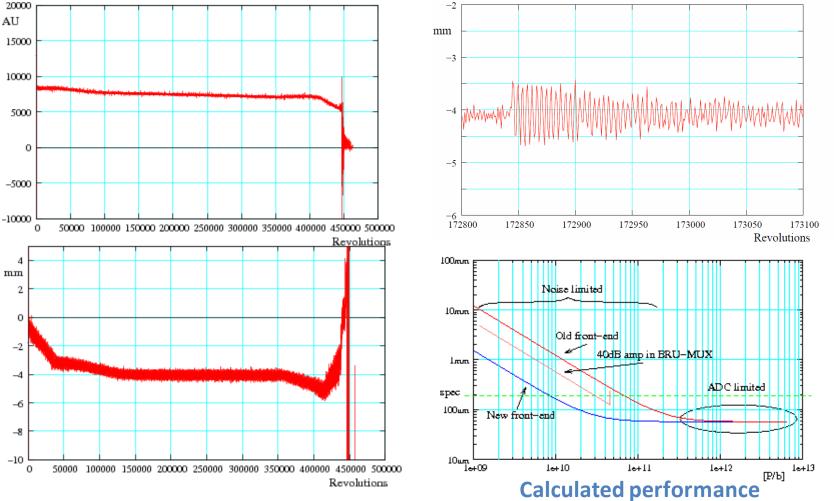

Parameter	PSB (per ring)
N (maximum number of averages)	N = 4000
X (Time between averages) [msec]	1
Absolute accuracy	0.5mm (excl. mech. Offset)
Resolution (RMS) [mm]	0.2mm > 5e10c/bch
	0.5mm > 5e9c/bch

Proposed Technology


Re-use old BPM's, new analogue FE's, <u>new cables</u>

 Digital: Commercial system from ALPHA DATA, same as PS. 200000 measurement points for the 4 rings.

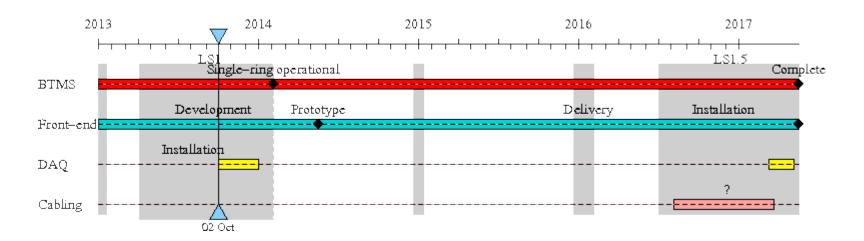
Proposed final layout when new cables available



Status of Development:

First beams acquired 2013 PU7, PU8 and PU9

Measured resolution estimated to 70um with 7E12. Tune kick oscillations of ±0.5mm



BI LIU review, October 3 2013

Installation and Commissioning Plan

- The digital acquisition hardware for 3 rings is delivered, but not yet installed.
- Single-ring acquisitions, will be available after LS1.
 Beam intensity above 1e11ppb expected to give a resolution of around 200um

Budgetary Requirements

Updated budget fits spending profile.

		ltem		kCHF			
	PU cabli	PU cabling					
	Remova	Removal of old cabling					
	Acquisit	ion syste	em	300			
	Front-er	nd electr	onics	130			
	FEC			10			
	Test gen	erator		15			
	Timing +	Timing + distribution					
	Misc	Misc					
	Total			749			
2012	2012	2014	2015	2010	2017	2010	Total
2012	2013	2014	2015	2016	2017	2018	Total
220	21	109	10	20	20	350	750

Unclear however when cables for the full system can/will be pulled !

LHC Injectors Upgrade

Beam trajectory in the PSB extraction lines

- Motivation
 - Capacitive type are seriously affected by beam losses
 - 50% of the transfer line already equipped with new BPM type (CONS)
 - Upgrade acquisition chain, dynamic range = 1700
 - Standardize BPM types (3 types in the past)
- Status
 - 10 Inductive BPMs + 2 spare produced
 - Electronics: 90% done
- Budget : 64021: RAS
- Planning LS1
 - Nov: Electronics installation
 - Nov. Jan : BPM installation in the machine
 - Ready for machine start-up
- Concern: Helicoflex seals

Recombination line : BT.U00

New Wide Band Pick-Up in BTP

- Motivation
 - Pin down the reason for the observed instabilities, which are the source of a part of the losses at PS injection
- Specifications (EDMS 1259212)
 - 1-8 bunches
 - Range of bunch length: ~60-300 ns
 - Beam intensity range: from 5E10 ppb to ~1E13 ppb
 - Desired bandwidth range: from 200 kHz to min. 250 MHz
 - Observation of individual bunches should be possible
 - Resolution 0.2mm
- Proposed technology
 - Wide band pickup in the BTP line,
 - similar to the one installed in TT2
- WP responsible: BI-PI, J. Bellemann
- Budget: <u>allocated</u> 75kCHF 2015-2016
- Planning
 - 2015: development
 - End 2016: machine installation

Conclusions

FBCTs:

- 10 FBCTs will be installed in the PSB and PS extraction lines + PR.ATFA38. Upgrades of Linac BCTs foreseen.
- New cross calibration of all TRIC cards
- BTMS
 - First test very positive
 - 1 ring multiplexed system ready for start-up
- BTU
 - All 20 BPMs upgraded by end of LS1
 - Idem for acquisition system
- Wideband PU for BTP line
 - Development will start in 2015

LHC Injectors Upgrade

THANK YOU FOR YOUR ATTENTION!

