Picture taken at 1st IMP LHC meeting

<u>The 2nd IMP meeting on LHC Physics</u> <u>Tehran, 7th September 2013</u>

The role of TOP physics in the Higgs era

Acknowledgements: Maria Jose Costa, Fabio Maltoni, Paolo Nason, Markus Seidel, Scott Willenbrock

The sixth guy stands up !

The up-like quark of the third family, the top quark, has a mass comparable to a tungsten atom !
In other words, the top – Higgs Yukawa coupling is large (≈1):
top is a window to

electroweak symmetry breaking

$$Y = \sqrt{2} \frac{m_{top}}{v.e.v.(\sim 246 \text{ GeV})}$$

$$\Gamma(H \to f\bar{f}) = \frac{N_c g^2 m_f^2}{32\pi m_W^2} \beta^3 m_H$$

Some consequences of the large top mass (the large top-Higgs Yukawa coupling)

- Due to the non-decoupling properties of electroweak interactions (Maiani and Veltman, 1977) the top quark gives large contributions to pure EWK radiative corrections ≈G_Fm_t²
- Very short lifetime: bound states are not formed, opportunity to study a free quark

 $\mathbf{T}_{top} \simeq 0.4 \times 10^{-24} \, s$

$$\Gamma(t \to bW) = \frac{G_F}{8\pi\sqrt(2)} m_t^3 |V_{tb}|^2 \approx 1.5 \,\mathrm{GeV/c^2}.$$

Evidence of electroweak loops

Top quark discovery and indirect determination from electroweak loops

The precision measurements

of the W and Z mass, together with other electroweak observables (e.g. initial and final state asymmetries) **test the Standard Model at the level of radiative corrections**

The **top quark mass** from the **direct** measurement **matches** the **indirect** determination from radiative corrections !

Relation between W, top and logarithmic sensitivity to the Higgs mass

After Higgs discovery the same plot represents an important test of the SM

Relation between top and Higgs masses and stability of the vacuum in our universe

De Grassi et al. ArXiv:1205.6497

TOP PRODUCTION AND DECAY: GETTING THE DATA SAMPLES

Top Quark Production at the LHC

Some references (not a complete list!): (top pairs) N.Nason *et al.* Nucl.Phys. B303 (1988) 607, S.Catani *et al.* Nucl.Phys. B478 (1996) 273, M.Beneke *et al.* hep-ph/0003033, N.Kidonakis and R.Vogt, Phys.Rev. D68 (2003) 114014, W.Bernreuther et al. Nucl.Phys. B690 (2004) 81-137 (single-top) T.Stelzer et al. Phys.Rev. D56 (1997) 5919, M.C.Smith and S.Willenbrock Phys.Rev. D54 (1996) 6696, T.M.Tait Phys.Rev. D61 (2000) 034001

Top Quark decays

It decays almost excusively to Wb, from CKM elements V_{tu} , V_{ts} , V_{tb} :

W decays are used to classify top final states

Decay topologies for ttbar : • Dileptonic

- Lepton+jets
- Fully hadronic

For single top measurements only W leptonic decays are used

ttbar topologies

Statistics with 20 fb-1 at 8 TeV

Channel	σ (NLO)	BR	Trigger eff	# Events
ttbar SL e mu	232	0.3	0.8	1 090 000
ttbar SL tau	232	0.15	0.5	340 000
ttbar DL (e, mu)	232	0.053	0.9	220 000
ttbar DL 1 tau	232	0.053	0.8	200 000
single top t-ch e mu	83	0.22	0.7	250 000
single top s-ch e mu	45.5	0.22	0.7	17 000
single top tW e mu	23	0.22	0.7	70 000

•Typically two orders of magnitude more than final Tevatron statistics •Selection efficiencies not included !

