DQM @HLT
Top trigger tutorial

2nd October 2013

Federico for the DQM team

[many thanks to Darren for the help on the trigger side]

02/10/2013 1

Goal of the tutorial Q@)

Nl

- Have an overall picture of the DQM framework

Get familiar with the core components needed to develop a DQM module

Try to run an example:
— what do | want to monitor?
— which are the steps needed in order to book, fill and publish the histograms?

Be aware that several services are provided centrally
— generic client application
— environment to set and run quality tests

Make sure to respect the DQM policies while developing

Get familiar with the main DQM sequences which are regularly run

Be able to test a new developed DQM module

02/10/2013 2

DQM in CMS @)

Nl

- The DQM system is designed to provide a homogeneous monitoring environment

across various applications related to data taking at CMS:

— Online, for real-time detector monitoring

— Offline, for the final, fine-grained Data Certification

— Release-Validation, to constantly validate the functionalities and the performance of the
reconstruction software

— in Monte Carlo productions

- The “DQM Framework” is currently Run-based and is logically divided in 2 main

components:
— Core Part, developed and maintained centrally
— subsystem-specific modules and histogram production software

- All software is fully integrated in the standard CMS software framework (CMSSW)
— C++, python code.

- The Core components are required to compile also outside of CMSSW for usage/
inclusion into the CMS DQM GUI, which is a standalone project.

02/10/2013 3

DQM end to end

T T
- A E R Y
-Ill A BA

* ,.lﬂ-

Onli

Analysis
Datasets

Tier-1s

Release
Validation

2
Simulation
Validation

02/10/2013 7

. https://cmsweb.cern.ch/dam/Sflavor

The DQM GUI

the $flavor could be: online, offline, relval

- Once a new module is included in the official sequences, the histograms appear in the GUI

e 00 Offline

- Summary - CMS data quality "

B Offline; *Summany*. 201'191" 1'386 .

CSC - 99.1% - (Never) Castor - 0.0% - (Never)
CASTOR reporiSummaryMap

B

o PR

L
=28E3
—

T T

EEE LSRN
T

aNGsOOONRPOO

T

.L).lsLl’i.l'Ll..
120 4 6 0901“2;;‘_&

EcalEndcap - 99.8% - (Never) EcalPreshower - 100.0% - (Never)
EcalEndcap Report Summary Map EcalPreshower Report Summary Map

200,
0!
Ly
TOH-
@
0
40
X0
0
190
%

» w0

HLT - 100.0% - Aug 18, 2012, 15:08.29 Hcal - 97.1% - Aug 18, 2012, 15:08.29

HLY Report Summary Nap reportSummanyMap
I .
L)
g !
o2

L O

Run started, UTC time CMS DQM GUI (vocms 138.cam.ch)

1'740'070'827 . Sat Aug 18'12, 13:00 ,ozmsssnsmurc

DT - 100.0% - Aug 18, 2012, 15:08.29 EcalBarrel - 99.7% - (Never)
OF Report Summary Map EcaBarrel Report Summary Map
i, N, ! ’
, .
) "

e

-1

2
123 4567 8 9 10112

Egamma - No DAQ - (Never) FED - 100.0% - (Never)
— . FED Repert Summnary Map

Info - 100.0% - (Never) JetMET - 100.0% - (Never)
MWV and GT va Lumi JHMET Roport Summary Map

https://cmsweb.cern.ch/dqm/offline
https://cmsweb.cern.ch/dqm/offline

DQM Core Components

g DQMStore is the shared
\ containers that holds all

/ / i \ . . .
, Anchillary . Monitoring Information.
* FolderName The is
* HistogramName R
_* Flags the central monitoring tool

v" ROOT objects

: s S=—\ v Quality Information
, Quality :
, v" Folder hierarchy
, Reports 7 Elags
: A * Criterion 9
. * Results
| \ ‘Aams) ' DQMNet is the layer to ship
: monitoring information over
| network.
e el e N DQMService ties DQMStore
| . > DQMNet
| [ooooog ! . and DQMNet together.
: 000000 ! Generic
. « OO000g ! Network
: : 000 Transport
| 1

https://cmssdt.cern.ch/SDT/1xr/source/DOMServices/Core/interface/DOMStore.
https://cmssdt.cern.ch/SDT/1xr/source/DOMServices/Core/interface/MonitorElement.
https://cmssdt.cern.ch/SDT/1xr/source/DOMServices/Components/interface/QualityTester.
https://cmssdt.cern.ch/SDT/1xr/source/DOMServices/Core/interface/DOMNet.
https://cmssdt.cern.ch/SDT/1xr/source/DQOMServices/Core/src/DOMService.

