Search for exotica at

- Introduction
- A topical review of Exotica @ CMS
- Outlook and Conclusions

Federal Ministry of Education and Research

Physics Institute III A

I INIVERSITY

<u>Search for exotica at</u>

The Compact Muon Solenoid

Apr 26, 2013

CMS Integrated Luminosity, pp, 2012, $\sqrt{s}=$ 8 TeV

C pp (uh)

Length: ~ 21 m Height: ~ 15 m Weight: 12500 t

- ... are a key part of the CMS physics program (and substantial)
- Supersymmetry, ...
- Technicolor, ...
- Extra dimensions, ...
- Extended gauge sector, 4th gen.
- Substructure, Leptoquarks
- Dark matter
- Black holes, unparticles
- (Non-)resonant structures
- Rare decays
- Metastable, long-lived particles
- ► Signature-based ↔ model-inspired
- Already more than 100 BSM physics papers!

- ... are a key part of the CMS physics program (and substantial)
- Supersymmetry, ...
- Technicolor, ...
- Extra dimensions, ...
- Extended gauge sector, 4th gen.
- Substructure, Leptoquarks
- Dark matter
- Black holes, unparticles
- (Non-)resonant structures
- Rare decays
- Metastable, long-lived particles
- ► Signature-based ↔ model-inspired
- Already more than 100 BSM physics papers!

© W.Sauber via wikimedia commons

- ... are a key part of the CMS physics program (and substantial)
- Supersymmetry, ...
- Technicolor, ...
- Extra dimensions, ...
- Extended gauge sector, 4th gen.
- Substructure, Leptoquarks
- Dark matter
- Black holes, unparticles
- (Non-)resonant structures
- Rare decays
- Metastable, long-lived particles
- ► Signature-based ↔ model-inspired
- Already more than 100 BSM physics papers!

- ... are a key part of the CMS physics program (and substantial)
- Supersymmetry, ...
- Technicolor, ...
- Extra dimensions, ...
- Extended gauge sector, 4th gen.
- Substructure, Leptoquarks
- Dark matter
- Black holes, unparticles
- (Non-)resonant structures
- Rare decays
- Metastable, long-lived particles
- ► Signature-based ↔ model-inspired
- Already more than 100 BSM physics papers!

Summary of Exotica at CMS

Overview

Monojets

- Large extra dim., dark matter, ...
- Di-jet resonances (w, w/o b-tag)
 - Many interpretations
- 3-jet resonances (RPV SUSY)
- Di-lepton resonances
- Di-lepton large extra dimensions
- Single lepton + MET
 - W', Universal ED, CI, DM
- $W' \rightarrow tb$
- 2nd generation leptoquarks (l+jets)
- \blacktriangleright Z' \rightarrow ttbar searches
 - Semi-leptonic, all-hadronic

- Vector-like $T' \rightarrow tZ$, tH, bW
- Vector-like $B' \rightarrow tW$, bH, bZ
- Q = 5/3 top partners
- High mass di-boson resonances
 - W', extra dimensions, ...
- Microscopic black holes
- Jet extinction
 - Black holes, ...
- Displaced jets
 - Split/RPV SUSY, hidden valley, ...
- Heavy stable charged particles

Overview

Monojets

- Large extra dim., dark matter, ...
- Di-jet resonances (w, w/o b-tag)
 - Many interpretations
- 3-jet resonances (RPV SUSY)
- Di-lepton resonances
- Di-lepton large extra dimensions
- Single lepton + MET
 - W', Universal ED, CI, DM
- $W' \rightarrow tb$
- 2nd generation leptoquarks (l+jets)
- **Z'** \rightarrow ttbar searches
 - Semi-leptonic, all-hadronic

- Vector-like $T' \rightarrow tZ$, tH, bW
- Vector-like $B' \rightarrow tW$, bH, bZ
- Q = 5/3 top partners
- High mass di-boson resonances
 - W', extra dimensions, ...
- Microscopic black holes
- Jet extinction
 - Black holes, ...
- Displaced jets
 - Split/RPV SUSY, hidden valley, ...
- Heavy stable charged particles
 - : Next talk
 : Next-to-next talk