•Trigger efficiency, guesstimates from present tables ... (fully hadronic not included)

EXPERIMENTAL METHODS FOR TOP MASS MEASUREMENTS:

- EXAMPLES IN THE LEPTON+JETS CHANNEL
- WHAT ARE WE MEASURING ?
- ALTERNATIVE METHODS
- DIFFERENTIAL TOP MASS

Methods for top mass measurement

- Template fit in its simplest version: measure invariant mass of, e.g. three jets in lepton+jets events
 - Choose the right b-jet for the 3-jet combination
 - Can use the W mass to constraint light jet energy scale (JES) from two-jet invariant mass: the JES is one of the most important sources of uncertanity
- Better use of the full event information to gain sensitivity: Matrix Element method, Ideogram method

Event selection: lepton+jets final state (example from CMS)

- Trigger for isolated muon or electron + jets (pT > 24 GeV)
- Exactly 1 isolated lepton with p_T
 >30 GeV, |η|<2.1 (veto additional isolated e, μ)
- \geq 4 "particle flow" jets (anti-kt, R = 0.5) with p_T >30GeV, |η|<2.4
- ≥ 2 jets b-tagged among the 4 leading jets
- 17985 events in 5 fb-1 2011 data selected
- Composition:
- 92% t t, 3% W+jets, 4% singletop, 1% other

Event reconstruction

- Assign 4 leading jets to partons from t t decay (obey b-tag)
 - Kinematic fit with constraints: $m_W = 80.4 \text{ GeV}$, $m_t = m_{tbar}$
 - Weight each permutation by $P_{gof} = exp (1/2\chi^2)$, select $P_{gof} > 0.2$
- 5192 events in 5 fb-1 2011 data (96% ft, 44% correct)

Ideogram method: probability densities

- Simulated samples with
 - 9 different top masses: 161.5–184.5 GeV
 - 3 different JES: 0.96, 1.00, 1.04
- Fit m(top)_{fit}, m(W)_{reco} distributions with analytical expressions
- Parametrize linearly in m_t , JES, $m_t \times JES$

Example: correct permutations

Ideogram method

 Calculate likelihood for event with n permutations, j denotes correct, wrong and unmatched permutations

$$\mathcal{L}\left(\text{event}|m_{t}, \text{JES}\right) = \sum_{i=0}^{n} P_{gof}\left(i\right) P\left(m_{t,i}^{fit}, m_{W,i}^{reco}|m_{t}, \text{JES}\right),$$

$$P\left(m_{t,i}^{fit}, m_{W,i}^{reco}|m_{t}, \text{JES}\right) = \sum_{j} f_{j} P_{j}\left(m_{t,i}^{fit}|m_{t}, \text{JES}\right) \cdot P_{j}\left(m_{W,i}^{reco}|m_{t}, \text{JES}\right)$$

Most likely m_t and JES by maximizing

$$\mathcal{L}(m_t, \mathsf{JES}|\mathsf{sample}) \sim \prod_{\mathsf{events}} \mathcal{L}(\mathsf{C})$$

$$\int \mathcal{L}(\text{event}|m_t, \text{JES})^{w_{\text{event}}}$$

Example: top mass from 2D fit

 Documentation: CMS TOP-11-015, JHEP 12 (2012) 105, arXiv:1209.2319

Systematic Uncertainties

$t\bar{t}$ modelling uncertainties

Perturbative QCD

- Factorization and renormalization scales Vary by factors of 1/2 and $2 \rightarrow 0.24$ GeV
- ME-PS matching threshold
 Vary by factors of 1/2 and $2 \rightarrow 0.18$ GeV
- MC generator (as cross-check) MadGraph vs. Powheg \rightarrow 0.04 GeV

Non-perturbative QCD

- Hadronization (included as b-JES)
 Pythia vs. Herwig \rightarrow 0.61 GeV
- Underlying event Tunes with more/less MPI \rightarrow 0.15 GeV
- Colour reconnection Tunes with CR on/off \rightarrow 0.54 GeV

Data will be eventually used to decrease these uncertainties !

From Maria Costa LHCp talk

ATLAS-CONF-2013-046

NEW

Other top mass measurements (with "top reconstruction" methods)

 $M_t^{TEV} = 173.20 \pm 0.51(stat) \pm 0.71(syst) \ GeV$

WHICH TOP MASS ARE WE MEASURING ?

Interpretation of the top mass

- The interpretation of the measurement in term of "pole mass" is crucial, a shift ≈ 1 GeV can make a lot of difference
- This is related to the fact top is a coloured object, there is a link between this "interpretation" issue and non-perturbative effects like Colour Reconnection (CR), which are at present studied with toy models

Which top mass we measure with top reconstruction techniques ?

