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The local CS equation
Introduction

Characterizing RG flows: The Callan-Symanzik equation

The basic idea:

> Global scale transformation symmetry can be broken explicitly by quantum
effects.

» The non-invariance can be compensated by modifications of the
parameters.

Implications:

> Scale transformation can be translated into a flow in parameter space.



The local CS equation
Introduction

Characterizing RG flows: Finiteness of 7' (Brown and Collins 1980)

The basic idea:

> Local scale transformations are encoded in T' = T}/
» Compute T in terms of bare composite operators.

» Consistency condition: T is finite.

Implications:

» Non-trivial constraints on the structure of counterterms.



The local CS equation

Introduction

Characterizing RG flows: The Local Callan-Symanzik equation (Osborn 91)

The basic idea:

> Local scale transformations can be compensated by local transformations
of the parameters.

> Define a generalization of the Weyl symmetry.

» Consistency condition: The symmetry is abelian.

Implications:

> Irreversibility of RG flows (in perturbation theory, 4D, unitary).
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Introduction

The Local Callan-Symanzik symmetry: ingredients

> Local scale transformations implemented using a background metric.

U €))
309" (x) = 20(x)g" ()

» The local transformation of the parameters implemented by promoting
them to background fields

AL ] ()
SN (z) = —o(x)8' (M)

> The symmetry generator:
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Introduction

Background fields: a useful concept

» Sources for renormalized operators:

One can define W(g, A, ...] = —ilog Z[g, A, .. ]
a renormalized generating functional for correlation functions of composite
operators
1w 2 oW
—— ——— = [O1(x — =T (z
V=g 0N (z) [O1(=)] V=9 69" (z) T @)
> Spurions:

One can enlarge the symmetry of the theory,
by assigning them with transformation properties.
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Introduction

The background dilaton: a redundant but useful notation

Introduce a background metric g"”(z),
and use the redundant notation

¢ (@) = g (@)
7(z) is a source for T":

1 ™
WW[Q] = 29

sg V| = [T

An effective action for the dilaton
= bookkeeping device for n-point functions of 7' = T};.
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Introduction

The local Callan-Symanzik equation

Define a symmetry generator

ACS /d4:ca(x)<5T(Zx)—,BléA;s(x)+...>

W is invariant up to a local anomaly

AT WIg,A,..] = /da:a.A[g, A

» The anomaly A is the most general scalar which can be written using the
sources and their derivatives.

» Can be written in an operator form

T() = B'[0i@)+...
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Introduction

Consistency conditions

» Constraints on the coefficients in the symmetry generator

[a85,a85] =0

o9

» Constraints on the anomaly coefficients

[A%S,AGCIS] w = Aoczs (/ dw1a1A) — Accls (/ dmzﬂzA) =0
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Introduction

Consistency conditions - implications

» Example:

d_ v 1 g orgg
N@Q(A) = SXIJ/B B

If x7, is positive definite — irreversibility of RG flow!

» What about the other constraints on the anomaly
(there are ~ 10 equations)?

> New result:
a new formulation of the anomaly.
= most of the other equations do not constrain the RG flow.
Only one additional non-trivial consistency condition (related to F
anomaly).
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Introduction

Dilaton effective action

» The dilaton effective action is a convenient bookkeeping device for
correlators of T'.

» The local CS equation can be used to rewrite correlators of T":
(T(x)) = pB(O1(x)) + A(x)

(T(zn)...T(z1)) ~ B™ .. B"(O5, (@m)...O1(x1))

+ anomaly related contact terms

> New result:
a systematic approach for this computation.

> Requires the reformulation of the anomaly.
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Introduction

Characterizing RG flows: Dispersion relations for correlators of T’

The basic idea:

» Study the response of the system to local scale transformations.
= compute correlators of T' ("dilaton scattering amplitudes”)

» Use analyticity and unitarity to write dispersion relations
with positivity constraints.

Implications:
» Comparing between two limits of the flow, across non-perturbative regimes
(weak irreversibility of RG flow - a theorem, KS 2011).

» Constraining the asymptotic limits of perturbative RG flows
(All perturbative RG flows end in conformal fixed points, LPR, 2011)
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Introduction

Main points of the talk

\4

The local CS equation can be used to characterize RG flows

1. by studying the consistency conditions.
2. as a tool for computing correlators of T'.