02/10/2013 6

o gl o gl (o i o g |

https://cmssdt.cern.ch/SDT/lxr/source/DQMServices/Core/interface/DQMStore.h
https://cmssdt.cern.ch/SDT/lxr/source/DQMServices/Core/interface/DQMStore.h
https://cmssdt.cern.ch/SDT/lxr/source/DQMServices/Core/interface/MonitorElement.h
https://cmssdt.cern.ch/SDT/lxr/source/DQMServices/Core/interface/MonitorElement.h
https://cmssdt.cern.ch/SDT/lxr/source/DQMServices/Components/interface/QualityTester.h
https://cmssdt.cern.ch/SDT/lxr/source/DQMServices/Components/interface/QualityTester.h
https://cmssdt.cern.ch/SDT/lxr/source/DQMServices/Core/interface/DQMNet.h
https://cmssdt.cern.ch/SDT/lxr/source/DQMServices/Core/interface/DQMNet.h
https://cmssdt.cern.ch/SDT/lxr/source/DQMServices/Core/src/DQMService.h
https://cmssdt.cern.ch/SDT/lxr/source/DQMServices/Core/src/DQMService.h

' ::‘T" TeDQMtore 'S a CSSWSGV'CG - Several types of MEs reflecting

o‘_g and it is available during the whole '1 different histograms types: TH1,
duration of the job TH2, TProfile, ...

=1 — unique and gigantic piece of memory

X which contains all the MEs :

= « booking:

% . : : _ ; MonitorElement* h_myHisto =
Creating an instance of DQMStore: dbe->book1D("myHisto", "myHisto", 10,0.,10.);

DQMStore* dbe_ =
edm: :Service<DQMStore>().operator->();

,; Get the ME from DQMStore:
t « Move between folders: ! MonitorElement* numerator =

% dbe_->setCurrentFolder("What_I_do_in_the_client/Ratio"); dbe_->get(myHisto);
o o o . accessing the ROOT object:
——# Book histogram

P TH1F* myRootHisto = myHisto->GetTH1F();

* Write histogram

m Run-based histogram
Lumi-based histogram

[b

DQMStore

7

3eg" Begin Event End
" BW.%EWIEW--B-

02/10/2013 7/

DQM Offline WF structure

DQM S tep RootTree d k | harve Stlng S tep hlstos G I
book and fill histos 1S ;; manipulate histos, calculate ;j 1; IJ— ;
efficiencies, . % S

stepl /DQM { step23

data tier . <-- ,‘.7‘,.,._1, TEITTN --. ,",:‘ s ‘ _ 'v",

DQM Step (Step1):

— the booking and the filling of the histograms is performed here
— many jobs run in parallel. the statistics available in a single job is not the full one

Harvesting Step (Step2):
— merge the statistics belonging to the same runs
— perform operation where the full statistics is needed (i.e. Efficiencies)

In both cases: EDMAnalyzers with the usual transitions:
— begindob, beginRun, beginLuminosityBlock, analyze,

Specific DOMRootSource and DOMRootOutputModule

— not edm format, but a simpler structure of root trees

— allow to dump the content of the DQMStore in a ROOT file and to populate it back during the
harvesting step

DOMSaver to save the histos in the final format
— the output contains the full stats and can be directly uploaded to the GUI

02/10/2013 3

An end-to-end example [1]

Goal of the exercise:

— choose a dataset (a Top one) and run over it. Could be either a
data skim or a MC.

— access and plot some basic quantities for the objects in the HLT
event and compare them against the RECO variables

Needed ingredients:

— vertex information

— electron, MET, jet collections
— trigger event (need to specify a HLT filter and a path) e

Perform a simple analysis DrooREE: DOMoEDOL BEeD
— apply some selections such as the elelD)

— perform a comparison HLT vs RECO variables

— book and fill the histograms with the key variables

¥ Schedule derinition

process.schedule = cms.Schedule(

¥ Schedule derinition

Once the histograms are filled: define the

process.schedule = cms.Schedule(

— numerator and denominator have to be filled already process.myTest,
- Define the automatic tests | want to perform process.myHarvesting,

— check if the efficiency is above a certain threashold PrOCOER = ComEaYa . ELAp

Save the output file :

02/10/2013 9

An end-to-end example [2]

- The CMSSW modules reflect the two steps just described:

