

Linac4 Machine Advisory Committee 28th - 30th January 2008

Magnets for Linac4

Th. Zickler

CERN

- → New magnets for Linac4
- → New magnets for the Linac4 to Booster transfer line
- → Existing magnets in the Linac2 transfer line to be reused in the Linac4 transfer line
- → Summary and conclusions

New

New Linac 4 Magnets - Overview

- → In total ~ 80 new electro-magnets needed for the Linac4 and transfer line:
 - 4 steerers for LEBT and MEBT
 - 23 quadrupoles + steeres for CCDTL
 - 13 quadrupoles + steerers for PIMS
 - 18 quadrupoles for TL
 - 4 dipoles for TL
 - 5 steerers for TL
 - Spare magnets of each type
- → Important issues for the design:
 - Pulsed or dc operation ?
 - Water or air cooled ?
 - Linac steeres incorporated in quadrupoles or separated?
 - Incorporated measurement coils for field feed-back?
 - Only for Linac4 or to be used also for later SPL?

DTL & CCDTL Quadrupoles - Parameters

- Common design for both types (DTL & CCDTL) to reduce costs.
- → Limitation in length and outer diameter (L < 120 mm, d < 220 mm).
- → Corrector coils integrated to gain space: JBdl = 3.5 mTm.
- → Alternative: one-plane corrector only.
- → Air cooled → only pulsed operation possible!
- → Cannot be used for SPL.

Integrated Steering Magnet		
Magnet characteristics		
∫BdI	3.5 mTm	
Deflection angle	1.8 mrad	
Electrical parameters		
Max. current	83 A	
RMS current	3.6 A	
Magnet resistance (hot)	52.9 mOhm	
Max. dissipated power (pulsed)	0.6 W	
Max. voltage	12 V	

DTL & CCDTL Quadrupoles			
Number of magnets	23+3		
Cooling	air		
Magnet characteristics			
Gradient	19.0 T/m		
Aperture radius	17.0 mm		
Iron length	95.0 mm		
Effective length	108.6 mm		
∫Gdl	2.06 Tm/m		
Field quality (∆G/G₀)	<1 %		
Good field region	12.75 mm		
Dimensions			
Total magnet length	115 mm		
Outer diameter	156 mm		
Total magnet weight	11.5 kg		
Electrical parameters			
Max. current	100 A		
Duty cycle (I _{max} / I _{RMS})	4.4 %		
RMS current	4.4 A		
Magnet resistance at 20 C	186.6 mOhm		
Inductance	1.7 mH		
Max. voltage	353 V		
Max. dissipated power (pulsed)	3.6 W		

Note: magnet parameters are not yet frozen and can still change

DTL & CCDTL Quadrupoles – Magnetic Design

DTL & CCDTL Quadrupoles – Magnetic Design

DTL & CCDTL Quadrupoles – Magnetic Design

Thomas Zickler AT/MCS/MNC/tz

Dipole field distribution along x-axis 0.05 120 0.04 100 0.03 Field homogeneity [%] 0.02 0.01 By E 0.00 60 -15.0 -10.0 -5.0 0.0 5.0 10.0 15.0 20.0 -20.0 -0.01 40 -0.02 -0.03 20 -0.04 -0.05 x [mm] —By(x) (10 mT) GFR By(x) (20 mT) -DBy(x)/By0 [%]

PIMS Quadrupoles - Parameters

- → A larger aperture (44 mm) needed for the PIMS section.
- → Overall length: 140 mm, but only 115 mm presently foreseen.
- → Otherwise, design similar to CCDTL-quads.
- → Corrector coils integrated to gain space: ∫Bdl = 3.5 mTm.
- → Air cooled → only pulsed operation possible!
- Cannot be used for SPL.

PIMS Quadrupoles		
Number of magnets	13+2	
Cooling	air	
Magnet characteristics		
Gradient	19.0 T/m	
Aperture radius	22.0 mm	
Iron length	120.0 mm	
Effective length	137.6 mm	
∫Gdl	1.58 Tm/m	
Field quality (∆G/G₀)	<1%	
Good field region	16.50 mm	
Dimensions		
Total magnet length	140 mm	
Outer diameter	195 mm	
Total magnet weight	14.9 kg	
Electrical parameters		
Max. current	94 A	
Duty cycle (I _{max} / I _{RMS})	4.4 %	
RMS current	4.1 A	
Magnet resistance at 20 C	270.1 mOhm	
Inductance	2.4 mH	
Max. voltage	475 V	
Max. dissipated power (pulsed)	4.6 W	

Thomas Zickler

29th January 2008

Linac4 MAC

Linac4 –TL Bending Magnets

- H-shape magnet type.
- → A common magnetic yoke design for both types (H and V) to minimize tooling costs.
- Water cooled coils.
- → Slow pulsed operation proposed (40 % duty cycle).

