
DQM @HLT
Top trigger tutorial

2nd October 2013

Federico for the DQM team

[many thanks to Darren for the help on the trigger side]

02/10/2013 1

02/10/2013

Goal of the tutorial

• Have an overall picture of the DQM framework

• Get familiar with the core components needed to develop a DQM module

• Try to run an example:
– what do I want to monitor?
– which are the steps needed in order to book, fill and publish the histograms?

• Be aware that several services are provided centrally
– generic client application
– environment to set and run quality tests

• Make sure to respect the DQM policies while developing

• Get familiar with the main DQM sequences which are regularly run

• Be able to test a new developed DQM module

2

02/10/2013

DQM in CMS

• The DQM system is designed to provide a homogeneous monitoring environment
across various applications related to data taking at CMS:
– Online, for real-time detector monitoring
– Offline, for the final, fine-grained Data Certification
– Release-Validation, to constantly validate the functionalities and the performance of the

reconstruction software
– in Monte Carlo productions

• The “DQM Framework” is currently Run-based and is logically divided in 2 main
components:
– Core Part, developed and maintained centrally
– subsystem-specific modules and histogram production software

• All software is fully integrated in the standard CMS software framework (CMSSW)
– C++, python code.

• The Core components are required to compile also outside of CMSSW for usage/
inclusion into the CMS DQM GUI, which is a standalone project.

3

02/10/2013 4

02/10/2013

The DQM GUI
• https://cmsweb.cern.ch/dqm/$flavor the $flavor could be: online, offline, relval
• Once a new module is included in the official sequences, the histograms appear in the GUI

5

https://cmsweb.cern.ch/dqm/offline
https://cmsweb.cern.ch/dqm/offline

02/10/2013

DQM Core Components

https://cmssdt.cern.ch/SDT/lxr/source/DQMServices/Core/interface/DQMStore.h
https://cmssdt.cern.ch/SDT/lxr/source/DQMServices/Core/interface/MonitorElement.h

https://cmssdt.cern.ch/SDT/lxr/source/DQMServices/Components/interface/QualityTester.h
https://cmssdt.cern.ch/SDT/lxr/source/DQMServices/Core/interface/DQMNet.h

https://cmssdt.cern.ch/SDT/lxr/source/DQMServices/Core/src/DQMService.h

6

https://cmssdt.cern.ch/SDT/lxr/source/DQMServices/Core/interface/DQMStore.h
https://cmssdt.cern.ch/SDT/lxr/source/DQMServices/Core/interface/DQMStore.h
https://cmssdt.cern.ch/SDT/lxr/source/DQMServices/Core/interface/MonitorElement.h
https://cmssdt.cern.ch/SDT/lxr/source/DQMServices/Core/interface/MonitorElement.h
https://cmssdt.cern.ch/SDT/lxr/source/DQMServices/Components/interface/QualityTester.h
https://cmssdt.cern.ch/SDT/lxr/source/DQMServices/Components/interface/QualityTester.h
https://cmssdt.cern.ch/SDT/lxr/source/DQMServices/Core/interface/DQMNet.h
https://cmssdt.cern.ch/SDT/lxr/source/DQMServices/Core/interface/DQMNet.h
https://cmssdt.cern.ch/SDT/lxr/source/DQMServices/Core/src/DQMService.h
https://cmssdt.cern.ch/SDT/lxr/source/DQMServices/Core/src/DQMService.h

• The DQMStore is a CMSSW Service
and it is available during the whole
duration of the job
– unique and gigantic piece of memory

which contains all the MEs

• Creating an instance of DQMStore:

• Move between folders:

• Several types of MEs reflecting
different histograms types: TH1,
TH2, TProfile, ...

