The PIMS structure

1st Linac4 Review Committee MAC'08, January 29th - 30th, 200 CERN, Geneva, Switzerland

Frank Gerigk, Rolf Wegner

Outline

- Motivation to replace the SCL with a PIMS,
- voltage errors, coupling errors, tolerances,
- tuning, transient beam loading,
- construction issues.

between 90 and 160 MeV...

90 to 160 MeV

SCL: 4 modules of 5 x 11-acc.-cell cavities, 704.4 MHz,

or

CCDTL: 5 3-acc.-cell cavities, 352.2 MHz PIMS:102-160 MeV 12 x 7-cell cavities, 352.2 MHz

ZT² (80%), including losses due to stems, end walls, coupling holes, tuning rings...

SCL versus PIMS I

coupled 11-cell pi/2-mode cavity, 704 MHz

PIMS new solution

PIMS, MAC'08, F. Gerigk, R. Wegner

SCL

old solution

SCL versus PIMS II

SCL	PIMS (+CCDTL)			
higher ZT ² , P _{peak} =12.5 MW,	lower ZT ² , P _{peak} =13.6 MW,			
length: 28 m,	length: 27.8 m,			
4 modules with 5 coupled cavities, 468 cells, π/2 mode,	5 CCDTL cavities + 12 7-cell PIMS cavities, 103 cells, π mode,			
high construction & tuning effort,	simplified construction & tuning,			
704.4 MHz (2 frequencies),	352.2 MHz (single frequency),			
cost (cavities + RF system): 5.2+6.2 = 11.4 MCHF + energy ramping	cost (cavities + RF system): 4+6.9 = 10.9 MCHF			
non-trivial cooling,	no risk of water/vacuum breach,			
one module per klystron (117 cells),	two cavities per klystron (14 cells),			
similar beam dyn. performance, for PIMS: energy ramping with last 2 cav.				
PIMS, MAC'08, F. Gerigk, R. Wegner				

SCL versus PIMS: frequency

- one single frequency: simplified RF distribution and lowlevel control system, common RF coupler design for all structures (iris-coupling from a tangential λ/4 shortcircuited wave-guide),
- now we start immediately with a new klystron type (pulsed, 2.5 MW, 352.2 MHz) that will eventually replace the LEP klystrons (CW, 1.3 MW): one new klystron against 2 LEP klystrons,

2 critical issues:

during the last review meeting of the HIPPI collaboration 2 items were highlighted by the ESAC:

- worries about the transient behaviour of a π -mode structure versus a $\pi/2$ mode structure,
- potential problems with the power splitting from one
 2.5 MW klystron to 2 π-mode cavities.

construction I

- the structure consists of discs and cylinders,
- the discs are machined out of solid copper,

construction I

- the structure consists of discs and cylinders,
- the discs are machined out of solid copper,

Using cylindric copper pieces we need ≈50 tons of copper (≈ same amount as for SCL 90 - 160 MeV)

construction I

- the structure consists of discs and cylinders,
- the discs are machined out of solid copper,

Using cylindric copper pieces we need ≈50 tons of copper (≈ same amount as for SCL 90 - 160 MeV)

With pre-shaped copper pieces we can reduce the amount of copper to ≈36 tons.

PIMS construction II

- cells are e-beam welded from the outside,
- weld with full penetration (~8 mm).

PIMS, MAC'08, F. Gerigk, R. Wegner

PIMS construction II

- cells are e-beam welded from the outside,
- weld with full penetration (~8 mm).

construction III: tank material Stainless steel (304 L) instead of copper?

Cooling channels are drilled from the outside: no risk of water leaking into vacuum.