Aside: $B_s \rightarrow \mu \mu$

- Highly suppressed in standard model (FCNC)
- Very sensitive to new physics in loops
- Finally observed by CMS and LHCb
- Result compatible with SM expectation

 $\mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+}\mu^{-}\right) = (2.9 \pm 0.7) \times 10^{-9}$

Aside: $B_s \rightarrow \mu \mu$

- Highly suppressed in standard model (FCNC)
- Very sensitive to new physics in loops
- Finally observed by CMS and LHCb
- Result compatible with SM expectation

 $\mathcal{B}\left(B_{s}^{0}\!
ightarrow\!\mu^{+}\mu^{-}
ight)=(2.9\pm0.7) imes10^{-9}$

 $B_{s,d}$

BPH-13-007

Z

EXO-12-048

"Mono"-jets

- Versatile search channel for many "invisible" new particles
- Highly sensitive to extra dimensions, unparticles, dark matter, ...
- Main knobs: jet p_r, missing E_r
- Allow second jet (not back-to-back)

"Mono"-jets

"Mono"-jets

EXO-12-048

(Stable, scalar) unparticles

Large extra dimensions: Fundamental Planck scale M_D > 3... 5 TeV (up to 5.7 TeV @ NLO)

"Mono"-jets

- Pair production of dark matter characterized by a contact interaction effective theory
- Limits translated to DM-nucleon cross sections in order to compare with direct detection experiments

Many operators, validity range of effective theory, new models, ...

Di-jet searches

Di-jet mass highly sensitive to many new physics models including excited quarks and contact interactions, axigluons, W', Z', ...

Present results in a way to allow straightforward application to new models

Di-jet searches

Di-jet mass highly sensitive to many new physics models including excited quarks and contact interactions, axigluons, W', Z', ...

Model	Final State	Obs. Mass Excl.	Exp. Mass Excl.
		[TeV]	[TeV]
String Resonance (S)	qg	[1.20,5.08]	[1.20,5.00]
Excited Quark (q*)	qg	[1.20,3.50]	[1.20,3.75]
E_6 Diquark (D)	qq	[1.20,4.75]	[1.20,4.50]
Axigluon (A)/Coloron (C)	qq	[1.20, 3.60] + [3.90, 4.08]	[1.20,3.87]
Color Octet Scalar (s8)	gg	[1.20,2.79]	[1.20,2.74]
W' Boson (W')	qq	[1.20,2.29]	[1.20,2.28]
Z' Boson (Z')	qq	[1.20,1.68]	[1.20,1.87]
RS Graviton (G)	qq+gg	[1.20,1.58]	[1.20,1.43]

Present results in a way to allow straightforward application to new models

Di-jet searches (bb, bg)

Pair-produced 3-jet resonances

- Benchmark: pair-produced gluinos decaying to 3 jets in RPV SUSY
- Combine 6 highest p_r jets into 20 unique triplet combinations
- To suppress wrong combinations and QCD, only accept triplets that satisfy
- Look for bump in falling spectrum

Pair-produced 3-jet resonances

- In addition to inclusive search, apply b-tagging for enhanced sensitivity to decays with b quarks (gluino → udb, csb)
- Inclusive search: exclude RPV decaying
 - gluinos with **M < 650 GeV**
- b-tagged: exclude 200 < M < 835 GeV</p>

Di-lepton resonances

EXO-12-061

New heavy gauge bosons \rightarrow narrow ee,µµ resonances in the TeV region

 \rightarrow Upper limit on the ratio of Z' (or $G_{_{KK}}$ or ...) to SM Z production

95% CL mass limits:

Z' SSM	Z' Psi
2.96 TeV	2.60 TeV

Di-lepton resonances

EXO-12-061

New heavy gauge bosons \rightarrow narrow ee,µµ resonances in the TeV region

95% CL mass limits:

Z' SSM	Z' Psi
2.96 TeV	2.60 TeV

Large extra dimensions (ADD) in ee, μμ

- Virtual graviton production modifies Drell-Yan spectrum
- Signal region: M_u > 1.8 TeV

Arnd Meyer (RWTH Aachen)

Large extra dimensions (ADD) in ee, μμ

- UV cut-off parameter M_s, not directly comparable to fundamental Planck scale M_D
- Complementary to mono-jets and mono-photons
- Large part of interesting parameter space excluded

M _s (ADD) at LO	Lumi.	δ=3	δ=3	δ=6	δ=6	Λ _T (GRW)
95% CL limits	[fb ⁻¹]	Exp.	Obs.	Exp.	Obs.	[TeV]
CMS dimuon	20.6	4.34	4.33	3.07	3.06	3.64
CMS dielectron	19.6	4.62	4.64	3.27	3.28	3.90
Combined:	20.6+19.6	4.76	4.77	3.37	3.37	4.01

Arnd Meyer (RWTH Aachen)

Many models, e.g.:

- sequential SM with and w/o interference, no decays to WZ
- Universal extra dimensions
- Four fermion contact interactions
- In events with isolated e or μ plus MET, use binned likelihood in M_τ

$$M_{\rm T} = \sqrt{2 \cdot p_{\rm T}^{\ell} \cdot E_{\rm T}^{\rm miss} \cdot (1 - \cos \Delta \phi_{\ell,\nu})}$$

- Limits in SSM:
 - M > 3.35 TeV (no interference)
 - M > 3.10 TeV / 3.60 TeV (destr. / constr.)
- At high masses, W' mostly off-peak
- Limits on HNC CI:
 - Λ > 13.0 TeV (e) / 10.9 TeV (μ)

Model	Channel	Observed limit	Expected limit
SSM	е	$m_{W^\prime} < 3.20 TeV$	$m_{W^\prime} < 3.25 TeV$
SSM	μ	$m_{W^\prime} < 3.15 TeV$	$m_{W^\prime} < 3.10 \text{TeV}$
SSM	combined	$m_{W^\prime} < 3.35 TeV$	$m_{W^\prime} < 3.40 \text{TeV}$
SSMO	е	$m_{W^\prime} < 3.60 \mathrm{TeV}$	$m_{W^\prime} < 3.60 \text{TeV}$
SSMO	μ	$m_{W^\prime} < 3.05 TeV$	$m_{W^\prime} < 3.30 \text{TeV}$
SSMO	combined	$m_{W^\prime} < 3.60 TeV$	$m_{W^\prime} < 3.60 { m TeV}$
SSMS	е	$m_{W^\prime} < 3.00 TeV$	$m_{W^\prime} < 3.10 \text{TeV}$
SSMS	μ	$m_{W^\prime} < 2.80 TeV$	$m_{W^\prime} < 2.90 \text{TeV}$
SSMS	combined	$m_{W^\prime} < 3.10 TeV$	$m_{W^\prime} < 3.20 \text{TeV}$
W_{KK}^2	μ =0.05 TeV, combined	$m_{W^2_{KK}} < 1.7 \text{TeV}$	$m_{W^2_{KK}} < 1.7 \text{TeV}$
W^2_{KK}	μ =10.0 TeV, combined	$m_{W^2_{KK}} < 3.7 TeV$	$m_{W^2_{KK}} < 3.6 \text{TeV}$
HNC CI	е	$\Lambda < 13.0~{ m TeV}$	$\Lambda < 13.3 \text{ TeV}$
HNC CI	μ	$\Lambda < 10.9~{ m TeV}$	$\Lambda < 12.2~{ m TeV}$

EXO-13-004

- Dark matter production: W recoiling against pair-produced dark matter
- Reinterpretation of leptonic W' search
- Consider vector and axial-vector like couplings
- Possible interference effects
- First limits on "monolepton" DM