There is a lot of "know-how" involved in the process....

We have improved the formulation of the anomaly, in a way which isolates
only the interesting constraints.

The new formulation allowed us to give analytic expressions for the dilaton
effective action off-criticality.

We proved that the "scattering amplitudes” involved in the a theorem and
LPR are indeed insensitive to lower dimension operators.
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Introduction

Outline

Introduction
The local Callan-Symanzik equation
The local Callan-Symanzik anomaly

n point functions of T (dilaton effective action)
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The local Callan-Symanzik equation

The set-up

» Consider a 4D fixed point.

v

Put the theory in a curved background metric g"”(z).

> Assign a dimensionless source A\’ () to each of the marginal operators.

v

Define a renormalized generating functional W.

» Consider a background

g = g
vl =0
‘/\I o« 1

The 8 functions vanish at AT = A%~
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The local Callan-Symanzik equation

The set-up

» The local CS equation:

/d4xa (57(2@ —,6’5/\15(96)) Wig, \] = /dxaA

> In general there are other operators O, (z) of dimension d,.
We could add sources m® of dimension 4 — d,, to all these operators and
write

§ 1) o o 0 P
/d4xa (67’(35) —515)\1(3:) +m” (dB +’}/5) 796) W[g,AI,m ]

In a background where m® = 0 this will have no effect on our
computations.

> Except...
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The local Callan-Symanzik equation

The set-up

>

When writing the basis of renormalized dimension 4 scalar operators,
we must take into account

[O1(2)], VulJ4], V*[O]

We therefore have to add more background fields A: () and m*(x):

1 4% 1 14
T ome(@) [Oa ()] V=3 5AA @) [J[?(l’)]
All derivatives are promoted to be covariant derivatives:
Ve = 0+ A,
evaluate all derivatives in the background
g =
m=A=v, A = 0
’)\I D S |

Now we are ready to write the most general symmetry allowed by
dimensional analysis:
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The local Callan-Symanzik equation

The local CS symmetry

A (@) = A (2) - Af()

where

AV = / dz [aéT‘zw)}

s J 0
8y = [ [a (61 5N () +pfv“A1M$<w)> R (SA‘““E‘(“”)

1 1
—0 (mb (265 +5) + gn" R+ dev2aT 4 5e‘}JvW\Iw/\J)

+ Vo (190 5mi(x)) dG 6mi(w>) }

The local CS equation

5
oma(x)

| ASSW = fdaca.A|
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The local Callan-Symanzik equation

The local CS equation - operator form

d4a:|:cr St % C LI Iy P S
/ 57 (x) f oal(z CTVH 5AA(2) “ sAf(2)

ao2,1

1 1 s
+o (mb (288 +8) + gn“RerIv A4 ge‘bvux’v“x])

Sma (x)

s s
— Vo (97v“>\17)+v20 (t“ )]W:/dmaA
Sma(x) Sma(x)

The operator form of the equation:
(o(z) = é(x), flat background)

T = p'[01] -S'VL[I5] —tV?[O]
The running of the renormalized operators:
(D—4)[01] = 0:8"[0s] —pi Vul[Jh] —divV?[0d]
(D-2)[0. = 704

(Comment: the currents are renormalized because the symmetry is explicitly
broken by the sources)



The local CS equation

The local Callan-Symanzik equation

The local CS symmetry - details

4 S % A 19 a9
J4 m[”(ér(w) O e Mﬁ‘(a»>>+v“a (S Mﬁ(z))

1 1
e (mb (258 +§) + gn‘1R+d?v2AI + ge?JvuAIV“)\J)

— Vo [0¢vEAT o 920 (102
sm () sma ()

Sma (x)

1. Renormalization and improvement schemes.
2. Ambiguities.

3. Consistency conditions.

4

. Transformation properties of functions.
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The local Callan-Symanzik equation

Renormalization scheme

Using a different basis
W[g7 )\7 A7 m] = W, [97 )\7 A/7 m/]
where a new basis of sources can be parameterized by

A= A

al
m

a 1 a
m*+ - f'R+...
6
Corresponds to a change of basis of renormalized operators (scheme)

1w
V=g X (z)

Also modifies the coefficients of the local CS symmetry.

[O1(x)] = [O1(2)] = f7' Vi [T4(@)] + ..