• booking:

• Get the ME from DQMStore:

• accessing the ROOT object:

02/10/2013

Saving and accessing the MEs
D
Q
M
S
t
o
r
e

M
o
n
i
t
o
r
E
l
e
m
e
n
t

7

02/10/2013

DQM Offline WF structure

• DQM Step (Step1):
– the booking and the filling of the histograms is performed here
– many jobs run in parallel. the statistics available in a single job is not the full one

• Harvesting Step (Step2):
– merge the statistics belonging to the same runs
– perform operation where the full statistics is needed (i.e. Efficiencies)

• In both cases: EDMAnalyzers with the usual transitions:
– beginJob, beginRun, beginLuminosityBlock, analyze, ...

• Specific DQMRootSource and DQMRootOutputModule
– not edm format, but a simpler structure of root trees
– allow to dump the content of the DQMStore in a ROOT file and to populate it back during the

harvesting step

• DQMSaver to save the histos in the final format
– the output contains the full stats and can be directly uploaded to the GUI

diskDQM Step
book and fill histos

harvesting Step
manipulate histos, calculate

efficiencies, ...
GUIhistos

step2step1

RootTree

/DQM
data tier

8

8

02/10/2013

An end-to-end example [1]

• Goal of the exercise:
– choose a dataset (a Top one) and run over it. Could be either a

data skim or a MC.
– access and plot some basic quantities for the objects in the HLT

event and compare them against the RECO variables

• Needed ingredients:
– vertex information
– electron, MET, jet collections
– trigger event (need to specify a HLT filter and a path)

• Perform a simple analysis
– apply some selections such as the eleID
– perform a comparison HLT vs RECO variables
– book and fill the histograms with the key variables

• Once the histograms are filled: define the
efficiencies I am interested in
– numerator and denominator have to be filled already

• Define the automatic tests I want to perform
– check if the efficiency is above a certain threashold

• Save the output file

9

St
ep

1
St

ep
2

Dummy analysis just to

prove the principle

02/10/2013

An end-to-end example [2]
• The CMSSW modules reflect the two steps just described:

– Use available relVals
- /RelValTTbarLepton/CMSSW_7_0_0_pre4-PRE_ST62_V8-v1/FEVTHLTDEBUG
- Both RECO and HLT collections are available in the event at the same time

– Run the DQMStep and save the output using the DQMRootOutputModule
– Run the HarvestingStep and save the output (ready to be sent to the GUI)

• The example will be queued for inclusion in release. For now checkout:
– https://github.com/deguio/cmssw/tree/myDQMTutorial

• The release used is CMSSW_7_0_0_pre4 which is currently the developer release
– new developments are accepted only for 70X cycle

• scramv1 project -n CMSSW700pre4_DQMtutorial CMSSW CMSSW_7_0_0_pre4;
• cd CMSSW700pre4_DQMtutorial/src;
• cmsenv;
• git cms-merge-topic deguio:myDQMTutorial;
• scram b -j8;
• cd DQMServices/Examples/python/test;
• cmsRun DQMExample_Step1_cfg.py;
• cmsRun DQMExample_Step2_cfg.py;

• I have uploaded the output in a temporary GUI:
– http://lxplus403.cern.ch:8060/dqm/dev

10

http://lxplus403.cern.ch:8060/dqm/dev
http://lxplus403.cern.ch:8060/dqm/dev

02/10/2013

Operations with the DQMGenericClient

• A generic client has been made available to perform standard operations such as:
– compute efficiencies, normalize to entries, make cumulative distributions, ...

• The generic client is an EDAnalyzer and can be configured using a python configFile
– need to provide the operation you want to perform
– need to set the input and the output

• Among the advantages:
– efficiency flags set properly. This is needed for the GUI
– errors are calculated in the correct way

• See the class and all the options at:
– https://cmssdt.cern.ch/SDT/lxr/source/DQMServices/ClientConfig/interface/

