

Particles detectors: some basic principles

Introduction

Five lectures on particle detectors

- Basic concepts of particle detection
	- **n** Duccio Abbaneo
- **n** Trigger and data processing
	- **n** Andrea Bocci
- **n** Silicon detectors
	- **n** Thomas Bergauer
- **n** Gas detectors
	- **n** Archana Sharma
- **n** Calorimetry
	- Riccardo Paramatti

Five presentations on CMS upgrades

- **n** Tracker Upgrade
	- Duccio Abbaneo
- **n** Trigger Upgrade
	- **n** Andrea Bocci
- Silicon sensors R&D
	- **n** Thomas Bergauer
- Upgrade of Forward **Calorimetry**
	- Riccardo Paramatti
- **Nuon Upgrade**
	- **n** Archana Sharma

Introductory lectures

Neant for students

■ Certainly boring for senior particle physicists! • Meant to be understandable Do not hesitate to ask questions! Will not try to cover the topics in an exhaustive way... **Nould require a 1-year long course!** ... but rather to explain some of the basic concepts

that should help to understand the CMS detector and its upgrades

Outline of this lecture

Nery basic principles Implementation in CMS **Entertaining pictures from the CMS** construction ■ Some more about tracking

Particle detector for high-enery physics experiments

■ High energy collisions (e⁺e-,ep,pp...)

- n production of a multitude of particles (charged, neutral, photons)
- The 'ideal' detector should provide....
	- **n** coverage of full solid angle (no cracks, fine segmentation)
	- **n** detect, track and identify all particles (mass, charge)
	- n measurement of momentum and/or energy, fast response, no dead time
- Practical limitations (technology, space, budget)
- Particles are detected via their interaction with matter
	- **n** Many different physical principles are involved (mainly of electromagnetic nature).
- **Finally we will observe: ionization and excitation of matter**

Detector Geometries **physics interaction) not all particles are detected, some leave the detector without any trace (neutrinos), efficiency: some escape through not sensitive detector areas (holes, cracks for e.g. water cooling and gas pipes, cables, electronics, mechanics)**

efficiency and unlimited resolution (get "4-momenta" of basic

"Magnet spectrometer"

n Two main families: **(holes, cracks for e.g. water cooling and gas pipes, cables, electronics, mechanics)**

Fixed target geometry Collider geometry

Magnet concepts

- + large homogenous field inside coil
- needs iron return yoke (magnetic shortcut)
- limited size (cost)
- coil thickness (radiation lengths)

- + can cover large volume
- + air core, no iron, less material
- needs extra small solenoid for general tracking
- non-uniform field
- complex structure

What do we really observe?

Ø **We observe "stable" particles**

In practice: those that travel long enough inside the detector before disintegrating into lighter decay products

Charged particles leptons: electrons, muons hadrons: pions, K mesons, protons

Neutral hadrons: neutrons and some neutral K mesons

Photons

To be noted: (1) Neutrinos do not interact in our detectors Signature: "missing energy" – requires a very hermetic and fully efficient detector (1) For all other particles: we measure their decay products

Interactions exploited

At the high energies we are working with, the relevant interactions are:

Leptons: bremsstrahlung, ionisation (or excitation) Charged hadrons: nuclear interactions, ionisation (or excitation) Neutral hadrons: nuclear interactions

Photons: conversion to electron-positron pairs (Photo effect to detect e.g. the low-energy photons from excitation of matter)

Interaction of particles with matter Fast charged particles ionize the atoms of a gas. **Proportional Counter Proportional Counter**

Primary ionization

i i W

!E = total energy loss

Small and progressive energy loss Observable signal with minimal perturbation for a multi-GeV particle kingt en energy to interest of the interest of the control of the control of the control of the control of the perturbation for a multi-GeV particle

Gas: a few 10 eV x a few 10 e⁻ / cm Amplification (avalanche) inside the detector (e.g. gain \sim 10000) editon_{lardi} *x das: a few IO ev x a few IO e / cm*
Amplification (avalanche) inside the detector (e.g. gain ~ 10000) λ of a model of a mod G acredion (e.g.

² ()

a

0 !"

0

Gas amplification

Interaction of particles with matter Silicon Tracking Detectors

Ionisation

Small and progressive energy loss Observable signal with minimal perturbation for a multi-GeV particle **Nover value signal with infinitial performation for a matri-dev particle**

Gas: a few 10 eV x a few 10 e⁻ / cm Amplification (avalanche) inside the detector (e.g. gain \sim 10000) Amplification (avalanche) inside the detector (e.g. gain ~ 10000)

Semiconductors (not *really* ionisation): **many strips with small spacing** few eV x 100,000 e- / mm few eV x 100,000 e⁻ / mm $\overline{}$
Signal directly collected by readout electronics **1988** are desired to **decreed** by readout electronics
The meadout electrode civies the escaplisate of the track

