The CMS Tracker Upgrade for HL-LHC

Overview

Outline

The HL-LHC Tracker: requirements

Overview of R&D
 Development of "p_T modules"
 Mechanical structures
 Track trigger

Expected performance
 Ultimate pixel upgrade
 Summary and outlook

October 9, 2013

The Tracker in CMS

The Tracker layout

TID		Volume Active area Modules Front-end chips Read-out channels Bonds Optical channels Raw data rate: Power dissipation: Operating T:	23 m ³ 210 m ² 15'148 72'784 9'316'352 24'000'000 36'392 1 Tbyte/s 30 kW -10°C
TIB	$(M_{2}^{2})^{-1}$		
TOB	surface	CDF MARKII	
TEC	Detector surface (m ²) 10'0 10 11 10 10 10 10 10 10 10 10 10 10 10	NA11 First Si strip	Barbar LEP: DELPHI ALEPH L3 OPAL
D. Abbaneo - IPM School, Tehran	_	1960 1970 1980 October 9, 20 ⁻	1990 2000 2010 Year

The HL-LHC

Basic requirements and guidelines - I

Radiation hardness

O Ultimate integrated luminosity considered ~ 3000 fb⁻¹

★ To be compared with original ~ 500 fb⁻¹

Granularity

Resolve ~140 (and up to 200) collisions per bunch crossing, with ~ % occupancy

The original design figure for the present Tracker was 25!

★ Requires much shorter strips!

Improve tracking performance

- Improve performance @ low p_T
- Reduce rates of nuclear interactions, y conversions, bremsstrahlung...
 - ★ Reduce material in the tracking volume
- Improve performance @ high p_T
 - ★ Reduce average pitch

Substantially higher

channel count!

Basic requirements and guidelines – II

Tracker input to Level-1 trigger

- \odot µ, e and jet rates would substantially increase at high luminosity
 - ★ Even considering "phase-1" trigger upgrades
- Increasing thresholds would affect physics performance
 - ★ Performance of algorithms degrades with increasing pile-up
 - Muons: increased background rates from accidental coincidences
 - Electrons/photons: reduced QCD rejection at fixed efficiency from isolation
- Even HLT without tracking seems marginal
- Add tracking information at Level-1
 - ★ Move part of HLT reconstruction into Level-1!

➢ Goal for "track trigger":

Reconstruct tracks above 2 GeV

• Identify the origin along the beam axis with ~ 1 mm precision

General concept

Silicon modules provide at the same time "Level-1 data" (@ 40 MHZ), and "readout data" (upon Level-1 trigger)

- The whole tracker sends out data at each BX: "push path"
- Level-1 data require local rejection of low-p_T tracks
 - ⊙ To reduce the data volume, and simplify track finding @ Level-1
 - Threshold of ~ 2 GeV \Rightarrow data reduction of one order of magnitude or more

\succ Design modules with p_T discrimination (" p_T modules")

- Correlate signals in two closely-spaced sensors
- Exploit the strong magnetic field of CMS

Level-1 "stubs" are processed in the back-end

- Form Level-1 tracks, p_T above ~2 GeV
- To be used to improve different trigger channels

More on p_T modules working principle

- Sensitivity to p_T from measurement of $\Delta(R\phi)$ over a given ΔR
- For a given p_T , $\Delta(R\phi)$ increases with R
 - \odot A same geometrical cut, corresponds to harder p_T cuts at large radii
 - At low radii, rejection power limited by pitch
 - Optimize selection window and/or sensors spacing
 - \star To obtain, ideally, consistent p_T selection through the tracking volume

- In the end-cap, it depends on the location of the detector
 - End-cap configuration typically requires wider spacing

p_T modules

2 Strip sensors Strips: 5 cm × 90 μ m Strips: 5 cm × 90 μ m P = 2.7 W ~ 92 cm² active area For r > 60 cm

Low-power GigaBit Transceiver

IpGBT currently under development integrated at module level

DC/DC converter

already used in Phase-1 10 V lines: lower current, lower material

Electronics: old and new

OLD

- Readout (unidirectional) and control (bidirectional) in two separate links and separate systems of front-end and back-end boards. Slow-control data in readout link.
- Analogue readout. Allows for common mode subtraction and energy loss measurement.

➢ 0.25 µm ASIC; > 2 mW/ch.

NEW

- Single bidirectional link carries all the data, including new L! trigger output!
- Binary readout. Requires perfect grounding! More suitable for high granularity and low power per channel
- 130 nm (or 65 nm) ASIC; about
 0.3 mW/ch for the strips.