Two parameters (t* and 0%) can be set to zero.
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The local Callan-Symanzik equation

Improvement scheme

A theory is defined up to improvement of the energy-momentum tensor

1
Ty ~ Tw+ 3 (N0 = 0,0,) Oa

T ~ T+4+00,
In a curved background, this is determined by
WD / V—=gd*zRO,
This effect is taken into account by
T = B'01] -8V, [J4] —t"V? (0]

t® describes the choice of "improvement” scheme in the theory.
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The local Callan-Symanzik equation

Ambiguities in the presence of global symmetries

Add the Ward identity to the local CS equation

5 5
Global _ 4 A I A _
Ag W = /d m[a (TaX) 3 () — Vo ]W—O

N (ASS - AS“”’”) W= / dzo A

choosing a* = awA(A) we can rewrite the symmetry generator as

é
B Global __ 4 1 A 1
A0—’_Ao'w _/d $|:0'(6 +(w TA)‘) >5>\I(I)

0 0
A A I ° A A
+U<P1 Orw )Vu)\ 5AA(z) V;LU((S +w >6 ﬁ‘(m)>+

S4 can be set to zero.
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The local Callan-Symanzik equation

Ambiguities in the presence of global symmetries
The 8 function is ambiguous.
g = '+ TN pit = pit — Orw? 5% = 8w

Invariant functions

I
Bl = p'- (SATA)\)
P = pi + 05"
choosing the gauge w? = —§4

T=p"010+58V,[Jy] =  T=B'0]

CFT & Bl =0

There are CFTs with non-zero 3 functions (FGS, 2012).
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The local Callan-Symanzik equation

Consistency conditions

The symmetry is abelian
[AEIS,AES] -0
This leads to three consistency equations:

» Two equations which can be used to eliminate n* and df.
» B'Pr =0
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The local Callan-Symanzik equation

Implications of consistency conditions

If we work in the basis where T is orthogonal to V, [J4]
T = B" [01]

this orthogonality is preserved along the RG flow:

D[O;] D PIAVM [J4]
DI ~D[B'O] > BV,.II4]

Conclusion

> It is not necessary to know anything about correlators of J%
in order to compute correlators of 7T'.

> A similar argument can be given for the anomalies - correlators of T" are
not sensitive to the gauge field appearing in the anomaly.
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The local Callan-Symanzik equation

Transformation properties of functions

ACS (YIV“AI) = 0 (—L[YI]V“AI> +V,0 (—BIYI)
ASS (YIVQ/\I) = 0o <—£[YI]V2)\I) + Vo (—BIYI) ...
Y7 is an arbitrary function of the sources.

» L]...] is a Lie derivative in parameter space, defined along a direction
which describes the RG flow

LY15.] = BX0xYrs. + ’Yf{YKJ... + 7§YIK... +...

where v/ = 9rBY + PA(Ta))’

» The Lie derivative satisfies

B'L[Y7] = L[B"Y1]
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The local Callan-Symanzik equation

Dimension 2 covariant functions

n”’ = vaven - B (Y (VQAK + %BKR)
a a aR 1 a —1N\J 2\ K 1 K

These combinations of (VA)?, V2\, m and R
transform covariantly under the local CS symmetry:

Ags (Y[JHIJ) = 0o (QYIJHIJ — E[Y]J]HIJ + Y[JV%(JLHKL)

AGE (M)

o (207 +98) M" + 751"
No derivatives of ¢!

1
s{ +orB7 + ;PiA(TA)\)J

= sUwH) (o A%y + Pl (T E)
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The local CS symmetry - summary

» By a choice of basis for the renormalized operators, adding Ward identities,
and imposing consistency conditions

5 5
AP :/d4 B! PAV AN —
o 217\ o TV Saiw)

1
-0 (Mb (268 +T¢) + Ee}{,n”) 5]

SMe(x)

» The consistency conditions make sure the correlators of T' are independent
of [J4].
» We defined dimension 2 covariant functions of the sources, II and M.
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The local Callan-Symanzik equation

Outline

Introduction
The local Callan-Symanzik equation
The local Callan-Symanzik anomaly

n point functions of T (dilaton effective action)
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The local Callan-Symanzik anomaly

The Weyl anomaly

1 2 2 2
——0A = o(aEs—bR" —cW*—-dV°R
L (a1 )

v

V2R: can be set to zero by adding local terms to the action
(not a genuine anomaly).

