The CMS Tracker Upgrade for HL-LHC

Overview

Outline

≻ The HL-LHC Tracker: requirements

≻Overview of R&D \odot Development of "p_T modules" \odot Mechanical structures **◎ Track trigger**

 \triangleright Expected performance ØUltimate pixel upgrade **≻ Summary and outlook**

The Tracker in CMS

The Tracker layout

The HL-LHC

D. Abbaneo - IPM School, Tehran **6 and School, Tehran Collection** Control of the Contro

Basic requirements and guidelines - I

≻ Radiation hardness

- \odot Ultimate integrated luminosity considered \sim 3000 fb⁻¹
	- \star To be compared with original ~ 500 fb-1

\triangleright Granularity

- \odot Resolve ~140 (and up to 200) collisions per bunch crossing, with ~ % **occupancy**
	- \cdot The original design figure for the present Tracker was 25!
	- \star Requires much shorter strips!

\triangleright Improve tracking performance

- \odot Improve performance \oslash low p_{T}
- ^O Reduce rates of nuclear interactions, *γ conversions*, bremsstrahlung...
	- \star Reduce material in the tracking volume
- \odot Improve performance \oslash high p_T
	- \star Reduce average pitch

Substantially higher channel count!

D. Abbaneo - IPM School, Tehran

Basic requirements and guidelines – II

\triangleright Tracker input to Level-1 trigger

- \odot μ , e and jet rates would substantially increase at high luminosity
	- \star Even considering "phase-1" trigger upgrades
- \odot Increasing thresholds would affect physics performance
	- \star Performance of algorithms degrades with increasing pile-up
		- v Muons: increased background rates from accidental coincidences
		- Electrons/photons: reduced QCD rejection at fixed efficiency from isolation $\frac{3}{8}$
- **Even HLT without tracking seems marginal**
- **■** Add tracking information at Level-1
	- \star Move part of HLT reconstruction into Level-1!

≻ Goal for "track trigger":

◎ Reconstruct tracks above 2 GeV

 \odot Identify the origin along the beam axis with \sim 1 mm precision

General concept

 \triangleright Silicon modules provide at the same time "Level-1 data" (ω 40 MHZ), and "readout data" (upon Level-1 trigger)

- \odot The whole tracker sends out data at each BX: "push path"
- \triangleright Level-1 data require local rejection of low- p_T tracks
	- \odot To reduce the data volume, and simplify track finding \oslash Level-1
	- \odot Threshold of \sim 2 GeV \Rightarrow data reduction of one order of magnitude or more

\triangleright Design modules with p_T discrimination (" p_T modules")

- ⊙ Correlate signals in two closely-spaced sensors
- **Exploit the strong magnetic field of CMS**

\triangleright Level-1 "stubs" are processed in the back-end

- \odot Form Level-1 tracks, p_T above ~2 GeV
- \odot To be used to improve different trigger channels

More on p_T **modules working principle**

- \triangleright Sensitivity to p_T from measurement of $\Delta(R\phi)$ over a given ΔR
- \triangleright For a given p_T , $\Delta(R\varphi)$ increases with R
	- \odot A same geometrical cut, corresponds to harder p_T cuts at large radii
	- \odot At low radii, rejection power limited by pitch
	- **☉** Optimize selection window and/or sensors spacing
		- \star To obtain, ideally, consistent p_T selection through the tracking volume

- \triangleright In the end-cap, it depends on the location of the detector
	- \odot End-cap configuration typically requires wider spacing

R

φ

p_T modules

2 Strip sensors **Strips**: 5 cm × 90 µm **Strips**: 5 cm × 90 µm $P = 2.7 W$ \sim 92 cm² active area For $r > 60$ cm

lpGBT currently under development integrated at module level

already used in Phase-1 10 V lines: lower current, lower material

D. Abbaneo - IPM School, Tehran 2013 12

Electronics: old and new

OLD

- \triangleright Readout (unidirectional) and control (bidirectional) in two separate links and separate systems of front-end and back-end boards. Slow-control data in readout link.
- \triangleright Analogue readout. Allows for common mode subtraction and energy loss measurement. U understanding the differences $\mathcal{L}_\mathcal{A}$ is standard system of the current system $\frac{1}{2}$

 ≥ 0.25 µm ASIC; ≥ 2 mW/ch.

NEW

- \triangleright Single bidirectional link carries all the data, including new L! trigger output! The differences system s
- \triangleright Binary readout. Requires perfect grounding! More suitable for high granularity and low power per ι Ευρώπης Μονείται στη Γενική στρατική στρατική στρατική στρατική στρατική στρατική στρατική στρατική στρατική
Πολιτική στρατική στ • Back Ματί στον συνάστου του πίθμ • Optical SFP+ transceivers on backͲend uTCA board + LPͲGBT emulation
- → 130 nm (or 65 nm) ASIC; about 0.3 mW/ch for the strips.