— Use available relVals
/RelValTTbarLepton/CMSSW_7_0_0_pre4-PRE_ST62_V8-v1/FEVTHLTDEBUG
Both RECO and HLT collections are available in the event at the same time

— Run the DQMStep and save the output using the DQMRootOutputModule

— Run the HarvestingStep and save the output (ready to be sent to the GUI)

- The example will be queued for inclusion in release. For now checkout:
— https://github.com/deguio/cmssw/tree/myDQMTutorial

- The release used is CMSSW_7_0_0_pre4 which is currently the developer release
— new developments are accepted only for 70X cycle

scramv1 project -n CMSSW700pre4_DQMtutorial CMSSW CMSSW_7_0_0_pre4;
cd CMSSW700pre4_DQMtutorial/src;

cmsenv;

git cms-merge-topic deguio:myDQMTutorial;

scram b -j8;

cd DQMServices/Examples/python/test;

cmsRun DQMExample_Step1_cfg.py;

cmsRun DQMExample_Step2_cfg.py;

| have uploaded the output in a temporary GUI:
— http://Ixplus403.cern.ch:8060/dgm/dev

02/10/2013

http://lxplus403.cern.ch:8060/dqm/dev
http://lxplus403.cern.ch:8060/dqm/dev

Operations with the bOMGenericClient

* A generic client has been made available to perform standard operations such as:
— compute efficiencies, normalize to entries, make cumulative distributions, ...

- The generic client is an EDAnalyzer and can be configured using a python configFile
— need to provide the operation you want to perform
— need to set the input and the output

1 import FWCore.ParameterSet.Config as cms

2

3 DQMExample_GenericClient = cms.EDAnalyzer("DQMGenericClient"”,

4 subDirs = ams.untracked.vstring("Physics/TopTest"),

efficiency = ams.vstring(
"myEfficiencyEta 'Efficiency vs Eta’' EleEta_leading_HLT_matched EleEta_leading”,
"myEfficiencyPhi 'Efficiency vs Phi" ElePhi_leading_HLT_matched ElePhi_leading"
s

resolution = cms.vstring("")

SO O o O WD

- Among the advantages:
— efficiency flags set properly. This is needed for the GUI
— errors are calculated in the correct way

- See the class and all the options at:

— https://cmssdt.cern.ch/SDT/1xr/source/DOMServices/ClientConfig/interface/
DOMGenericClient.h

02/10/2013

https://cmssdt.cern.ch/SDT/lxr/source/DQMServices/ClientConfig/interface/DQMGenericClient.h
https://cmssdt.cern.ch/SDT/lxr/source/DQMServices/ClientConfig/interface/DQMGenericClient.h
https://cmssdt.cern.ch/SDT/lxr/source/DQMServices/ClientConfig/interface/DQMGenericClient.h
https://cmssdt.cern.ch/SDT/lxr/source/DQMServices/ClientConfig/interface/DQMGenericClient.h

Quality tests

* In order to evaluate the validity of the monitoring element content in an automated
way, a set of quality tests has been developed and integrated within the DQM

Framework.
— provides a fast feedback to shift crew about the data quality in terms of warnings, alarms or error
reports, but useful offline also

» Tests definition:
— https://cmssdt.cern.ch/SDT/1xr/source/DQOMServices/Core/interface/QTest.h
— more tests can be added
— all the tests are configurable through the XML parser
— each test needs tuning
— https:/Awiki.cern.ch/twiki/bin/view/CMS/DQMQuality Tests

1 import FWCore.ParameterSet.Config as cms

2

3# by default: the quality tests run at the end of each lumisection

4 DQMExample_qTester = cms.EDAnalyzer("QualityTester”,

5 gtList = cms.untracked.FileInPath('DQMServices/Examples/test/DQMExample_QualityTest.xml'),
prescaleFactor = ams.untracked.int32(1),

#reportThreshold = cms.untracked.string('black’),

getQualityTestsFromFile = ams.untracked.bool(True),

6
)
8

9 qtestOnEndJob = ¢ms.untracked.bool(False),
10 qtestOnEndRun = c¢ms.untracked.bool(True),
11 qtestOnEndLumi = ¢ms.untracked.bool(False),
12 testInEventloop = ¢ms.untracked.bool(False),
13 verboseQT = ¢ms.untracked.bool(True)

14)

02/10/2013

https://cmssdt.cern.ch/SDT/lxr/source/DQMServices/Core/interface/QTest.h
https://cmssdt.cern.ch/SDT/lxr/source/DQMServices/Core/interface/QTest.h
https://twiki.cern.ch/twiki/bin/view/CMS/DQMQualityTests
https://twiki.cern.ch/twiki/bin/view/CMS/DQMQualityTests

