

7 - 12 October 2013 Tehran, Iran

School of Particles and Accelerators

Search of new resonances at the LHC

B. Clerbaux - IPM 2013 - Tehran

Barbara Clerbaux Université Libre de Bruxelles, ULB For the CMS and ATLAS experiments

11/10/2013

UNIVERSITÉ LIBRE DE BRUXELLES

Apologize for arriving late

1. Introduction

- 2. Experiment setup
- 3. Dilepton : ee, $\mu\mu$, $\tau\tau$
- 4. Di-boson resonances
- 5. Di-jet resonances
 - Inclusive di-jets
 - Di-bquark jet
 - Top-antitop resonances
- 6. Excited leptons and quarks
- 7. Conclusions and Prospect

Overview

Many studies/results → a focus on recent results

Searches covered in previous talk:

- Leptoquarks
- W' \rightarrow Iv, tb and W' \rightarrow WZ
- Vector-Like quarks: t', b'

ALL Public physics results : CMS: https://twiki.cern.ch/twiki/bin/view/CMSPublic ATLAS: https://twiki.cern.ch/twiki/bin/view/AtlasPublic

1. Introduction

Search for heavy resonances → BUMP HUNTING

Results are interpreted:

- in terms of benchmark models
- but most limits are presented in a general way and can therefore be interpreted in many models

Many BSM extensions predict heavy resonances:

- Grand uniffy Theory (GUT) : Heavy spin 1 boson Z' from broken E6, SO(10), also W'
- Extra Dimensions :
 Spin 2 Randall-Sundrum graviton G*, also KK tower of Z, W, gluon
- Technicolor narrow technihadrons
- Compositness models : excited leptons, excited quarks

Experimental challenges :

- Understand Detector effects (trigger, resolution, efficiency..)

...

- Very high pT reconstructed objects close to TeV scale! almost no control regions
- Clean signal expected, often on SM distribution tail

2. Experimental Setup

LHC Performance

 $Z \rightarrow \mu\mu$ event with 25 reconstructed (recorded by ATLAS in April 2012)

LHC – Excellent performance Available dataset for analysis : $2011 : \sqrt{s} = 7 \text{ TeV}$, about 5 fb⁻¹ $2012 : \sqrt{s} = 8 \text{ TeV}$, about 20 fb⁻¹

In 2012 : Peak lum = 7.7x10³³cm⁻²s⁻¹ Mean pile-up (PU) = 21 events Per bunch crossing

Challenges: Pile-up (PU)

CMS Average Pileup, pp, 2012, $\sqrt{s}=$ 8 TeV

3. $Z'/G \rightarrow Dilepton$

Event selection:

- Single (double) muon (electrons) trigger
- 2 Same Flavor (Opposite sign for muons) leptons
- Isolation

Main background:

B. Clerbaux · IPM 2013 · Tehran

- Drell-Yan, top-antitop, Diboson estimated from MC (using NNLO K-factors)
- QCD multijets and W+jets (in electron channel) estimated from data

Top-antitop MC cross check

electron-muon spectrum :

[CMS EXO-12-061]

[ATLAS 13-017]

Data/MC agreement over many orders of magnitude: no deviations from bg estimate

10⁻³

10⁻⁴

10⁻⁵ ∟ 0.5

ee, μμ: L dt = 20 fb

1.5

Mass limits: Typically: SM-like couplings: M(Z' SSM) > 2.9 TeV Superstring-inspired: M(Z' psi) > 2.5 TeV Graviton : M>2.5 TeV (c=0.1)

2.5

2

3.5

3 3. M_{G*} [TeV]

3.5

$Z'/G \rightarrow Di$ -tau

Tau : decaying into fully hadronic final state

Lepton universality is not necessarily a requirement In some cases : enhance coupling to third generation \rightarrow search also for the tau decay mode Leading tau P(t) > 150 GeV

Mass limits for benchmark model : SM-like couplings: M(Z' SSM) > 1.9 TeV

[ATLAS 13-066]

19.5 fb⁻¹@8TeV

4. Di-boson resonances

 Randall-Sundrum graviton (RS G*, spin2) Traditional benchmark model with ED
 Bulk RS graviton (bulk G*, spin2) G couples more to heavy particles (W,Z,t) smaller σ but larger BR to WW, ZZ