Connectivity

Different sensor spacings obtained by variations of the same design

D. Abbaneo - IPM School, Tehran October 9, 2013 **14** October 9, 2013 **14** October 9, 2013

2S modules: thermal performance

 $pipe \rightarrow CO2 = 5'000 W/m^2/K$

- module \rightarrow cooling blocks = 10'000 W/m²/K
- Simulation includes the dark current model for a fluence of $7.35x10^{14}$ neg/cm² (worst possible condition)
- \blacksquare T_{CO2} tuned to obtain $\mathsf{T}_{\mathsf{SENSOR}}$ **≤** 20 °C
	- Temperature gradient on sensors = $3.5 \text{ }^{\circ} \text{C}$
	- $\mathsf{T_{CO2}}$ = -28.6 °C to obtain $\mathsf{T_{SENSOR}}$ < -20 °C
	- − Thermal runaway at T $_{\rm CO2}$ ≈ -27 °C

≻Main features

- \odot ×4 granularity in strip sensors (avg)
- ⊙ 3 more layers of pixellated sensors in the Outer Tracker

 \star Unambiguous 3d coordinates – helps track finding in high pile-up

- \odot 12 hits up to $\eta \approx 2.4$ available at Level-1
- \odot Extended coverage up to $\eta \approx 4$
- ⊙ Form hermetic surfaces (cyliners and disks) for stub finding
	- \star Taking into account IP spread

D. Abbaneo - IPM School, Tehran October 9, 2013 **16**

 R

Tracker in Numbers OLD NEW

- \triangleright Total n of modules 15,148
- \triangleright Total active surface 210 m²
- \triangleright Total n of strips 9.3 M
- \triangleright Power in the tracking volume \sim 30 kW
- \triangleright N of modules 15,508 ¤ 7084 PS modules
	- \odot 8424 2S modules
- \triangleright Total active surface 218 m²
	- \odot 155 m² strips (2S)
	- \odot 31 m² strips (PS)
	- ¤ 31 m2 macro-pixels (PS)
- Ø Total n of strips 47.8 M
- Ø Total n of pixels 218 M
- \triangleright Power in the tracking volume $~1$ ~70 kW

Optimization of module parameters

Mechanics: endcap

≻ Current TEC concept

- ¤ "Petals" on disk
- \odot Petals populated with wdge-shaped modules

D. Abbaneo - IPM School, Tehran October 9, 2013 19

HL-TEC

ØDouble-disk concept

- \odot Each disk split in two dees
	- \star Eliminates the central support
- ⊙ Larger units allow to make use of same rectangular modules as in barrel
	- \star Implies some additional overlap
	- \star Greatly simplifies production
		- v N.B. The HL-TEC disk has 15 rings wrt 7 in present TEC!
		- $\cdot \cdot$ Pitch-adpters are not conceivable with the increased channel density

Overlaps and services

Cooling

Outer Barrel concept

Based on the current TOB design

- \triangleright 1 support wheel
- \triangleright Rods installed from the two ends

D. Abbaneo - IPM School, Tehran October 9, 2013

Module cooling

 \triangleright In old TOB: cooling pipes on the outside of the Rod C-profiles

 \triangleright Current studies: cooling pipe inside C-profile, closer to the modules

 \odot Tight space, but seems OK

 \odot Strength of structure to be re-evaluated (notably in cold)

Cooling

- \triangleright Two rods in series give "CO2-suitable" cooling circuits:
	- \odot 2 x 2.5 m = 5 m pipe length with 1.5 2 mm pipe diameter.
	- ◎ 84 W per line
	- ^O 186 lines in total (93 per end)
	- \odot 186 supply capillaries from manifolds at TK Bulkheads
	- \odot Return pipes (size?) to manifolds at TK Bulkheads
		- \star Alternative: return manifolding at the TOB end

D. Abbaneo - IPM School, Tehran October 9, 2013 26

Cooling: old and new OLD NEW

\triangleright Liquid C₆F₁₄

- \triangleright Transfer heat into liquid (+ 2°C over a \triangleright detector loop)
- \triangleright Design goals were -10°C silicon; -20°C coolant
- \triangleright Design goals not really achieved...

 \triangleright Two-phase CO₂

- Pump in liquid $CO₂$; evaporate $CO₂$ at constant temperature along the cooling loop. Much better heat transfer coefficient!
- \triangleright MUST make sure that "boiling" starts before entering the detector, and sufficient liquid remains at the end! Pressure drop along the pipes translate to decrease in temperature!
- Ø Complicated process… a lot of thermodynamics!
- Design goals are -20°C silicon; -30°C coolant

Evaluation of different tracker geometries and options: layout modelling

Ø Dedicated standalone software package©

© N. De Maio, S. Mersi, G. Bianchi Based also on work from V. Karimaki and G. Hall

 \triangleright Allows to place in space active and passive volumes

 \odot Starting from a small sets of simple parameters

≻ Simple (semi-automatic) modelling of services

Material on **Material for services** active elements automatically routed

- \triangleright Implements estimates of tracking performance
	- Use measurement errors to estimate the errors in track fit parameters
	- Multiple scattering treated as (correlated) a measurement error

- As well as fraction of interacting particles
- Can be used in the same way to evaluate trigger performance potential

\triangleright Validated by modelling the present tracker

 \triangleright Excellent accuracy out of the box!