» E4: "type A” - vanishes when integrated over space-time.

» W2 "type B” - does not vanish when integrated over space-time.
» R?: not allowed due to the WZ consistency condition.
[A(‘;‘g AW} W= AX‘; (/d:laIA) - AW (/41202,4) I~ b/a[lv o R#0
In dim reg:

> E4: "type A" - related to evanescent terms in the effective action.

> w2 "type B" - related to counterterms with evanescent variations.
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The local Callan-Symanzik anomaly

The Weyl anomaly

This classification cannot be used in our formalism, because a(\)E; is not a
total derivative.

Generalizing the classification in the presence of background sources:

> "type B": Manifestly consistent
(variation contains no derivative of o, so the commutator always vanishes).

> "type A": Not consistent in the presence of background sources,
unless imposing non-trivial relations between the different anomalies.
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The local Callan-Symanzik anomaly

The local CS anomaly

1 1
= o (aE4 —ew? —bRZ) - v, (ﬂm)
9 3

1 1 1
+a(gx?VHAIV”R+EX;JVMAIV“AJR+;X%]G‘“’VMAIVVAJ
1 1
+ —x3; 920920 4 3 vt vraT o2 K
2 2
1
c I J Kgov,L
+ZXIJKLVH>‘ VHEAT VAT VYA
1 1
+97 0 (Guuwr VAT + —RY VAT + 515V 92N 4 1y e VAT VAT v )
3 2
1
-v2s (UIV2AI + —VIJV,,AIV"AJ)
2
1 ca b, .a(l 2,1, 1 Ty J
+u(;pabm m~ 4+ m gqaR+ra1V A +;5a1Jv}—b>‘ vEX )

+Vuo (m“jaIv“AI) _v2s (m“ka)

where me = me — 1eog
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The local Callan-Symanzik anomaly

The consistency conditions for the local CS anomaly

The 25 anomaly coefficients are functions of A,
constrained by ~ 10 differential equations derived from the consistency
condition

[AEZS,AEIS] w = AUOZS (/ dx1a1A) — Aocls (/ d$202«4) =0

eg.,

1 _ ~a 1 241 R v ~a
ﬁaA = ...a(m <3qaR+ra1V)\>) Vo (kat®). ..

the vanishing of the 0[1V202]7‘h“ term in the commutator leads to

1

Ga — 5 (Blalka - ’ngb +TaIBI) =0

There are ~ 10 such equations.
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The local Callan-Symanzik anomaly

The consistency conditions for the local CS anomaly

One of these consistency condition has physical significance.
1 1 g % I J n vyl
oA = ..o (aBi+ 5xd,G VNV +vg(wa,v,\)...

The vanishing of the 0[1VM02]G‘“’V,,)\I:

Llw;) = —8dra+x3,B’
multiplying by B':
d . ITo ~ 1 I nJ
u@a =B ora= ngJB B

where @ = a + éBJwJ.
If x7, is positive definite then we have a function which changes monotonously
along the RG flow.

What about all the other equations??
Do they have interesting implications?
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The local Callan-Symanzik anomaly

Solving the consistency conditions

Step 1: Remove scheme dependent anomalies

» The coefficients d,Ur, V1s,S(10y, T17K, Ka, jar can be set to zero.

> Most differential equations are replaced by algebraic constraints!
e.g.

Ga — % (M—i— TaIBI) =0

Step 2: Impose algebraic constraints

» The coefficients Bc,YI,X‘f,xfj,x‘}J,xl}JK,qa,raf can be eliminated.

» We find the "generalized Weyl anomaly”:
A = .AR2 +Aw2 +AE4 +AF2 +AV2R

» Only ~ 2 consistency conditions left.
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The local Callan-Symanzik anomaly

The generalized W?2 anomaly

Aw2 = —CW2

» The only difference with respect to the Weyl anomaly - ¢ is a function of A.

» Manifestly consistent (TW? is invariant, c transforms without derivatives) -
type B anomaly.
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The local Callan-Symanzik anomaly

The generalized R? anomaly

1 1 argb 1 aplg | 1 IJ KL
= —bay M M —bargM“I1 -b 1711
\/jgaARz o (2 b + bars + qbrKL

» The "meaning” of the consistency conditions:
The most general bilinear scalar constructed from II and M.