OTest configuration and alarmed histos

- The outcome of the test is attached to the MEs you want to monitor.
- If the test is not passed, the GUI will show the alarms in red. In the online sound
alarms can be triggered

« In this example the test is: ContentsYRange [0.8 - 1]
— athreshold has been set on the fraction of bins that pass the test

The test is linked and run on the MEs: Physics/TopTest/*myEfficiency*

NElectrons_HLT NJets
of electrons per event @HLY I[:‘::—.—";: # of dloctrons per event m
% -+ =k
1 <TESTSCONFIGURATION> ‘i ol
; ot i =
3 <QTEST name="EfficiencyInRange"” activate="true"> ! 7
4 <TYPE>ContentsYRange</TYPE> "t ot |
5 <PARAM name="ymin">0.8</PARAM> s J moE
6 <PARAM name="ymax">1</PARAM> "j:? | e —
7 <PARAM name="useEmptyBins">false</PARAM> JRPLRRE R TR R PR e T B S A e B Yo S R0
8 <PARAM name="er'r'or'">0.?</PARAM> myEfficiencyEta myEfficiencyPhi
9 <PARAM name="warning">0.9</PARAM> Efficioncy vs Eta [ormrtn] | Efficioncy v P]
10 </QTEST> 7 % ==l I | -
, ’4?;1 ! Tt [+ +[mid+ 1l It |
o £ RATUTRY AT i | ‘T f
12 <LINK name="Physics/TopTest/*myEfficiency*"> it JM Elﬂ 1 '% S B % {
13 <TestName activate="true">EfficiencyInRange</TestName> A lIL s L '
14 </LINK> ‘
15 | ;
16 </TESTSCONFIGURATION> | \

02/10/2013

Policies and suggestions

- Make always sure to have clear in mind your use case
— In which DQM step you have to book and fill your histograms?
— in most of the cases the development is straightforward

{° : from a study conduced months ago, we concluded that the best option }
" is to book histograms in DQMAnalyzer::beginRun
— the migration of the booking in the BR is ongoing for all the DQM modules
— this is needed also in view of the transition to the threaded framework
— all the details are available at:
- https://indico.cern.ch/getFile.py/access?contribld=5&resld=0&materialld=slides&confld=226659
| - : Currently the clients perform booking and operation in |
t DQMClient::endRun
— an exception is the skim case: if you want to integrate over many (more than one) runs, the |
operations must be performed in the DQMClient::endJob

3 el TS RN, R - 2 Pt A i LT S o > el At (Tl PO TR e BT R v > i [Ty CRheai Lot Li2 et on > e A el Ao
N SO = . =~ LR SO . =~ R . =~ = _ TR e d s e T . =~ = _ S SO

- Always protect your code: make sure that the collections you need are present |
In the event and valid

£ = Always use the tools provided centrally
| — maintained centrally

— can be extended if needed

— same code available for many

“Suonsebbng

S s i - L =~ S W : A~ SR =~ S W : A~ SN =~ e e : o SN =~ B : o SN - =~ e e :

02/10/2013 14

Multirun harvesting [a specific use case] Qy\

The goal of the Multirun harvesting is to merge several runs in the second step and

have high statistics distributions available in the GUI for a given run-range
— think about the Z peak for instance

- This is the typical use case of the Skims where different runs could be mixed together
In a single file

- With the DQMStore: :CollateHistograms option enabled in the harvesting step,

the statistics of the processed runs is summed.

— To be combined with the following DQMFileSaver options:
process.dgmSaver.saveByRun = cms.untracked.int32(-1)
process.dgmSaver.saveAtJobEnd = cms.untracked.bool (True)
process.dgmSaver.forceRunNumber = cms.untracked.int32(999999)

In this case the LS based plots are not supported by default. The same is true also
for all the quantities derived from them in the clients.

Having the flexibility of the DOMFileSaver in the DQM clients could help in handling

the multirun harvesting case.
— the actions performed in the clients could be moved in the endRun/endJob depending on the needs

02/10/2013

DQM Sequences and code 9\/

- The DQM code in CMSSW is organized as follows:

MC dependencies are
forbidden

/DQM and /DQMOffline: DPG and POG oriented modules

/DQMServices: Core classes
/DQM/Physics: PAG oriented modules }

/Validation: validation packages (relVal+MC)

/HLTriggerOffline: validation packages for HLT } can run over the MC

- Sequences:

the Validation sequences are defined in Validation/Configuration and called centrally as defined in
Configuration/StandardSequences

for the offline DQM sequences everything is in DQMOffline/Configuration. A DQM matrix allows to
run partial sequences.