Material

Will the "phase-2" pixel detector be as light as the phase 1?

Some performance highlights

Ø Calculated performance with a "phase-1" pixel detector

Rapidity regions C 0 – 0.8

I 0.8 – 1.6 $\mathbf{F} = 1.6 - 2.4$

■ **Upgrade**

Tracking resolution

p_T resolution of single muons

Significant improvement expected in the whole p_T range

D. Abbaneo - IPM School, Tehran October 9, 2013

Tracking resolution @ Level-1

Potential p_T resolution using all stub info

Single µ p_T=2 GeV/c **Single µ p_T=10 GeV/c
Single µ p_T=100 GeV/c**

D. Abbaneo - IPM School, Tehran October 9, 2013

Track finding @ Level-1

D. Abbaneo - IPM School, Tehran 36

Track finding @ Level-1

D. Abbaneo - IPM School, Tehran October 9, 2013

37

Track finding at Level-1

- \triangleright Within a latency of O(μ s): Associative Memories
	- ◎ Pattern matching using AM technologies dates back to CDF SVT to enhance collection of events with long-lived hadrons
	- **HL-LHC: much higher occupancy, higher event rates, higher granularity**
	- **☉ Plan of development**
		- * **Software emulation** (ongoing)
		- « Build a **demonstrator system** using ATLAS **F**ast**T**rac**K**er boards (started)
		- \star Develop dedicated AM chips and boards

Trigger board emulation

VERY preliminary results!

- Preliminary studies indicate that full efficiency can be achieved over the whole η range
- Sharp turn-on curve of the efficiency around ~1.5 GeV/c
- Implementation in hardware?

Sensors R&D

- ⊙ Key element to achieve enhanced radiation tolerance and improved performance
- \triangleright Select material and technology that offers adequate performance after irradiation
- Ø Understand in detail sensors properties
	- **⊙** Signal
		- \star Design of readout electronics
	- **◯ Leakage current vs operating temperature**
		- \star Module design
		- \star Cooling requirements
		- \star Sealing
	- **◎ "Annealing"**
		- \star Requirements for maintenance periods

Ø Identify and qualify vendors who can provide sensors of the appropriate quality

Beyond baseline?

- number of modules
- \triangleright Is it worth the effort?

Beyond baseline?

Advantages

Ø Smaller N of modules

¤ N of PS modules 4164→ 2836 (−30%) \star For the inner barrel only

≻ Smaller power

 \odot 23 kW \rightarrow 16 kW

 \odot Nicely matching TOB and each TEC!

\triangleright Interesting reduction in material \odot In a volume far from the calorimeters

\triangleright And finally also some relevant financial saving

 \odot ... ~ 5% on the overall Tracker cost!

3D geometry studies

 \triangleright Use the tilted modules where they are the most valuable to gain material, in the forward region

 \triangleright In the central region the modules are arranged horizontally

Phase-2 pixel

 \triangleright The phase-1 pixel detector is not the CMS ultimate pixel

 \triangleright Construction time is shorter, \sim 2 more years to converge on a design compared to the outer tracker

Ø Discussions started; convergence on some basic concepts

- \odot Aiming at a significantly smaller pixel size. Possibly as small as 30×100 μ m²?
- \odot 65 nm seems to be a good technology choice
	- \star Strong technology node, likely to be available for very long
	- \star Can squeeze 4× digital logic in same area wrt 130 nm
- \odot Thin planar sensors with small pixels could be a robust baseline
- ◎ 3d silicon very appealing option with potentially excellent performance
	- \star Need to evaluate production issues and cost
- **■** Several important system issues need to be addressed
	- \star Optical components and DC-DC converter electronics unlikely to be useable in the pixel volume!

\triangleright One more open question about trigger

- ¤ Data reduction not applicable below ~20 cm
- ¤ Maybe Region-Of-Interest @Level-1.5? (with input from calorimeters/muons?)

Summary and outlook

≻ Designing an Outer Tracker with:

- Higher granularity
- **■** Enhanced radiation hardness
- ◎ Improved tracking performance (... and lighter!)
- **☉ L1 Track finding capability**
	- \star Reconstruct tracks above ~ 2 GeV
	- \star With ~ 1mm z₀ resolution

ØAll the necessary R&D activities are ongoing \odot A lot of interesting and creative work!

 \triangleright Draft schedule developed for delivery in LS3

 \triangleright Phase 2 pixel project on the starting blocks \odot Many open questions to be answered!