The readout electrode gives the coordinate of the track **Now take a large Si crystal, e.g. 10 x 10 cm2 F** the track

Interaction of particles with matter

e-

γ *^Z*γ*

e-

Bremsstrahlung

Emission of photons in the electric field of a nucleus For electronics it is the dominant energy loss for $E > 500$ MeV / Z \rightarrow Dominant for electrons, but (almost) negligible for all other particles Radiation length X_0 (energy reduced to 1/e) $\propto 1/Z^2$ [cm]

(air $X_0 \approx 300$ m, carbon fiber ≈ 25 cm, Si ≈ 9.4 cm, Cu ≈ 1.4 cm, Pb ≈ 0.56 cm)

Interaction of particles with matter

Bremsstrahlung

Emission of photons in the electric field of a nucleus For electrons it is the dominant energy loss for E > 500 MeV / Z \rightarrow Dominant for electrons, but (almost) negligible for all other particles Radiation length X_0 (energy reduced to 1/e) $\propto 1/Z^2$ [cm] (air $X_0 \approx 300$ m, carbon fiber ≈ 25 cm, Si ≈ 9.4 cm, Cu ≈ 1.4 cm, Pb ≈ 0.56 cm)

Photon conversions

Creation of e+e- pairs from energetic photons in the electric field of a nucleus Process similar to bremsstrahlung. Mean free path L = $9/7 X_0$

Nuclear interactions

Mean free path for nuclear interactions λ_{I} is typically much larger than the radiation length: $\lambda_I \propto 1/A^{2/3}$ [cm] for solid materials ($X_0 \times 2$ in C, up to $X_0 \times 30$ in Pb)

e+

e-

γ

*^Z*γ*

γ *^Z*γ*

e-

e-

Un rivelatore di particelle: sfruttare le interazioni in sequenza

Ionisation in a high-granularity detector Magnetic field to measure momentum Minimize bremsstrahlung and photon conversions Minimize nuclear interactions Minimize amount of material

Stop (absorb) all hadrons and measure their energy HADRON CALORIMETER Large thickness (1-2 m) of heavy material Often a sampling calorimeter

Reconstruct tracks of charged particles: TRACKER

Bremsstrahlung and photon conversions Absorb electroncs and photons, using high-Z material sure energy: ELECTROMAGNETIC CALORIMETER Hadronic showers (can) start, but they are not contained $(\lambda_{\tau}>>\mathsf{X}_{\Omega})$ Two families: sampling and homogeneous

External detectors measuring outgoing muons MUON DETECTORS Normally very big gas detectors (ionisation)

Can be interleaved with iron slabs for B-field return (for solenoid magnets)

CMS: a direct application of the concept Cut-away view of CMS

A typical Particle Detector

Dimensions are dictated by the energy of the particles to be measured and by the precision required...

CMS and ATLAS

CMS = *Compact* Muon Solenoid

… and also by the options chosen!

Scheme of CMS

CMS subdetectors: the tracker

Finely segmented silicon sensors (pixels in the inner part, then strips).

Reconstruct the trajectories of charged particles and measure their momentum in the magnetic field

The largest silicon tracker ever built! Cylinder of 2.2 m diameter and nearly 6 m length

Pixel detector 800 modules, 66 million channels

Strips detector: 15000 modules, 10 milion strips, 220 m² active surface.

Tracker parts during construction

Electromagnetic calorimeter

Electromagnetic Calorimeter

Nearly 80000 crystals of lead tungstate (PbWO4): 64000 in barrel and 16000 in the end-caps.

Homogeneous calorimeter: crystals create electromagnetic showers and produce scintillation light

Very dense (ρ=8.3 g/cm³, X₀=0.9 cm, R_M=2.2 cm) **but transparent to the light that they produce.**

ECAL assembly

Supermodule 1700 crystals

出席界界出出

In total 36 supermodules

Hadron calorimeter

Sampling calorimeter

Layers of dense material (steel, brass) interleaved with layers of scintillating fibers

Measure energy of hadrons (protons, neutrons, pions…), not absorbed by the electromagnetic calorimeter

Superconducting magnet

20.000 Amperes in a solenoid of L = 13 m e D = 6 m, made of a duperconducting cable of niobium-titanium, working at -270°C.

The solenoid

Field of ~ 4 Tesla, i.e. 100.000 times the earth field

The curvature of the charged particle trajectories in the B field yields the measurement of the momentm (and the electric charge) 25

The solenoid

Most powerful magnet ever built, at the frontier of technology

ⁿ External vacuum tank **n** Made of three parts, assembled at CERN **n** Internal vacuum tank **Single piece, brought to CERN** with a very special transport (~120 km) Solenoid : 5 coils joined together Return yoke: ~10500 tons of iron, also main support structure of CMS and house for the muon detectors

Transport and construction

Insertion in the vacuum tank

The iron yoke

External barrel rings x 4 – 2 per side

Central barrel ring

Gas (ionisation), for muon tracking

Housed in the iron of the magnet return yoke both in the barrel and in the endcaps.