- Sequential Standard Model(W', spin1)
- Low-scale Technicolor (ρ_T , spin1) ρ_T (with M $\rho < 2^*M\pi$) can decay to $W\pi_T$ or WZ $M_\rho = M_\pi + M_W$ choice maximizes $\rho_T \rightarrow WZ$

Resonant ZZ→llqq

7.2 fb⁻¹@8TeV [ATLAS 12-150]

- Diboson mass reconstructed from the leptons and jets as the discriminating variable
- Resolved and merged selection (to be sensitive to large range of mass signal 300-2000 GeV)

- Limit are set for spin-2 bulk RS G* model on $\sigma(pp \rightarrow G*)xBR(G* \rightarrow ZZ)$

2

 Observed (expected) limit : M (G) > 850 (870) GeV.

Search for a narow spin-2 resonance

19.8 fb⁻¹@8TeV

[CMS EXO 12-022]

- Jet sub-structure techniques are exploited pt of both Z > 80 GeV
- Limits on a narrow-width bulk RS Graviton:
 RS G, with coupling k=0.5, and mass lighter
 than 710 GeV are excluded at the 95% C.L. .

B. Clerbaux - IPM 2013 - Tehran

Search for a narow spin-2 resonance

19.5 fb⁻¹@8TeV [CMS EXO 12-021]

- Jet sub-structure techniques are exploited
- Upper limits on the bulk G production cross section times BR to WW are set in the range from 70 fb to 3 fb for masses between 0.8 and 2.5 TeV

Resonant ZW \rightarrow IIIv

13 fb⁻¹@8TeV

Excluded Limits : M(W') < 1180 GeV $M(\rho_T) < 920 \text{ GeV}$ with $M(\rho_T) = M(\pi_T) + M(W)$

11/10/2013

[ATLAS 13-015]

Resonant ZW \rightarrow IIIv

11/10/2013

ZW-tagged dijet

- M decaying : qW or qZ, or WW, WZ, or ZZ where each V decays to hadronic final states
- At high M : the decay products of each vector boson may merge into a single jet -> event : dijet topology.
 - V: identified with jet substructure tagging techniques.

Process	Observed Mass Exclusion(TeV)		Expected Mass Exclusion(TeV)		
	8 TeV	7 TeV	8 TeV	7 TeV	
$q* \rightarrow qW$	[1.00, 3.23]	[1.00, 2.38]	[1.00, 3.03]	[1.00, 2.43]	
$q^* \rightarrow qZ$	[1.00, 3.00]	[1.00, 2.15]	[1.00, 2.70]	[1.00, 2.07]	
$G_{RS} \rightarrow WW$	[1.00, 1.59]	NA	[1.00, 1.49]	NA	
$G_{RS} \rightarrow ZZ$	[1.00, 1.17]	NA	[1.00, 1.13]	NA	
$W' \rightarrow WZ$	[1.00, 1.73]	NA	[1.00, 1.68]	NA	

19.8 fb⁻¹@8TeV

[CMS EXO 12-024]

B. Clerbaux - IPM 2013 - Tehran

5. Di-jet resonance searches

Di-jet inclusive searches

Search for a bump in the di-jet mass spectrum :

Main background : mutijets from QCD production Cut on delta(eta) of the 2 jets (central jets) The parametrisation used for the fit function is :

ATLAS uses Anti-kT, R = 0.6 jets

CMS starts with Anti-kT, R = 0.5 jets and close jets are combined into "wide" jets with R=1.1 Wide jet : to reduce sensibility to gluon radiation : select the 2 highest pt jets (leading jets), and add lorentz vectors of other jets to the closest leading jet.