- 1. The pole mass for a coloured particle has an intrinsic uncertainty of $\approx \Lambda_{\rm QCD}$
- 2. The kinematic reconstruction of the top-quark momentum from the decay products introduce an uncertainty due colour reconnection, non-perturbative effect, again $\approx \Lambda_{\rm QCD}$ some study indicates $\approx 500 \text{ MeV}$

A proposal as a way out

S. Moch, P. Uwer Phys.Rev. D80 (2009) 054009

 Measure the mass from the cross section, possibly using a short-distance mass scheme (MS)

It works, but the error is large (and it will be eventually limited by the uncertainty on luminosity)

TOP mass from alternative techniques

- Standard methods: based on the invariant mass of decay products associated to the reconstructed top in a given channel (lepton+jets, dilepton, fully hadronic channels).
- Given the issues related to the top mass interpretation, important to explore alternative techniques, e.g.
 - Measure the decay length (the boost) of B hadrons produced in top decays, the boost is related to the original top mass
 - Measure the endpoint of the lepton spectrum or other quantities in top decays
 - Select specific channels, for example top with $W \rightarrow I v$ and $B \rightarrow J/\psi + X$ decays and measure the three-lepton invariant mass
- Alternative methods have typically larger statistical uncertainties, however at LHC we have large ttbar samples.
 - Systematic uncertainties can be controlled with data, again large samples help.

TOP mass from alternate techniques

- Example of a technique already yielding interesting precision: Endpoint method
- The shape of the signal can be computed analytically, background data-driven
- Use of MC limited to study underlying assumption: independent decay of two tops (color connections and reconnections violate this assumption) arXiv:1304.7498

$$M_{\rm t} = 173.9 \pm 0.9 \,({\rm stat.})^{+1.6}_{-2.0} \,({\rm syst.}) \,{\rm GeV}$$

Another example: top mass from the b decay length

 The decay length of b hadrons from top decays is correlated to their boost, i.e. to the top mass

A promising channel: top mass from top to $B \rightarrow J/\psi + X$ decays

CMS TOP-13-007

- the three-lepton invariant mass in top with $W \rightarrow I v$ and $B \rightarrow J/$ ψ +X decays is correlated to the top mass
- J/ψ in top production recently observed

Standard vs alternative methods

Dependence of Top Mass observable on event kinematics

- How does the measured m_t relate to the fundamental m_t parameter in the SM?
 - The relation contains (non)perturbative QCD corrections, expected to depend on event kinematics
 - − Is this kinematic dependence properly modeled by MC? \rightarrow 12 kinematic variables checked
 - Good data/MC agreement rules out dramatic effects

Dependence of Top Mass on Event Kinematics

With the current precision, no mis-modelling found as function of variables related to color reconnection, ISR/FSR, b-quark kinematics.

Underlying Event in ttbar

TOP-13-002

 Studying underlying away] $K_{\text{data/sim}}^{\phi_T^>}$ event in ttbar is also very promising to 08 P11 MPI hi TEV No CR constrain generator 0.6 CMS preliminary, 19.7 fb⁻¹, √s=8 TeV [inclusive] tunes P11 without CR P11 with CR 60 transverse 120 ttbar direction iwa toward 180 <p_> K data/sim 240 300

transverse

Prospects for top mass at the LHC

top – antitop mass difference: a CPT test

 $\Delta m_{\rm t} = -272 \pm 196 \, ({\rm stat.}) \pm 122 \, ({\rm syst.}) \, {\rm MeV}$

TOP AND HIGGS: NOT ONLY THE MASS

The top areas of study

Total and differential cross sections, Test of production mechanism(QCD, EWK), tt +jets production, measure PDF Precision measurement of top mass, $\Delta M(t-tbar)$ (CPT test)

Couplings, branching ratios, charge, width, W helicity, spin correlations, charge asymmetry associated production (ttW, ttZ, ttH, tt+MET)

t, s and tW channels, EWK production properties, Vtb measurement, new physics in single top

40

The role of top in the Higgs era

ttbar is our monitoring for gluon gluon fusion !

Do we interpret the top mass correctly when we match top, W and Higgs Masses ?

The ttbar cross section

ttbar cross section at 7 and 8 TeV

- The cross section raises as foreseen
- Program of accurate measurement of the 8/7 TeV ratio (total and differential) and σ(tt)/σ(Z) for a precise test and PDF constraints

Interest for new physics: stealth stop !