Connectivity

Different sensor spacings obtained by variations of the same design

2S modules: thermal performance

• pipe \rightarrow CO2 = 5'000 W/m²/K

 $\begin{bmatrix} \mathbf{J} & \mathbf{J} \\ \mathbf{J}$

- module \rightarrow cooling blocks = 10'000 W/m²/K
- Simulation includes the dark current model for a fluence of 7.35x10¹⁴ neq/cm² (worst possible condition)
- T_{CO2} tuned to obtain T_{SENSOR} ≤ 20 °C
 - Temperature gradient on sensors = 3.5 °C
 - T_{CO2} = -28.6 °C to obtain T_{SENSOR} < -20 °C
 - Thermal runaway at T_{CO2} ≈ -27 °C

October 9, 2013

-26

Tracker Layout

Main features

- ×4 granularity in strip sensors (avg)
- ⊙ 3 more layers of pixellated sensors in the Outer Tracker
 - ★ Unambiguous 3d coordinates helps track finding in high pile-up
- ⊙ 12 hits up to η ≈ 2.4 available at Level-1
- Extended coverage up to $\eta \approx 4$
- Form hermetic surfaces (cyliners and disks) for stub finding
 - ★ Taking into account IP spread

R

Tracker in NumbersOLDNEW

- Total n of modules 15,148
- Total active surface 210 m²
- Total n of strips 9.3 M
- Power in the tracking volume
 ~ 30 kW

- N of modules 15,508
 - 7084 PS modules
 - 8424 2S modules
- Total active surface 218 m²
 - 155 m² strips (2S)
 - \odot 31 m² strips (PS)
 - 31 m² macro-pixels (PS)
- Total n of strips 47.8 M
- Total n of pixels 218 M
- Power in the tracking volume ~70 kW

Optimization of module parameters

Mechanics: endcap

Current TEC concept

- "Petals" on disk
- Petals populated with wdge-shaped modules

HL-TEC

Double-disk concept

- Each disk split in two dees
 - ★ Eliminates the central support
- Larger units allow to make use of same rectangular modules as in barrel
 - ★ Implies some additional overlap
 - ★ Greatly simplifies production
 - N.B. The HL-TEC disk has 15 rings wrt 7 in present TEC!
 - Pitch-adpters are not conceivable with the increased channel density

Overlaps and services

D. Abbaneo - IPM School, Tehran

October 9, 2013

Cooling

Outer Barrel concept

Based on the current TOB design

- 1 support wheel
- Rods installed from the two ends

Module cooling

In old TOB: cooling pipes on the outside of the Rod C-profiles

Current studies: cooling pipe inside C-profile, closer to the modules

• Tight space, but seems OK

• Strength of structure to be re-evaluated (notably in cold)

October 9, 2013

Cooling

L1	L2	L3	Totals
1152	1488	1824	4464
48	62	76	
12	12	12	
3.5	3.5	3.5	
42	42	42	
2016	2604	3192	7812
4032	5208	6384	15624
	1152 48 12 3.5 42 2016	11521488486212123.53.54242	1152148818244862761212123.53.53.5424242201626043192

- Two rods in series give "CO2-suitable" cooling circuits:
 - $2 \times 2.5 \text{ m} = 5 \text{ m}$ pipe length with 1.5 2 mm pipe diameter.
 - 84 W per line
 - 186 lines in total (93 per end)
 - 186 supply capillaries from manifolds at TK Bulkheads
 - Return pipes (size?) to manifolds at TK Bulkheads
 - ★ Alternative: return manifolding at the TOB end

Cooling: old and new NEW

\succ Liquid C₆F₁₄

- Transfer heat into liquid (+ 2°C over a Pump in liquid CO₂; evaporate detector loop)
 CO₂ at constant temperature
- Design goals were -10°C silicon; -20°C coolant
- Design goals not really achieved...

Two-phase CO₂

- Pump in liquid CO₂; evaporate CO₂ at constant temperature along the cooling loop. Much better heat transfer coefficient!
- MUST make sure that "boiling" starts before entering the detector, and sufficient liquid remains at the end! Pressure drop along the pipes translate to decrease in temperature!
- Complicated process... a lot of thermodynamics!
- Design goals are -20°C silicon;
 -30°C coolant

October 9, 2013

Evaluation of different tracker geometries and options: layout modelling

Dedicated standalone software package[©]

© N. De Maio, S. Mersi, G. Bianchi

Based also on work from V. Karimaki and G. Hall

Allows to place in space active and passive volumes

• Starting from a small sets of simple parameters

Simple (semi-automatic) modelling of services

Material on + Material for services active elements + automatically routed

- Implements estimates of tracking performance
 - Use measurement errors to estimate the errors in track fit parameters
 - Multiple scattering treated as (correlated) a measurement error

- As well as fraction of interacting particles
- Can be used in the same way to evaluate trigger performance potential

Validated by modelling the present tracker

Excellent accuracy out of the box!