 $\frac{\mathrm{d}\sigma}{\mathrm{d}m_{\mathrm{jj}}} = \frac{P_0(1-x)^{P_1}}{x^{P_2+P_3\ln{(x)}}}$ $x = m_{\mathrm{jj}}/\sqrt{s}$

Di-jet results : limits

Excluded limits :

ATLAS:

m(q*) < 3.84 TeV
Cross-section limits
on generic Gaussian
resonances

B. Clerbaux - IPM 2013 - Tehran

CMS:

Model	Final State	Obs. Mass Excl.	Exp. Mass Excl.
		[TeV]	[TeV]
String Resonance (S)	qg	[1.20,5.08]	[1.20,5.00]
Excited Quark (q*)	qg	[1.20,3.50]	[1.20,3.75]
E ₆ Diquark (D)	qq	[1.20,4.75]	[1.20,4.50]
Axigluon (A)/Coloron (C)	qq	[1.20, 3.60] + [3.90, 4.08]	[1.20,3.87]
Color Octet Scalar (s8)	gg	[1.20,2.79]	[1.20,2.74]
W' Boson (W')	qq	[1.20,2.29]	[1.20,2.28]
Z' Boson (Z')	qq	[1.20,1.68]	[1.20,1.87]
RS Graviton (G)	qq+gg	[1.20,1.58]	[1.20,1.43]

Highest di-wide-jet mass event M=5.15 TeV

B. Clerbaux · IPM 2013 · Tehran

Di b-quark jet resonances

Exclusion regions : SSM Z' in 1.20 < M <1.68 TeV, RS Graviton in 1.42<M<1.57 Excited b quark in 1.34<M<1.54

B. Clerbaux - IPM 2013 - Tehran

11/10/2013

23

Top-antitop resonances

BSM extensions: leptophobic top-color Z', RS KK gluons

Event selection:

- lepton+jets final state
- All hadronic final state

Boosted top :

 \rightarrow non-isolated lepton

 \rightarrow non-isolated jets:

Combine resolved (looks for individual hadronic jet from t decay) and boosted (large radius) jet

11/10/2013

[CMS B2G-12-005]

24

Top-antitop resonances

Lepton+jet final state

All hadronic final state

Excluded mass regions @ 95% CL:

ATLAS topcolor Z': width 1.2% : $M_{Z'}$ < 1.8 TeV RS KK gluon : 0.5 < M_{G} < 2.0 TeV

Top-antitop resonances

[CMS arXiv:1309.2030, subm. Phys.Rev.Lett]

Excluded mass regions @ 95% CL:

Topcolor Z', width 1.2% : $m_{Z'}$ <2.10 TeV Topcolor Z' width 10% : $m_{Z'}$ < 2.7 TeV RS KK gluon: M_G < 2.5 TeV

B. Clerbaux - IPM 2013 - Tehran

6. Excited lepton and quark searches

2.2

m_{_∗} [TeV]

2

13.0 fb⁻¹@8TeV [ATLAS NJP15(2013)093011]

 $pp \rightarrow ee * XY \rightarrow ee \gamma XY$

0.2

04

0.6

0.8

1

1.2

1.4

1.6

1.8

Fermion compositeness models :

- Describe SM fermions as bound states of moreelementary particles
- The existence of excited states would then be a direct consequence of the fermion substructure

Searches are based on a benchmark model :

 Effective Lagrangian
 &* produced via fourfermion contact
 interactions

- Upper limit is set at 95% CL on $\sigma B(\ell * \rightarrow \ell \gamma)$
- For m(l*)≥ 0.8 TeV, σ B < 0.75 fb (e*) and

σB < 0.90 fb (μ*)

- Converted to bounds on compositeness scale Λ
- In case Λ =m(l*), m(e*) and m(mu*) > 2.2 TeV.

(Photon+jet) resonance

[ATLAS arXiv:1309.3230, subm. to PLB]

20.3 fb⁻¹@8TeV

SM process

BSM diagram

- The limits on Gaussian-shaped resonances exclude 4 TeV resonances with visible cross-sections near 0.1 fb.
- Excited-quark : M>3.5 TeV
- Non-thermal quantum black hole : M>4.6 TeV

