

Radiation protection of Linac4

M. Silari Radiation Protection Group

Basic assumptions for the shielding design

- Classification of radiation areas (and workers)
- Beam loss pattern
- Routine operation and incidental conditions

Type of area	Max. annual effective dose	Max. ambient dose equivalent rate	RP requirements
Non-designated (non-permanent occupation)	1 mSv	0.5 µSv h⁻¹	None
Supervised	6 mSv	3 µSv h⁻¹	Personal dosimeter
Controlled	20 mSv	10 µSv h⁻¹	Personal dosimeter + individual dosimeter with alarm function

- Occupationally exposed :
 - Class A > 6 mSv / 12 months
 - Class B < 6 mSv / 12 months
- Short term visitors: < 1 mSv / 12 months (not classified as occupationally exposed)
- Non occupationally exposed:
 < 1 mSv / 12 months

Action levels, design constraints and reference levels

Action level

Any exposure exceeding 6 mSv during any consecutive 12-month period must be justified in a joint review by the department concerned and the RP group and authorized by the department head.

The Swiss authorities must be notified if an individual exceeds 2 mSv over one month.

Design constraint (effective dose)

Use of a design constraint in the design of new facilities, to ensure that the annual dose received by an individual at the time of the operation of the facility will not exceed a pre-defined value.

CERN reference levels

 the annual individual doses should stay below 6 mSv
 the effective dose due to internal exposure shall stay below 1 μSv per hour of stay

Basic assumptions on machine parameters

- Beam energy: 160 MeV
- As injector into the PSB:
 - 2 Hz, 32 µA average beam current, 2x10¹⁴ protons per second, 5.1 kW at 160 MeV, 0.08% of the SPL duty cycle
- "Routine" beam losses:
 - 10 W point losses every 10 m (past the shield equivalent to constant beam loss of 1 W/m)
- Accidental beam loss:
 - full loss of the entire beam in a given location for a limited amount of time
 - beam interlock required
- Radiation protection dimensioned for the operation of Linac4 as SPL Front-End

5

- Analytical model
 - point-source, line-of-sight for shielding
 - universal transmission curves for ducts and mazes
- Monte Carlo simulations (FLUKA)
 - to validate analytical calculations and to estimate induced radioactivity
- Layout
 - linac tunnel underground
 - klystron gallery on the surface on top of it, supervised area but 1 µSv/h taken as design value as building wall are thin and the area around is non-designated

Radiation protection calculations

- Direct stray radiation from the linac into the klystron building. Depth of linac tunnel finally dictated by the SPL downstream
- Neutron streaming through the standard waveguide ducts – Various configurations investigated
- Low-energy (3 MeV section) waveguides
- Access maze, lift shaft, ventilation and cable ducts, rooms on the upper floor at the low-energy end of the linac tunnel
- Ventilation and cable ducts at the high-energy end of the linac tunnel
- Additional shielding required in the existing Linac2 building around the Linac4 – PSB transfer line

Low-energy section

FLUKA geometry plot. Cross-sectional view of the low energy section of the Linac4. The view is looking downstream of the tunnel, towards the high-energy end of the accelerator.

Beam loss in a 5 x 5 x 5 cm³ copper target, 10 W, 11 MeV. Cross sectional view of the Linac4 tunnel and of the access area with the addition of the maze. H*(10) in μ Sv/h.

Low-energy section: "safe room"

Beam loss in a 5 x 5 x 5 cm³ copper target, 10 W, 11 MeV. Top-cross sectional view of the safe room at the height of 3.5 m with respect to the tunnel floor. H*(10) in μ Sv/h.

Beam loss in a 5 x 5 x 5 cm³ copper target, 10 W, 11 MeV. Top cross sectional view of the gallery on the first floor in the linac4 tunnel at an height of 7.6 m. H*(10) in μ Sv/h.

Waveguide duct

Beam loss in a 5 x 5 x 5 cm³ copper target, 10 W, 160 MeV. Cross sectional view of the Linac4 tunnel, the 3-leg duct and the klystron building. Left: dose equivalent rate in the first duct. Right: dose equivalent rate in the second duct. H*(10) in μ Sv/h.

- Civil-engineering related RP studies essentially completed
- Upcoming studies:
 - -dump at the end of the linac
 - induced radioactivity in materials, water, air