Different types of detectors, because of different particle density and different functions (tracking and "trigger")

Muon detectors

In total ~ 6000 m2 of active surface

The CMS site in 2000

Assembly of the yoke (surface)

Assembly of the coil

The insertion of the coil

February 2006: muon assembly ongoing

Prepared while CMS was assembled on the surface (and several parts in many other different labs)

Underground caverns

Lowering of CMS parts

"YB0" – the heaviest piece

The insertion of the ECAL barrel

Cables, optical fibers, cooling pipes…

Insertion of the Tracker

Tracking precision *<u>p</u>*

Some basic maths: Some basic maths:

Momentum measurement

■ σ(s) is purely geometrical: scales (roughly) as σ _x N^{-1/2} **For N equidistant measurements:** ϵ is number we are the set cooler (resembly) so ϵ error !*(x): x x s* purery geometrical. scales (roughly) as
I equidistant measurements: r oquidiolarit modouror 0.3 *BL s s p T* \$

3

(s # 3.75 cm)

$$
\frac{\sigma(p_T)}{p_T}\bigg|^{meas.} = \frac{\sigma(x) \cdot p_T}{0.3 \cdot BL^2} \sqrt{720/(N+4)}
$$

. 3

! " 720 / 720 / 720 / 720 / 720 / 720 / 720 / 720 / 720 / 720 / 720 / 720 / 720 / 720 / 720 / 720 / 720 / 720
| 120 / 720 / 720 / 720 / 720 / 720 / 720 / 720 / 720 / 720 / 720 / 720 / 720 / 720 / 720 / 720 / 720 / 720 / ()

x p

" # *^N*

! *^T* ! (for N ! "10)

meas

.

meas

T

p ^T

! " 0.5%

!!
!!

■ Gives all the fundamental scaling laws for tracking precision.... in air! . *meas* ! *p*

Contribution is a target of multiple scattering and target of the contribution of the contribution of the crossole scall Scattering An incoming particle with charge z interacts with **Multiple Scattering** An incoming particle with charge z interacts with a target of nuclear charge \sim The cross-section \sim for this e.m. process is ! Cross-section for infnite ! Multiple Scattering $\overline{}$ **Momentum measurement Momentum measurement**

An incoming particle with charge z interacts with

! Average scattering angle

Particles scatter off nuclei R Particles scatter off nu *p p p* \blacksquare \blacksquare \blacksquare a target of nuclear charge Z. The cross-section Particles scatter off 2 $\overline{}$ Rutherford formula

2

d ^e

 \overline{a}

^m ^c zZr

 $\sum_{i=1}^{n}$

 (*p e*

#

Back to momentum measurements:

MS MS

 $A \cap \mathcal{A}$

 $\mathcal{A}(\mathcal{D})$

! !0

n Multiple scattering inside the tracking volume limits the tracking precision of p !! Rutherford formula Multiple scattering inside the tracking volume limits the tracking precision α trading volume limite the trading precision <u>accuracy volume</u> in the

RMS

p

n Contribution from MS independent of p_T ! For our heavy tracker becomes Contribution from MS independer
relevant already at $p_T \sim 10$ GeV/c \mathbf{p} from MS independent of \mathbf{p}_{τ} ! For our hea *plane RMS plane space* p inendent of p ¹ For our h 2 p_C bendent of p_T ! For ou ,,,, ⁰ ² exp ² *P plane* rplane sin-4 (!/2) ² 1 *RMS plane plane space* relevent electricity of n T relevant already at $p_\tau \sim 10$ GeV/c *Plane 0.* ent of p_t m MS independent of $p_T!$ For our heavy tracker k \mathbf{a} \sim *Bloavy Blooter p p p* nt of p_T ! For our heavy dent of n_ Dmes in

"!

!(p)/p

! ! ! ! ⁰ ! ! !

meas. total error

meas. total error

RMS

2

!!

& (

⁰ ² exp ²

#

meas. total error

!(p)/p

 \mathbb{R}^n , \mathbb{R}^n

⁰ ² exp ²

independent

!%

independent

of p !

! & '

0

!

Readout electronics and trigger (introducing the next presentation [...postponed to tomorrow]) The front-end electronics samples the detectors at 40 MHz. The timing is tuned for each detector part to be in phase with

the arrival of the particles (accounting also for the time of flight from the interaction point).

At least for the most congested parts, the shaping time of the readout electronics must be shorter than 25 ns, to avoid additional pileup from earlier bunch crossing.

The readout electronics contains buffers that store the information of the detectors at each bunch crossing.

The length of these buffers determines the max time during which these data remain available, before being overwritten by new events: maximum latency available for the Level-1 trigger

Thanks for your attention!

Questions?