DQMGenericClient.h

11

https://cmssdt.cern.ch/SDT/lxr/source/DQMServices/ClientConfig/interface/DQMGenericClient.h
https://cmssdt.cern.ch/SDT/lxr/source/DQMServices/ClientConfig/interface/DQMGenericClient.h
https://cmssdt.cern.ch/SDT/lxr/source/DQMServices/ClientConfig/interface/DQMGenericClient.h
https://cmssdt.cern.ch/SDT/lxr/source/DQMServices/ClientConfig/interface/DQMGenericClient.h

02/10/2013

Quality tests
• In order to evaluate the validity of the monitoring element content in an automated

way, a set of quality tests has been developed and integrated within the DQM
Framework.
– provides a fast feedback to shift crew about the data quality in terms of warnings, alarms or error

reports, but useful offline also

• Tests definition:
– https://cmssdt.cern.ch/SDT/lxr/source/DQMServices/Core/interface/QTest.h
– more tests can be added
– all the tests are configurable through the XML parser
– each test needs tuning
– https://twiki.cern.ch/twiki/bin/view/CMS/DQMQualityTests

12

https://cmssdt.cern.ch/SDT/lxr/source/DQMServices/Core/interface/QTest.h
https://cmssdt.cern.ch/SDT/lxr/source/DQMServices/Core/interface/QTest.h
https://twiki.cern.ch/twiki/bin/view/CMS/DQMQualityTests
https://twiki.cern.ch/twiki/bin/view/CMS/DQMQualityTests

02/10/2013

QTest configuration and alarmed histos
• The outcome of the test is attached to the MEs you want to monitor.
• If the test is not passed, the GUI will show the alarms in red. In the online sound

alarms can be triggered

• In this example the test is: ContentsYRange [0.8 - 1]
– a threshold has been set on the fraction of bins that pass the test

• The test is linked and run on the MEs: Physics/TopTest/*myEfficiency*

13

02/10/2013

Policies and suggestions
• Make always sure to have clear in mind your use case

– In which DQM step you have to book and fill your histograms?
– in most of the cases the development is straightforward

• STEP1: from a study conduced months ago, we concluded that the best option
is to book histograms in DQMAnalyzer::beginRun
– the migration of the booking in the BR is ongoing for all the DQM modules
– this is needed also in view of the transition to the threaded framework
– all the details are available at:

- https://indico.cern.ch/getFile.py/access?contribId=5&resId=0&materialId=slides&confId=226659
• STEP2: Currently the clients perform booking and operation in

DQMClient::endRun
– an exception is the skim case: if you want to integrate over many (more than one) runs, the

operations must be performed in the DQMClient::endJob

• Always protect your code: make sure that the collections you need are present
in the event and valid

• Always use the tools provided centrally
– maintained centrally
– can be extended if needed
– same code available for many

Policies
Suggestions

14

02/10/2013

Multirun harvesting [a specific use case]

• The goal of the Multirun harvesting is to merge several runs in the second step and
have high statistics distributions available in the GUI for a given run-range
– think about the Z peak for instance

• This is the typical use case of the Skims where different runs could be mixed together
in a single file

• With the DQMStore::CollateHistograms option enabled in the harvesting step,
the statistics of the processed runs is summed.
– To be combined with the following DQMFileSaver options:

- process.dqmSaver.saveByRun = cms.untracked.int32(-1)
- process.dqmSaver.saveAtJobEnd = cms.untracked.bool(True)
- process.dqmSaver.forceRunNumber = cms.untracked.int32(999999)

• In this case the LS based plots are not supported by default. The same is true also
for all the quantities derived from them in the clients.