Selection of ttbar in the lepton+jets and dilepton channels

- Require one (or two) isolated leptons
- Lepton reconstruction and identification efficiency measured from data (Z→ II) with tagand-probe technique.
- Background measured from data using control samples
 - looser identification to get a background dominated sample and knowledge of tight-to-loose ratio for background leptons from another control sample
- B tagging used to further reduce the background

Leptons+jets and dileptons (e, μ)

• Excellent background control thanks to jet categorization, b tagging and in situ measurement of jet-energy scale

Other channels

ttbar cross section interpretation

- Total cross section interpretation
 - as a measurement of the top mass (m_top= 176.7+3.8-3.4 GeV)
 - as a precise measurement of α_s [alphaS(mZ) = 0.1151+0.0033-0.0032 is extracted.]

Differential cross sections

- Important measurements, they will play an important role for
 - investigate limitations of present MC (which QCD predictions and models describe our data best, in the search areas like high m(tt) and high multiplicities)
 - ii) provide independent interpretations (e.g. mass AND alpha_s from cross section)
 - Iii) sensitivity to high-x gluon (y(tt))

arXiv:1211.2220

Differential distributions and MC tuning already see discrepancies with respect to NLO generators !

Ttbar and additional jets

• Study of QCD radiation pattern

ATLAS CONF-2011-142 CMS PAS TOP-12-023

A few examples of other important topics in top physics

Rare processes: tt+X

- Important to measure low cross section processes
- Example: ttW and ttZ (arXiv:1303.3239)

- Other processes tt+X
 - Very important tt+bb and ttH,
 - tt+MET , Four tops
 - tt+ γ and interpretation as top charge measurement

Higgs boson observation in various channels, what about coupling to top ?

Toward a direct measurement of the top-Higgs Yukawa coupling

- First measurements of a typical background, ttbb
- From a recent ttH search in leptonic final states

TESTING TOP DECAYS

Measurement of the ratio $R=B(t \rightarrow Wb) / B(t \rightarrow Wq)$

Measurement of the ratio $R=B(t \rightarrow Wb) / B(t \rightarrow Wq)$

A lower limit R>0.945 at 95% CL is obtained after requiring that R≤1

W helicity in top decays

The tWb vertex : W helicity in top

- The W helicity precisely predicted in the standard model: V-A^{⁻^k} structure of the decay
 - Longitudinal W polarization F0 ≈ 70%, intimately related to the ewk breaking mechanism !
 - Left polarization FL≈30%, Right pol FR ≈0

Rare processes: limits on FCNC $t \rightarrow Zq$

- FCNC searches have improved a lot with 20/fb
 - Current result from ttbar/trilepton searches: A t → Zq branching fraction greater than
 0.07 % is excluded at the 95 % confidence level.

TESTING TOP PRODUCTION PROPERTIES

A discrepancy ? ... A_{FB} in $p\overline{p}$ $\overline{qq} \rightarrow t\overline{t}$

• SM asymmetry from interference (higher order QCD ~ 7%)

CDF Run II Preliminary L = 8.7 fb⁻¹

• top / anti-top rapidity asymmetry at LHC from quark-antiquark annihilation, gluongluon fusion, dominant process, intrinsically symmetric

14 TeV gg →t
$$\overline{t}$$
 (90%), q \overline{q} →t \overline{t} (10%)

- Important at LHC to study differential asymmetries, to enhance new physics
 Sum of t and tbar rapidity to disentangle quark-antiquark and gluon-gluon fusion
 - •ttbar invariant mass sensitive to new heavy states
 - •Transverse momentum of the ttbar system sensitive to interference due to ISR

CMS PAS TOP-12-033

Charge asymmetry at LHC

Spin correlations in ttbar

Another tool to investigate the production mechanism, possible only for the top quark Investigating it now, but will become a precision tool with high statistics

Single top in t and s channel sensitive to different aspects of New Physics (tW, too !)

Single top

σ [pb]

- Recent LHC publications at 7 TeV (t-channel and tW)
- Preliminary t-chan 8 TeV
- Tackle s-channel with the full statistics
- W helicity in single top topologies
- Other studies
 - new physics interpretations
 (e.g. FCNC in production)
 - differential cross sections

Conclusions

- Top physics an important sector of electroweak-symmetry-breaking studies

 A complement to direct Higgs measurements
- After first three years of top-physics results at the LHC-top-factory, now entering a new phase
- Entering uncharted territory in terms of (statistical) precision, use statistics as a tool to reduce systematic uncertainties