2D mag	gnetic field	comp	utatio	n in ANS	SYS
(only or	ne quadrai	nt has	been	modelle	ed)

TL Bending			
Number of magnets	4+1		
Cooling	water		
Magnet characteristics			
Magnet field	1.0 T		
Gap height	50.0 mm		
Iron length	1200.0 mm		
Effective length	1255.0 mm		
∫BdI	1.255 Tm		
Deflection angle	672 mrad		
Dimensions			
Total magnet weight	1361 kg		
Total magnet length	1396 mm		
Total magnet width	482 mm		
Electrical parameters			
Max. current	830 A		
Duty cycle (I _{max} / I _{RMS})	34 %		
RMS current	279 A		
Magnet resistance (hot)	58.2 mOhm		
Max. dissipated power (pulsed)	4.5 kW		
Cooling parameters	· · · · · · · · · · · · · · · · · · ·		
Pressure drop	5.0 bar		
Temperature rise	19.2 K		
Total cooling flow	3.4 l/min		

CERNY

Linac4 – TL Quadrupoles - Parameters

Air cooled → only pulsed operation possible!

2D magnetic field computation in OPERA (only one quadrant has been modelled)

TL Quadrupoles			
Number of magnets	18+2		
Cooling	air		
Magnet characteristics			
Gradient	12.1T/m		
Aperture radius	50.0 mm		
Iron length	250.0 mm		
Effective length	290.0 mm		
∫GdI	3.50Tm/m		
Field quality ($\Delta G/G_0$)	<1%		
Good field region	37.50 mm		
Dimensions			
Total magnet length	292 mm		
Outer diameter	352mm		
Total magnet weight	107.8kg		
Electrical parameters			
Max. current	200 A		
Duty cycle (I _{max} / I _{RMS})	5.0%		
RMS current	10.1 A		
Magnet resistance at 20 C	292.2mOhm		
Inductance	3.8mH		
Max. voltage	812V		
Max. dissipated power (pulsed)	29.6W		

<u>Disclaimer:</u> only a preliminary magnetic design is presented in these slides. To optimize the gradient homogeneity and the integrated field quality, 3D-FE computations of the pole shape will be necessary.

Steering Magnets for Linac4 TL

- Combined horizontal and vertical corrector design.
- → Air cooled → only pulsed operation possible!

TL Steering Magnet		
Number of magnets	5+1	
Cooling	air	
Magnet characteristics		
Magnet field	27.0 mT	
Gap height	70.0 mm	
Gap width	70.0 mm	
Iron length	80.0 mm	
Effective length	147.2 mm	
ÍBdl	4.0 mTm	
Deflection angle	2.1 mrad	
Dimensions		
Total magnet weight	4.2 kg	
Total magnet length	103 mm	
Total magnet width	116 mm	
Total magnet height	116 mm	
Electrical parameters		
Max. current	20 A	
Duty cycle (I _{max} / I _{RMS})	11.2 %	
RMS current	2.2 A	
Magnet resistance (hot)	401.3 mOhm	
Max. dissipated power (pulsed)	2.0 W	
Inductance	4.5 mH	
Max. voltage	53 V	

(ERN)

Existing magnets in the Linac2 – Booster TL

The existing magnets in the LT, LTB and BI transfer lines need to be checked if their performance is adequate for Linac4 operation:

- Field strength adequate (160 MeV = factor 1.9 in ∫Bdl with respect to Linac2)?
- Field (gradient) quality adequate?
- Upgrades possible (pulsed operation, increased cooling performance)?
- If not, replacements available?
- If not, parameters for new magnet design to be defined.

Existing magnets in the LT & LTB line

- → All steering magnets in the LT(B) line can be reused without any modification.
- → LT.QFN50, LT.QDN55, LT.QFN60, LT.QDN65, LT.QDN75, LTB.QDN10, LTB.QFN20 (all type LINAC VII) can be reused without any modification.
- → The four laminated, air cooled quadrupoles (LTB.QDW30, LTBQFW40, LTB.QFW50, LTBQDW60) type TRIUMF installed in 1997 (actually in do operation) can be used in (slow) pulsed operation.
- → The field quality of LT.BHZ20 & LT.BHZ30 has to be checked when powered with twice the nominal current.
- → LT.QFW70 type SMIT air-cooled (massiv yoke) needs to be replaced by a laminated quadrupole (type TRIUMF) for pulsed operation.

Thomas Zickler

Existing magnets in the LBE, LBS & BI-line

- → LTB.BHZ40 has to be equipped with new water-cooled coils.
- → The 2 quads LBE.QFW10, LBE.QDE20 (type SMIT air) and the LBS.BVT10 of the measurement lines have to be replaced by new magnets.
- → All steering magnets in the BI line can be reused without any modification.
- → The four quadrupoles BI.QNO10, BI.QNO20, BI.QNO30, BI.QNO40 (type SMIT air) have to be replaced by new laminated magnets (type TRIUMF).
- → BI.BVT (4 gaps) has to be replaced by a new magnet with increased strength (~ 0.36 Tm @ 160 MeV).
- → BI.QNO50, BI.QNO60 (type SMIT water) can be reused without any modification.

Thomas Zickler

29th January 2008

Summary and conclusions

- → The design of the new magnets for Linac 4 and TL has been presented: NO technical show stoppers identified.
- → Approximately 80 new magnets of 5 different types are needed for the Linac and have to be built in industry.
- → Most of the magnets in the existing TL can be reused.
- → Three magnet types (9 magnets + spares) have to be replaced by new magnets to be built in industry.
- One magnet has to be equipped with new water-cooled coils to be built.
- → Actual status: preliminary design exists for all magnets.
- → Steel in stock at CERN (long delivery delays).
- → First step: refine design for Linac quadrupoles with incorporated correctors and launch production.
- → Schedule: although generous, design and specification to be started now!