$W' \rightarrow t b$

- Searches in W' → quark final states important to complement leptonic searches, in case decays into leptons are suppressed
 - Also, can reconstruct mass (modulo ambiguities)
- Enhanced couplings to 3rd generation possible (and easier!)
- Signature is a high p_T isolated lepton, large MET, and 2 b-jets (one b-tag required)

B2G-12-010

- Exclude M(W') < 2.03 TeV at 95% CL for W_R and W_L w/o interference
- Limits for arbitrary combinations of LH or RH couplings

LQ2 (μν**+jj,** μμ**+jj)**

- Carrying both lepton and baryon numbers, coupling to lepton-quark pair
- Fractional charge, three generations
- Here: pair production of scalar LQ, coupling to one generation only
- Parameters: LQ mass, BF to lq (β)
- Optimize cuts for each hypothetical M(LQ)

 $\sqrt{s} = 8 \text{ TeV}, 19.6 \text{ fb}^{-1}$

 Z/γ + jets t t + jets

Other Background

Unc. (stat + syst)

LQ, M = 900 GeV

Data

800 1000 1200 1400 1600 1800 2000

M_{min}(µ, jet) [GeV]

- S_τ ; M(μμ), M_τ(μν) ; M(μ,jet)
- $S_{T} = \text{scalar } p_{T} \text{ sum of } \mu, \mu (\nu), j1, j2$

CMS Preliminary

400 600

200

10²

10

10⁻¹

Events/Bin

10-1

200

10³

10²

10

Events/Bin

CMS Preliminary

600

 $\sqrt{s} = 8 \text{ TeV}, 19.6 \text{ fb}^{-1}$

Data

W + jets

t t + jets

Other Background

Unc. (stat + syst)

LQ. M = 500 GeV

LQ2 (μν**+jj,** μμ**+jj)**

$\textbf{Z'} \rightarrow t \bar{t} \rightarrow \textbf{e/\mu + jets}$

- 1 lepton + MET + >=2 jets
- 0 or 1 b-tag
- **Define** χ^2 for top hypotheses
 - Separately optimized for low mass (M_{tt} <~ 1 TeV, non-boosted) and high mass (boosted) regime

B2G-12-006 B2G-13-001

Events / 100 GeV

 $M_{\rm tf} = 1.77 \, {\rm TeV/c^2}$

$Z' \rightarrow t\bar{t} \rightarrow e/\mu + jets$

B2G-12-006 B2G-13-001

- Topcolor Z' limits with 95% CL:
 - Narrow: M(Z') > 2.1 TeV
 - M(Z') > 2.7 TeV Wide:
- **Randall-Sundrum model:**
 - M(KK gluon) > 2.5 TeV

CMS, L = 19.6 fb⁻¹, √s = 8 TeV

10²

$Z' \rightarrow t\bar{t}$ all hadronic

- Boosted top- and W-tagging
- Topcolor Z' limits with 95% CL:
 - Narrow: M(Z') > 1.7 TeV
 - ♦ Wide: M(Z') > 2.35 TeV
- Randall-Sundrum model:
 - M(KK gluon) > 1.8 TeV

Combination

Vector-like T' \rightarrow tZ/tH/bW

- Combined information from single lepton, SS and OS di-lepton, tri-lepton
- Bin by W-tags, N(jets), N(b-jets), H_r, MET, lepton p_r, 3rd / 4th jet p_r
 - OS targeting tZtZ: on-Z, >=5 jets, >=2 b-jets, H_{T} > 500 GeV, S_{T} > 1000 GeV
- OS targeting bWbW: off-Z, 2-3 jets, $H_{T} > 300 \text{ GeV}$, $S_{T} > 900 \text{ GeV}$
- SS targeting tZ or tH: >=3 jets, H_{T} > 500 GeV, S_{T} > 700 GeV, lepton flavor categs.
- Tri-lepton targeting tZ or tH: >=3 jets, H_T > 500 GeV, S_T > 700 GeV, lepton flavor categories

Vector-like T' \rightarrow tZ/tH/bW

- Combine all channels to get limits
- As function of branching fractions, exclude masses between 687 and 782 GeV