» Manifestly consistent - type B anomaly.

» Unimproved fixed points have an R? anomaly

1
—A
V=9 B2 VA=B=m=0

(relevant for a theorem and Buican’s conjecture)

1 a,b p2
=  —bupt’t
0wt U1
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The local Callan-Symanzik anomaly

The generalized E4 anomaly

1 1 y 1
ﬁaAE4 = o (aE4 +x9; (EJ,WVM,\IV A~ ZU,QAKAJ>)
1
+V40 (w1 G VPAT) + S0 AT (AT5A7)
1
+§"X§JKQ”K

> a, X9, and w; are related by a differential equation:
Llw;] = —89ra+ X‘I’JBJ

This is a genuine constraint on the QFT. Irreversibility!

1 —-1\1 2,J . 1gJ _ R
A U viz/ + LB R) T = Gu+ B

@IIK = (nl7 £y pUAT)AK Sk = o+ 4ord
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The generalized F2 anomaly

1 1 1
ﬁaAﬁ = U(ZHABF:‘VFB‘“’—I—ECA”F‘?VV“/\IV")\J)

+Vha (nAzFf,,V”/\I) + %nA[IPﬁAI (AgsAJ)

1
+o (ipfACAJK + ﬁAIa[JP;‘?]) Qf 7K

> kaB, Cars and nar are related by the equations:

Lnar] = kapPr +CarsB” — x3,(TaN)’
0 = nAIBI—Fw](TA)\)I

v

Resemblance to the E4 anomaly,

v

The Lie derivative of the second equation is the consequence of the other
two consistency conditions.

v

Is there interesting information in this equation?
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The local Callan-Symanzik anomaly

The local CS anomaly — summary

v

Most of the consistency conditions are eliminated when using covariant
functions to write the anomaly.

> One of the remaining equations is related to the irreversibility of the flow,
the interpretation of the other is still unclear.

» The CS anomaly in 3 dimensions (Nakayama 2013) can be simplified by
using the analogues of I and M.

> The new form of the anomaly is a good starting point for computing the
dilaton effective action.
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Introduction
The local Callan-Symanzik equation
The local Callan-Symanzik anomaly

n point functions of T (dilaton effective action)
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mn-point functions of T

n-point functions of T (dilaton effective action)

n~-point functions of T:

(T(z1).. . T(zn)) = ﬁin)%w‘

Bookkeeping device: an effective action for the dilaton

Iir] = n' /da:n. /dmlT ZTn)...7T(z1 )ér(wn) 57_((;1)1/\/‘

I
Mz 1M
3 l‘;‘
[
5
=

where

_ [ o4 S 1 _ \cs 8 B _ [ 4 18
_/d z|:767(z) NN ab _/dz7ﬁ MI(I)Jr
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mn-point functions of T

1 and 2-point functions of T (dilaton effective action)

AWw

APW + / d*zr A

AVAYWwW = AXVAEW+A¥V/d4mA

- AEAXVW-i-[AXV,Af]W-&-AZV/d“zTA

APABW 4 [AZV,AE]W+AE/d4xTA+A‘T’V/d4mTA

Do W Co

D2 W: contribution from the composite operators of the theory.
C2: anomaly related ultra-local terms.

Dow| = [atav=ar@ [atuv=a B @B W) (010, w)
+/dz«/—g 2@)Blo; BT (05 (2)) .

cy = /d4m\/7gV27V2‘r(2d+BIUI)
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mn-point functions of T

n-point functions of T (dilaton effective action)

AV . AYwW = Dw+ce,
N———
n

where we used the recursive definitions

Dy = DuaAl+ [AY, Dy
Cn = AWCn,1+Dn,1/dx7—A
(T Ty = -y o+
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mn-point functions of T

Anomaly related contact terms

Generalized W2 anomaly
Vanishes in a flat background.