• Having the flexibility of the DQMFileSaver in the DQM clients could help in handling
the multirun harvesting case.
– the actions performed in the clients could be moved in the endRun/endJob depending on the needs

15

02/10/2013

DQM Sequences and code

• The DQM code in CMSSW is organized as follows:

– /DQMServices: Core classes
– /DQM and /DQMOffline: DPG and POG oriented modules
– /DQM/Physics: PAG oriented modules

– /Validation: validation packages (relVal+MC)
– /HLTriggerOffline: validation packages for HLT

• Sequences:
– the Validation sequences are defined in Validation/Configuration and called centrally as defined in

Configuration/StandardSequences
– for the offline DQM sequences everything is in DQMOffline/Configuration. A DQM matrix allows to

run partial sequences.
– The online sequences are instead defined (with the needed/customized reco steps) outside

CMSSW. See https://github.com/cms-sw/DQM-Integration/tree/master/python/test

• In some cases the organization of the code follows historical reasons
• In general we can discuss together where a new package should be

16

} MC dependencies are
forbidden

} can run over the MC

02/10/2013

How to test the main WFs [a.k.a. whiteRabbit.py]

• We maintain a system of scripts to test the main workflows:
– The DQM sequences can be run over MC, FastSim, Data in different scenarios (PP, HI)
– The monitor of the memory consumption is performed and allows to estimate the sustainability of

the changes implemented

• Documentation and code:
– general instructions: https://twiki.cern.ch/twiki/bin/viewauth/CMS/DQMOffline
– list of the tests available: https://twiki.cern.ch/twiki/bin/view/CMS/DQMOfflineTests
– code: https://cmssdt.cern.ch/SDT/lxr/source/DQMServices/Components/test/

• Recommendation:
– always test your code before submitting it for integration
– avoid using too many bins if it is not really needed
– be careful in particular with the 2D histograms

• Simple syntax:
– python whiteRabbit.py -j4 -n1,2,11,12

• As for the other central tools, it is possible to add tests if your use case is not covered
– we are happy to help and implement them

17

https://twiki.cern.ch/twiki/bin/viewauth/CMS/DQMOffline
https://twiki.cern.ch/twiki/bin/viewauth/CMS/DQMOffline

02/10/2013

Not for today

• No time to discuss the GUI today, but not crucial. The output from step2 can be
inspected by hand. You can already start developing...

• For the next time:
– how to setup a private/temporary GUI for testing
– how to upload histograms in the GUI
– how to develop a render plugin
– how to develop a layout

• If you are curious the following instructions are straightforward:
– https://twiki.cern.ch/twiki/bin/viewauth/CMS/DQMTest#Installing_the_GUI_Server

18

02/10/2013

Summary

• Now you are able to develop your own DQM package. The physics content should
come from you.. ;)

• The available documentation about DQM is linked (maybe not directly) from:
– https://twiki.cern.ch/twiki/bin/viewauth/CMS/DQM
– We will try to keep examples and instructions up to date as much as possible

• If your use case is not supported we are available to discuss a solution together
– the instruments we provide centrally can be improved with your help

• CMSSW is now on gitHub. Need to pass through it if you want to submit changes/new
developments in release
– (non-)CMSSW oriented tutorials are available:

- http://git-scm.com/book
- http://cms-sw.github.io/cmssw/index.html

– we are available to help if needed

• We would be happy to have you in our team of developers.

19

https://twiki.cern.ch/twiki/bin/viewauth/CMS/DQM
https://twiki.cern.ch/twiki/bin/viewauth/CMS/DQM
http://git-scm.com/book
http://git-scm.com/book

02/10/2013

Backup

20

02/10/2013

The DQMIO format organization
• With the DQMIO the MEtoEDM and EDMtoME steps are not needed anymore.

– DQMRootOutputModule to save the histos in the new format
– DQMRootSource to access the histos in the /DQM data tier

• The structure of the DQMIO is as follows:

• EDM/ME (EDProducer+EDAnalyzer) --> DQMIO (InputSource+OutputModule)
– The transitions will be different. Special attention needed here to ensure the correctness of the

results

21

• When a multithread version
of the CMSSW framework
will be deployed, the events
will be processed in parallel

• The event will not be seen as
a global entity anymore

• Different runs, events, LS will
be processed in different
streams

• Development ongoing. At this stage the
booking in the BR appears to be the best
choice.

02/10/2013

Booking in a multithread environment

Up to now

Multithread
[preliminary]

22