Material

CMS Phase-1

CMS Phase-2 estimate, with phase-1 pixels

Phase-1 Pixel

Will the "phase-2" pixel detector be as light as the phase 1?

Some performance highlights

Calculated performance with a "phase-1" pixel detector

 Rapidity
 regions

 C
 0
 0.8

 I
 0.8
 1.6

 F
 1.6
 2.4

CMS

Upgrade

Tracking resolution

$\ensuremath{p_{T}}\xspace$ resolution of single muons

Significant improvement expected in the whole p_T range

Tracking resolution @ Level-1

Potential p_T resolution using all stub info

Single $\mu p_T=2 \text{ GeV/c}$ Single $\mu p_T=10 \text{ GeV/c}$ Single $\mu p_T=100 \text{ GeV/c}$

Track finding @ Level-1

Track finding @ Level-1

Track finding at Level-1

- > Within a latency of $O(\mu s)$: Associative Memories
 - Pattern matching using AM technologies dates back to CDF SVT to enhance collection of events with long-lived hadrons
 - HL-LHC: much higher occupancy, higher event rates, higher granularity
 - Plan of development
 - Software emulation (ongoing)
 - ★ Build a **demonstrator system** using ATLAS FastTracKer boards (started)
 - ★ Develop dedicated AM chips and boards

Trigger board emulation

VERY preliminary results!

- Preliminary studies indicate that full efficiency can be achieved over the whole η range
- Sharp turn-on curve of the efficiency around ~1.5 GeV/c
- Implementation in hardware?

Sensors R&D

- Key element to achieve enhanced radiation tolerance and improved performance
- Select material and technology that offers adequate performance after irradiation
- Understand in detail sensors properties
 - Signal
 - ★ Design of readout electronics
 - Leakage current vs operating temperature
 - ★ Module design
 - ★ Cooling requirements
 - ★ Sealing
 - "Annealing"
 - ★ Requirements for maintenance periods

Identify and qualify vendors who can provide sensors of the appropriate quality

Beyond baseline?

- Same coverage and same tracking performance with a smaller number of modules
- Is it worth the effort?

Beyond baseline?

Advantages

Smaller N of modules

N of PS modules 4164 → 2836 (-30%)
 ★ For the inner barrel only

Smaller power

 \odot 23 kW \rightarrow 16 kW

• Nicely matching TOB and each TEC!

Interesting reduction in material In a volume far from the calorimeters

And finally also some relevant financial saving

● ... ~ 5% on the overall Tracker cost!

D. Abbaneo - IPM School, Tehran

3D geometry studies

Use the tilted modules where they are the most valuable to gain material, in the forward region

In the central region the modules are arranged horizontally

Phase-2 pixel

The phase-1 pixel detector is not the CMS ultimate pixel

Construction time is shorter, ~ 2 more years to converge on a design compared to the outer tracker

Discussions started; convergence on some basic concepts

- Aiming at a significantly smaller pixel size. Possibly as small as $30 \times 100 \ \mu m^2$?
- 65 nm seems to be a good technology choice
 - ★ Strong technology node, likely to be available for very long
 - ★ Can squeeze 4× digital logic in same area wrt 130 nm
- Thin planar sensors with small pixels could be a robust baseline
- 3d silicon very appealing option with potentially excellent performance
 - ★ Need to evaluate production issues and cost
- Several important system issues need to be addressed
 - ★ Optical components and DC-DC converter electronics unlikely to be useable in the pixel volume!

One more open question about trigger

- Data reduction not applicable below ~20 cm
- Maybe Region-Of-Interest @Level-1.5? (with input from calorimeters/muons?)

Summary and outlook

Designing an Outer Tracker with:

- Higher granularity
- Enhanced radiation hardness
- Improved tracking performance (... and lighter!)
- L1 Track finding capability
 - ★ Reconstruct tracks above ~ 2 GeV
 - **★** With ~ 1mm z_0 resolution

All the necessary R&D activities are ongoing
 A lot of interesting and creative work!

Draft schedule developed for delivery in LS3

Phase 2 pixel project on the starting blocks
 Many open questions to be answered!