Generalized F? anomaly

Vanishes in the $* = 0 gauge, and flat background,
due to the consistency condition

AT AL =~V | =0

ATSATAL = TVurB'PR| =0

af = fd4z[a (317(”\15(1) +PIAVM>\ITSA:(Z) +.. )
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mn-point functions of T

Anomaly related contact terms

Generalized R? anomaly

/d:m‘ V T — (V1) )

??“p—t

k=1
Generalized V2R anomaly

NG —J/da; (V2 — (v7)?)°

Both types of interactions vanish when using the on-shell condition
V2 o« Vir — (V)2 =0
(e =1+9)
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mn-point functions of T

Anomaly related contact terms

Generalized E4 anomaly

rlr] > i% (B’al)ka / der® (—4V2TVHTV”T+ Q(VHTV‘“T)2)

i% (3181) BIwI) /dek (V,.7VH7)?

k=0

OO\C/J o

. / dw (—4VQTVHTWT +2 (vﬂv“r)z) +0(BY)

The corrections to the fixed point WZ action begin at order (B”).
(need to use the consistency condition B'd;a = ix9,B'B”’).
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mn-point functions of T

The couplings of the dilaton to composite operators

i
. )
= exp{/d T’ZTJ (]gl(;)\l( )+>}W

vi: the coefficients of a coupling of k dilatons to [O1]

vg = (B'a,)"'B!
Agrees with the standard procedure of absorbing the dilaton into the
renormalization scale

- 2
MNor = XN(ep)o; =20, +rB'0; + %BJGJBIOI .
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mn-point functions of T

The couplings of the dilaton to composite operators

Coupling to dim 3 vectors
These couplings are eliminated when working in the " gauge” S4 =0,
using BT instead of A7.

Coupling to dim 2 operators
Derivative couplings. More complicated...

5 2 5 1 5
4 I J (51 I Jpa o2
rer 2 EXP{/d x(_d)B m-F?(B (6J+8JB )m+53 A 6ma(a:))

+ (- ¢)viet®

sma (x)

2 a (! a a s
— ¢V ¢(2n +B (;91 —art )) MT(Z)-F“A)}V%
(7T =1+9)
Notice the importance of the on-shell condition V¢ = 0!
Eliminates t* which could be of order 1.
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mn-point functions of T

The dilaton effective action — summary

» We have a systematic approach for writing the dilaton effective action
as a sum of ultra local term + correlators of composite operators.

» The on-shell condition cleans the dilaton effective action
from contributions dependent on renormalization and improvement
schemes.
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Example - Dilaton scattering and irreversibility of RG flow

Example - Dilaton scattering and irreversibility of RG flow

Consider the 4 point function of ¢ with on-shell kinematics

6 6 6 6

T 365686 8¢

4) T\ /T /T
\Q/ - \O/ + o Q/ + T -
¢”/ \\Qb T -7 SNT I

» Close enough to the fixed point BT is a good expansion parameter.
> The leading contribution

$l)=e T -1 A(s)

Als) o« & ((a+ 0(B2) + (%BIBJGU + 0(33)> lns/u2>

where Gy is a matrix in parameter space related to the 2 point functions
(0105) and 0705(0,0%).
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Example - Dilaton scattering and irreversibility of RG flow

Example: Dilaton scattering and irreversibility of RG flow

Als) o« 82 ((a+ 0(BY) + (%BIBJQU + 0(33)> In s/,u2)

> This expression is non-trivial:

1. The corrections to @ begin at order B2.
2. All the non-local contributions begin at order B3.

> In a unitary theory G;; is positive definite.

» The amplitude is independent of u:

d d .
0 = M@A(s) = ,u@a — B'B’G1; +0(B%)

Conclusion:
In a unitary theory, the change in @()\) is monotonous
= Irreversibility of RG flow.
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Conclusions

Main points of the talk

\4

The local CS equation can be used to characterize RG flows

1. by studying the consistency conditions.
2. as a tool for computing correlators of T'.

There is a lot of "know-how" involved in the process....

We have improved the notations of the formalism, and the formulation of
the anomaly, in a way which isolates only the interesting constraints.

The new formulation allowed us to give analytic expressions for the dilaton
effective action off-criticality, in terms of the coefficients in the equation.

We proved that the "scattering amplitudes” involved in the a theorem and
LPR are indeed insensitive to lower dimension operators.
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Conclusions

Open questions

» SUSY

» Consistency conditions in the presence of chiral anomalies.

v

What can we learn from the constraints on the F? anomaly?

> Can we say something unrelate to irreversibility?
e.g., can we constrain accidental symmetries?
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Conclusions

Thank you
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