(Photon+jet) resonance

B. Clerbaux - IPM 2013 - Tehran

11/10/2013

3(

Search for pair-produced excited top : With $t^* \rightarrow t$ gluon

Final state : semileptonic decay

-> one isolated lepton, MET, at least 6 jets, one of which : b-tag

lower limit is on a t* quark mass of : M > 794 GeV at 95% CL

7. Conclusions and prospects

11/10/2013

B. Clerbaux - IPM 2013 - Tehran

		ATLAS Exotics Searches* - 95% CL Lower Limits (Status: May 2013)				
					· · · · · · · · · · · · · · · · · · ·	
Large ED (ADD) : monojet + $E_{T_{r}}$		L=4.7 fb ⁻¹ , 7 TeV [1210.449 ¹]		4.37 TeV M_D (δ =2)		
	(ADD) : monophoton + $E_{T,miss}$	L=4.6 fb ⁻¹ , 7 TeV [1209.4625]	1.93 TeV	$M_D(\delta=2)$	ATLAS	
Earge ED (ADI	J): alphoton & allepton, $m_{\gamma\gamma/\parallel}$	L=4.7 fb ⁻¹ , 7 TeV [1211.1150]		4.18 TeV M_S (HLZ δ =3, NLO)	Preliminary	
sic	OED : diprioton + $E_{T,miss}$	L=4.8 fb ⁻¹ , 7 TeV [1209.0753]	1.40 TeV CO	mpact. scale R	,	
Ue	$S'/Z_2 ED$: dilepton, m_{\parallel}	L=5.0 fb ⁻ , 7 TeV [1209.2535]		4.71 TeV $M_{KK} \sim R$		
	RS1 : dilepton, m_{\parallel}	L=20 fb'', 8 TeV [ATLAS-CONF-2013-017]	2.47	Tev Graviton mass $(k/M_{\rm Pl} = 0.1)$		
qi	RST: www resonance, $m_{T, v _{v}}$	L=4.7 fb ⁻ , 7 TeV [1208.2880]	1.23 TeV Grav	$(k/M_{Pl} = 0.1)$	$\int dt = (1 - 20) \text{ fb}^{-1}$	
DC -	buik RS . ZZ resonance, m	L=7.2 fb ⁻ , 8 TeV [ATLAS-CONF-2012-150]	850 Gev Graviton n	$mass(K/M_{Pl} = 1.0)$	$\int L dt = (1 - 20) ID$	
	(M = 2): SS dimuon M	L=4.7 fb , 7 lev [1305.2756]	2.07 Te	V 9 _{KK} mass	s = 7, 8 TeV	
	$M = 3$: leptons \pm jets Σn	L=1.3 fb , 7 lev [1111.0080]	1.25 IeV IVI _D ((s - c)	- ,	
	$_{\text{fH}}$ m_{D} = 0) : leptons + jets, $2p$	L=1.0 fb ⁻¹ , 7 TeV [1204.4646]	1.5 IEV //			
Qua	non-contact interaction $\sqrt[n]{(m_{jj})}$	L=4.7 fD , 7 lev [1210.1718]		4.11 Iev <i>M_D</i> (0=0)		
÷ ۲		L=4.8 fD , 7 lev [1210.1718]		7.6 lev 71	(constructive int.)	
U	1 : SS dilepton + jets + E	L=5.0 fb , 7 lev [1211.1150]		13.9 lev A	constructive Int.)	
	7' (SSM) : m	L=14.3 fb , 8 IeV [AILAS-CONF-2013-051]				
	$Z (33W) : m_{ee/\mu\mu}$	L=20 fb , 8 fev [ATLAS-CONF-2013-017]	2.			
Z' (loptoph	\angle (SSIVI) . $III_{\tau\tau}$	L=4.7 fD , 7 lev [1210.6604]	1.4 lev Z	7' mass		
	$W' (SSM) \cdot m^{\text{tt}}$	L=14.3 fD , 8 lev [AI LAS-CONF-2013-052]	1.8 TeV			
	W' $(\rightarrow tq q = 1)$: m	L=4.7 fb , 7 lev [1209.4446]	2.55			
	W'_{-} (\rightarrow th LBSM) m	L=4.7 ID , 7 IEV [1209.0595]	430 Gev VV IIIdSS	W' mass		
Scalar I O pa	$(\beta - 1)$; kin vars in equi evil	$L = 14.5 \text{ Hz}^{-1}$ 7 ToV [1112 4929]				
Scalar LO pa	ir $(\beta = 1)$: kin vars in uui uvii	$L = 1.0 \text{ fb}^{-1}$ 7 TeV [1112.4626]	ers cov 2 nd den 10 n			
Scalar I O n	air $(\beta - 1)$: kin vars in $\tau \tau ii$ $\tau v ii$	L = 1.0 ID, 7 TeV [1203.0172]	534 Gov 3 rd den 10 mass			
