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1. Tank Controller
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Functionalities

A Tuner Loop to keep the structure on resonance

An RF Feedback, and a Feedforward (lterative
Learning) to keep the accelerating voltage at the desired
value in the presence of beam transient

A Klystron Polar Loop to compensate the variation of
klystron gain and phase shift caused by High Voltage
(HV) supply fluctuations (HV droop)

A Conditioning System monitoring the Main Coupler
Vacuum while feeding the Line with Frequency

Modulated bursts of RF power of increasing amplitude

A Klystron Drive Limiter that prevents from driving the
klystron over the saturation limit during loop transients.
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Developments

In 2002, design started for a VME Linac Controller meant for both
present and future CERN hadron Linacs: R. Garoby, I. Kozsar, T.
Rohlev (on leave from SNS), J. Serrano. The card includes RF
feedback, Tuning, Klystron Loop and Iterative Learning (feed-
forward).[1]

In 2003 development started for the VME cards for the LHC

LLRF. T. Rohlev joined the Design team and adapted the RF
Front-End at 400.8 MHz (Digital 1Q demodulators).

The “PS Linac” card was commissioned on Linac3 in 2004-2005.
It followed the “all-in-one-card” philosophy while a modular
system was preferred for the LHC

The LHC LLRF is presently being commissioned

We propose to adapt the modular LHC system to Linac4:
Modularity makes it possible to install and commission the
system function by function. Large parts of firmware and software
will be re-used.
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simplified Block Diagram Multi-notch filter to deal 1 Tank Controller per tank

Signals:
Digital: ——» Digital I/Q pair: S 1 H
Analog baseband: Analog I/Q pair:  —<— Wlth the paraSIIIC 1 KlyStron per Tank
RF @ 352.2 MHz — resonances (non-
Technology: - _ accelerqtlng modes) of
CPLD or FPGA (35.22 MHz) (- the multi-cell tank [2]
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Platform

Same crates as LHC LLRF:

o 4 slots 160 mm deep (CPU) with
extended VME interfacing (32 bits

D, 48 bits A)

o 15 slots 220 mm with reduced
VME interfacing (16 bits D, 24 bits

160 mm deep

A) for custom LLRF cards (10 slots

used)

o EMC qualified crates

Special J2 backplane:

o Linear +-6V, +- 12 V P.S. for RF
and Analog circuitry

o (Slow) clock distribution (up to 35.2

MHZz) plus rep rate pulse

JTAG for reprogramming FPGAs
Serial distribution of functions
Interlock lines

A series of hardware timings

O 0O 0O O
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Diagnostics

Important signals (~30/controller) are stored for monitoring

Two sets of memory

o Post-Mortem memory: Free-running, stopped by specific machine-wide
post-mortem trigger, fixed sampling rate. Meant to correlate acquisitions
after a fault.

o Observation: Piloted by operator that sets sample rate and triggers the
acquisition. Meant for monitoring during operation.

Built-in Network Analyzer

o Excitation memories to inject signals (step, sine-wave, white noise,...)
coupled with observation memories implement a Signal Analyzer

Fully remote controlled
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‘ Implementation

Cavity Controller
VME crate

Antenna calibration
and 100 mW pre-
driver

switch&Limit Clock Distri

Tuner Confrol Y
RF cable splitting Conditioning DDS

RF Modulator

One rack per RF tank in the LLRF Faraday Cage
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‘ Example of VME cards

Logging memories FPGA

TP

In/Out

RF Front-end

DSP
Tuner Control card

Conditioning DDS
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2. Reference clocks
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Goal: keep tank field within 1 degree of Set Point

= The strong RF feedback imposes a fixed
phase at the end of the Antenna return

cable in the air conditioned Faraday cage | "™ Polyolefin Compound, UV Supiized
Cable Number: Sample from Sales Order 1137894
L A” ante n na rEtu rn Cables are eq u al %::I Eiqf?;mbm IlI]l"Ugg(;;irgftzlrp}\l.ggvcrl\ Analyzer
v Data File Type: Hard Copy Plots
|ength (~50 m) , therm al |y CyClEd 7/8 Data File I,?:Eat{on: Folder CIF}",R.“{ Phase v. Temp June 05
FleXWel I ] Therm al CoeffICIent AL/L —_ 3 Estimated ppm/deg C at 20 deg Cis 2 ppm / C

\

ppm/degree C \ CERN L5 PPM
= Phase drift in cavity field can be caused | EEee s ——

| S S
o Difference in temperatures sensed by | Z = = |
cables: Assuming 5 degrees C over 50 m ! - -1----// |
length we get AT= 2.5 ps 4 “é % S
o Differences in thermal coefficients \/' s 2 f; i 5
between cables: Assuming 1 ppm/degree o
C and 10 degrees temperature change in
the building we get AT= 1.7 ps Measured by ANDREW on a sample
= Summing it up we get a total phase drift of the 7/8” cables installed in the LHC
of cavity field of 4.2 ps = 0.5 degrees @
352.2 MHz
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3. Open questions
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Saturated klystron

o The LLRF counts on a strong
RF feedback (Field stability)

o At saturation there is zero
small-signal gain. LLRF is
helpless.

o Linac4 proposal: only 10 %
power budget for phase and
amplitude control = saturation
— 0.46 dB. This reduces the
gain to ¥ (linear) the
unsaturated value

o For comparison: LHC klystrons
saturate at 300 kW. In
operation we require 150 to
200 kW
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One klystron for two tanks

For PIM5 to PIM12 we plan to
feed two PIMs from a single 2.5
MW Klystron

In the future it is planned to
replace 2 LEP klystrons by 1x 2.5
MW

No individual control of the field in
the two PIMs of a pair.

RF feedback has to deal with 2
families of parasitic modes (close
but not equal).

Problem caused by imperfect
Isolation of the two cavity feeds
(cross-talk in magic-T)
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LEP Vector-Sum Feedback

This so-called “Vector Sum
Feedback” was tested in LEP. Not
successful. [3]

“On the topic of the SNS RF system,
we use one klystron - one cauvity.
We do share high voltage power
supplies but each cavity has its own
klystron.” Mark Crofford, private
communication.
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Thank you...
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Additional material if questions arise
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RF feedback Theory

RF Feedback theory [6],[7]

— Minimal cavity impedance (with
feedback) scales linearly with T

2 R
Rin === %1
7 Q
— Achieved for a gain value proportional
to Q
G, A~ Q
* T

(o)

— Achievable fdbk BW inversely

proportional to T

Ao =

13
T
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