The online sequences are instead defined (with the needed/customized reco steps) outside
CMSSW. See https://github.com/cms-sw/DQM-Integration/tree/master/python/test

- In some cases the organization of the code follows historical reasons
- In general we can discuss together where a new package should be

02/10/2013

How to test the main WFs [a.k.a. whiteRabbit.py] !Y\

- We maintain a system of scripts to test the main workflows:
— The DQM sequences can be run over MC, FastSim, Data in different scenarios (PP, HI)
— The monitor of the memory consumption is performed and allows to estimate the sustainability of
the changes implemented

Documentation and code:

— general instructions: https://twiki.cern.ch/twiki/bin/viewauth/CMS/DQMOffline

— list of the tests available: https://twiki.cern.ch/twiki/bin/view/CMS/DQMOffline Tests

— code: https://cmssdt.cern.ch/SDT/lxr/source/DQMServices/Components/test/

Recommendation:

— always test your code before submitting it for integration
— avoid using too many bins if it is not really needed

— be careful in particular with the 2D histograms

Simple syntax:
— python whiteRabbit.py -j4 -nl,2,11,12

As for the other central tools, it is possible to add tests if your use case is not covered
— we are happy to help and implement them

02/10/2013

https://twiki.cern.ch/twiki/bin/viewauth/CMS/DQMOffline
https://twiki.cern.ch/twiki/bin/viewauth/CMS/DQMOffline

Not for today

- No time to discuss the GUI today, but not crucial. The output from step2 can be
inspected by hand. You can already start developing...

« For the next time:
— how to setup a private/temporary GUI for testing
— how to upload histograms in the GUI
— how to develop a render plugin
— how to develop a layout

- If you are curious the following instructions are straightforward:
— https:/itwiki.cern.ch/twiki/bin/viewauth/CMS/DQMTest#Installing_the_GUI_Server

02/10/2013

Summary Qy\

- Now you are able to develop your own DQM package. The physics content should
come from you.. ;)

The available documentation about DQM is linked (maybe not directly) from:
— https:/iwiki.cern.ch/twiki/bin/viewauth/CMS/DQM
— We will try to keep examples and instructions up to date as much as possible

If your use case is not supported we are available to discuss a solution together
— the instruments we provide centrally can be improved with your help

CMSSW is now on gitHub. Need to pass through it if you want to submit changes/new

developments in release

— (non-)CMSSW oriented tutorials are available:
http://git-scm.com/book
http://cms-sw.github.io/cmssw/index.html

— we are available to help if needed

We would be happy to have you in our team of developers.

02/10/2013

https://twiki.cern.ch/twiki/bin/viewauth/CMS/DQM
https://twiki.cern.ch/twiki/bin/viewauth/CMS/DQM
http://git-scm.com/book
http://git-scm.com/book

Backup

02/10/2013

The DQMIO format organization 93/

« With the DQMIO the MEtoEDM and EDMtoME steps are not needed anymore.

— DQMRootOutputModule to save the histos in the new format
— DQMRootSource to access the histos in the /DQM data tier

« The structure of the DQMIO is as follows:

® A master tree contains all the proper indices in the other trees to properly
reconstruct the DQMStore state at every LS/Run boundary.

MASTER INDEX TREE

Run LS |]Firstindex |} Lastindex | Type

TH1F TREE

"M Flags Full Pathname TH1F *

- EDM/ME (EDProducer+EDAnalyzer) --> DQMIO (InputSource+OutputModule)

— The transitions will be different. Special attention needed here to ensure the correctness of the
results

02/10/2013 21

Booking in a multithread environment ()

v A

« When a multithread version = Book histogram

of the CMSSW framework e
will be deployed, the events :b:':‘; Up to now

will be processed in parallel

+ The event will not be seen as s w (o @ e

a global entity anymore , s e e ——

. Different runs, events, LS will |- DEEEEEEEEEEEEBEEEL

be processed in different

streams
- Development ongoing. At this stage the
booking in the BR appears to be the best Multithread
choice. [limi]
S —————— preliminary
[oovers) i T e W‘Q ____________________________________ J—] —
' L ‘) o e g e — .-
i Global ﬁﬁi f : = | : ﬁ_ﬁ e |
rStreamA
rStreamB

02/10/2013