Simplified ANSYS calculation for the cooling of the discs: assume a constant temperature of the water channels (22 deg), ■ assume averaged heat distribution on the discs, cooling channels still need to be optimised.

max. temperature increase on copper nose (SPL duty cycle): 5.5 deg on steel nose: 146 deg (!)

but which kind of copper??

company	copper type	CERN standard	€/kg	total price	date
SISO	3D forged OFE	not yet	16.34	581 k€	June'07
Carlier	3D forged OFE	yes	19.52	711 k€	June'07
Carlier	3D forged OFE	fully	28.83	1056 k€	Dec'07
market estimate	forged OFE	no	~10	~366 k€	Jan'08

Cold model I

scaled (704.4 MHz) aluminium model was machined at CERN,

- ■7-cell cavity with 5% cell-to-cell coupling,
- ■6 identical interior modules,
- model is ready for testing!

Cold model II

an additional 3-cell model with 3% coupling is under construction for comparison with 3D simulations (coupling, R/Q),

the interior modules can be exchanged to test a different slot shape,

Cold model: end cells

frequency errors

- 7 cell pi-mode structure analysed with a circuit model (terminated & non-terminated end-cells), using 10³-10⁴ different error cases,
- assume frequency errors per cell linearly distributed between -25 kHz/+25 kHz,

runs: voltage error < 3% (including end-cell tuning)

PIMS, MAC'08, F. Gerigk, R. Wegner

coupling errors

the voltage variation from cell to cell is also influenced by errors in the cell-to-cell coupling factor:

 the coupling constant k is mainly influenced by the width w of the slot,
 from the equivalent circuit analysis one finds that a 1/1000 change in k results in an average voltage error of ~1% in each cell,
 tolerance for w: 172 mm ±0.05 mm

summary on frequency errors

	max. freq. error	tolerance	comment	correction
3D + 2D simulation	352.2 ± 0.25 MHz	0.5 mm in radius	systematic	remachining/ tuning
machining	± 200 kHz	20 - 50 µ m	random	remachining/ tuning
e-beam welding	< -100 kHz	?	systematic	design
vacuum	-20 kHz	10 µ m	systematic, end-walls	design
vacuum	+114 kHz	_	systematic, air/vacuum	design
warming up	-60 kHz	10 deg	systematic	tuning

Construction steps

machining of copper

welding of ports: RF, tuner, vacuum

clamping & lowlevel RF test

machining of tuning rings

clamping & lowlevel RF test complete cavity

no brazing operation on the cavity!

tuning strategy

- tuning ring across the circumference of the discs to allow for a frequency correction of ±0.5 MHz, → correction of machining errors before the welding of the structure,
- maximum tuner diameter at low energy: 62 mm, 5 fixed tuners + 2 movable tuners, for higher energies 2 tuners per cell or increase the diameter of the tuner, tuning range: ±0.5 MHz → correction of temperature effects, spread in welding contraction (should be very small), mechanical deformation during installation,
- final errors expected to be < ±25 kHz (confirmed by LEP experience).

will be revised after the results from the hot model

beam loading & transient behaviour

- 1967: Nagle, Knapp, Knapp present their resonant circuit model for coupled resonators,
- **1969**: Knapp compares the filling of a $\pi/2$ mode cavity with that of a π mode cavity: 20 cells, asymmetric feeding from the left

conclusion:

Assuming the same number of cells, and an asymmetric feeding point: during the filling of the cavity, the cell voltage rises much more evenly in a $\pi/2$ -mode structure than in a π -mode structure.

why do SC multi-cell π-mode cavities work?

 1993 Henke & Filtz: beam loading in an asymmetrically fed 9-cell TESLA cavity: voltage profile in the first and last bunches of τ_f (filling time: 0.8 ms)

conclusion:

during the transients:

- confirmation of Knapp: the voltage profile in the different cells is different,
- the average voltage gain over the 9 cells only changes up to a maximum of 0.05 %.

filling process for the Linac4 7-cell πmode structure

PIMS, MAC'08, F. Gerigk, R. Wegner

filling process for the Linac4 7-cell πmode structure

PIMS, MAC'08, F. Gerigk, R. Wegner

filling process for the Linac4 7-cell πmode structure

PIMS, MAC'08, F. Gerigk, R. Wegner

beam loading...