	4^{th} generation : $t^{\text{th}} > 10/b/0/b$	$L = 4.7 \text{ fb}^{-1}$ 7 TeV [1000.0020]	656 Cov t' mass	· · · · · · · · · · · · · · · · · · ·		
$\geq \overset{\circ}{\times}$ 4th generation : b'b'	\rightarrow SS dilepton + jets + E	/ -14.3 fb ⁻¹ 8 TeV [ATLAS-CONE-2013-051]				
lai	Vector-like quark : $TT \rightarrow Ht \perp X$	/ -14.3 fb ⁻¹ 8 TeV [ATLAS-CONE-2013-018]		ospin doublet)		
46	Vector-like guark : CC. m	L=4.6 fb ⁻¹ . 7 TeV [ATLAS-CONF-2012-137]	1 12 TeV VI Q r	nass (charge -1/3 coupling $\kappa_{-} =$	$v/m_{\rm c}$)	
Excited	quarks : y-jet resonance, m	L=2.1 fb ⁻¹ . 7 TeV [1112.3580]	2.46	TeV q* mass	· · · · Q/	
Excite	d quarks : dijet resonance, m_{μ}	L=13.0 fb ⁻¹ . 8 TeV [ATLAS-CONF-2012-148]		3.84 TeV g* mass		
Excited	b quark : W-t resonance, m	L=4.7 fb ⁻¹ . 7 TeV [1301.1583]	870 GeV b* mass (eft-handed coupling)		
Excite	ed leptons : I-γ resonance, m	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-146]	2.2 Te	I^* mass ($\Lambda = m(I^*)$)		
Techni-had	drons (LSTC) : dilepton, $m_{\rm ee/uu}$	L=5.0 fb ⁻¹ , 7 TeV [1209.2535]	850 GeV ρ_/ω _τ mas	$s(m(\rho_{-}/\omega_{T}) - m(\pi_{T}) = M_{})$		
Techni-hadrons (LS	ΓC) : WZ resonance (WII), $m_{\rm WZ}$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-015]	920 GeV ρ_ mass	$(m(\rho_{\tau}) = m(\pi_{\tau}) + m_{W}, m(a_{\tau}) = 1.1 m_{W}$	η(ρ_))	
Major. neutr. (L	RSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ , 7 TeV [1203.5420]	1.5 TeV N	mass $(m(W_{p}) = 2 \text{ TeV})$		
Heavy lepton N [±] (type II	I seesaw) : Z-I resonance, m ₇	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-019] ^V	N [±] mass (IV_I = 0.055, IV_I =	= 0.063, IV_I = 0)		
È Ĥ ^{±±} (DY pród., B	BR(H ^{±±} →II)=1) : SS ee (μμ), m ^{[−}	L=4.7 fb ⁻¹ , 7 TeV [1210.5070]	H ^{±±} mass (limit at 39	8 GeV for μμ)		
Color oct	et scalar : dijet resonance, m_{ii}^{\parallel}	L=4.8 fb ⁻¹ , 7 TeV [1210.1718]	1.86 TeV	Scalar resonance mass		
Multi-charged particles (DY	' prod.) : highly ionizing tracks	L=4.4 fb ⁻¹ , 7 TeV [1301.5272]	490 GeV mass (lql = 4e)			
Magnetic monopoles (DY	(prod.) : highly ionizing tracks	L=2.0 fb ⁻¹ , 7 TeV [1207.6411]	862 GeV mass			
		10 ⁻¹	1	10	10 ²	

*Only a selection of the available mass limits on new states or phenomena shown

Mass scale [TeV]

- Impressive results on BSM searches by ATLAS and CMS
- No evidence for BSM signal !
 All what we see so far: well compatible with the SM
- For some analysis : update with the full 8 TeV dataset will come soon

More to come; we are not done : RUN2

High energy – high lumi RUN2 coming in 2015-17 with 13-14 TeV will enlarge the phase space : significant step towards for small couplings and large masses

THANK YOU SO MUCH FOR THE INVITATION!

VERY WARM THANKS TO THE LOCAL ORGANISATION COMMITTEE For absolute great job! In talk session organisation, transports, constant food, excursions ...