conclusion I: on cavity filling

- with a loaded Q of <8000, the filling time is of the order of $\tau_f = 7 \mu s (2^*Q_I/\omega)$,
- during the filling process the cell-fields are slightly different but change symmetrically to the feeding point,
- the time to get a stable voltage from the power converters is in the order of 50 µs,
- during the filling of the cavity and the stabilisation of the cavity voltage, we will dump unusable beam on the distributor head-dump,

no disadvantage in using the π -mode

conclusion II: on transient beam loading effects

- with beam loading taken into account in one cell after another with correct time delay: the cell voltages are no longer symmetric to the feeding point,
- but with the Linac4 chopping cycle (122 out of 355) the voltage differences are below 1%,
- as for the filling process: the average voltage gain over the 7 cells is basically constant (<< 0.1 %),</p>

again: no disadvantage due to the use of the π -mode

energy ramping 159 - 161 MeV

The PSB painting scheme requires 2 MeV energy change within 10 µs:

energy ramping 159 - 161 MeV

The PSB painting scheme requires 2 MeV energy change within 10 µs:

power splitting from one klystron to 2 cavities

- neither the controls people like it, nor the RF power guys,
- a problem that needs to be solved for the CCDTL as well, once we upgrade from LEP klystrons (1.3 MW) to new high-power klystrons (2.5 MW),
- power consumption and beam loading of neighbouring cavities is basically identical,

many thanks to:

P. Bourquin, Y. Cuvet, G. Favre, R. Folch, J.-M. Geisser, G. Geschonke, D. Glaude, T. Kurtika, J.-M. Lacroix, A. Lombardi, E. Page, C. Saint-Jal, E. Sargsyan, S. Sgobba, T. Tardy, M. Timmins, G. Vandoni, M. Vretenar, ...

Summary I

- the SCL has been replaced with the PIMS,
- only one frequency: 352.2 MHz,
- same length, slightly lower cost:
 - the mechanical design was simplified,
 - the tuning and commissioning effort was considerably reduced,
 - no additional cavities are needed for energy modulation,
 - construction and long operational experience (LEP until 2000) available at CERN
 - Iess money manpower is needed to make it work!

Summary II

- dynamic behaviour of PIMS has been analysed to much more detail than for LEP / or for the original solution of the SCL,
- transient effects are smaller than the errors coming from klystrons and modulators, and their duration is shorter,
- for π-mode and π/2-mode transient effects are limited to the transients: in NC structures this means 10 20 µs (SC structures: ~0.5 ms), any potential beam disturbance during the transients is removed in the head dump before injecting into the PSB,

extra slides

RF system II: frequency

12/2006: 14 LEP klystrons (**352.2 MHz**, 1.3 MW), 4 new klystrons (**704 MHz**, 4 MW), 18 in total

09/2007: 13 LEP klystrons (**352.2 MHz**, 1.3 MW), 6 new klystrons (**352 MHz**, 2.5 MW), 19 in total

PIMS, MAC'08, F. Gerigk, R. Wegner

RF cavities: Summary new(old)

	RFQ	DTL	CCDTL	PIMS (SCL)
Eout [MeV]	3	50 (40)	102 (92)	160
No. cavities	1	3 (3)	7 (7)	12 (20)
E _{acc} [MV/m]	_	3.2 (3.3 - 3.5)	3.9 - 3.1 (3.9 - 2.8)	4.0 - 3.9 (4.0)
Max. field [kilpatrick]	1.7	1.6 (1.7)	1.7	1.8 (1.2)
RF power	0.54 (1.0)	4.7 (3.9)	7.0 (6.4)	11.9 (12.5)
No. klystrons	1	1+2 (5)	7 (8)	4+4 (4)
Length [m]	3.0 (6.0)	18.7 (13.4)	24.3 (25.2)	21.5 (28.0)

e-beam welding at CERN

Cost estimate from TS/MME:

	prototype	12 cavities
tooling & preparation	115.0 kCHF	18.6 kCHF
e-beam welding	11.3 kCHF	135.8 kCHF
total cost	126.3 kCHF	154.4 kCHF

The high initial cost of tooling suggests that: if we build a prototype at CERN, then either to weld all structures at CERN or to transfer the tooling to industry.