B2G-12-015

Vector-like b' → tW/bH/bZ (lepton+jets) B2G-12-019

- One electron/muon, MET, >=4 jets including 1 with b-tag
- Classify events based on "V-tags" = number of jets consistent with boosted W, Z, or H boson
- Search for excess in $S_{T} = scalar sum of jet p_{T}$, lepton p_{T} , MET
 - Fit to background and signal templates in different categories

Arnd Meyer (RWTH Aachen)

Vector-like b' → tW/bH/bZ (lepton+jets) B2G-12-019

- As a function of b' → tW, bH, bZ branching fractions, exclude up to M(b') < 732 GeV</p>
- Highest sensitivity for $b' \rightarrow tW$

Vector-like b' → bZ (di-lepton + jets)

B2G-12-021

- Consider decay to bZ and tW
- **Reconstruct resonance of e**⁺e⁻ and $\mu^+\mu^-$ pairs compatible with Z, plus b-jet
- Assuming $B(b' \rightarrow bZ) = 100\%$, exclude M(b') < 700 GeV
- ... plus limits on $B(b' \rightarrow bZ)$ vs. M(b')

1000

B2G-12-012

$T_{5/3} \rightarrow t W$

- Composite Higgs or models with extra dimensions
- Same-sign di-leptons (e or μ)
- Allow for boosted top and W
- 5 or more constituents (top=3, W=2) in addition to the two leptons
- H₇ > 900 GeV \rightarrow data: 11 events; bgrd: 6.6 \pm 2.0

Exclude **M(T_{5/3}) < 770 GeV** at 95% CL

Arnd Meyer (RWTH Aachen)

High mass di-boson resonance searches

$\frac{\text{EXO-12-025}}{W'/\rho_{TC}} \longrightarrow WZ \longrightarrow 3I + MET$	lepton $\{ \longrightarrow Z \rightarrow II \}$
$\frac{\text{EXO-12-021}}{\text{G}_{\text{bulk}}} \longrightarrow \text{WW} \longrightarrow \text{I} + \text{jet} + \text{MET}$	<pre>lepton { boosted + MET { W jet</pre>
$\frac{\text{EXO-12-022}}{\text{G}_{\text{bulk}} \longrightarrow \text{ZZ} \longrightarrow 2\text{I} + 2\text{jets}}$	boosted $\{ \longrightarrow \} $ boosted $Z \rightarrow \parallel$
$\frac{\text{EXO-12-024}}{\text{G}_{\text{RS}} \longrightarrow \text{WW/ZZ}, \text{W'} \longrightarrow \text{WZ}}$	boosted { boosted { W/Z } boosted { W/Z

W' /
$$\rho_{TC} \rightarrow WZ \rightarrow 3l + MET$$

- Use M_{wz} (taking MET into account) and $\Sigma p_{\tau}(l)$
- Modified ID and isolation for muons (from boosted Z)
- W' → WZ excluded for 0.17 < M < 1.45 TeV</p>

WW / ZZ / WZ in di-jets

- $G_{_{RS}} \rightarrow WW$, WZ and W' \rightarrow WZ in di-jets, with W and Z \rightarrow jj
- Jets from W/Z decays boosted and merged into single jets
- Each jet required to pass "W/Z-tagger": pruned jet mass, N-subjettiness
- Exclude
- G_{RS} (k/M_{PL}=0.1) \rightarrow WW(ZZ)for 1.0 < M < 1.59 (1.17) TeV
- ♦ W' → WZ

 $q^* \rightarrow qW (qZ)$

for 1.0 < M < 1.73 TeV for 1.0 < M < 3.23 (3.00) TeV

Observed

Expected

±1σ Expected ±2σ Expected - G_{RS}→ WW

CMS Preliminary, 19.8 fb⁻¹, vs = 8TeV

CMS

EXO-12-024

 $\sigma \times BR(X \rightarrow WW)$ (pb)

10

10⁻²

Black holes

"Helden" (Heroes) last week on German television (RTL)

Microscopic black holes

- Would decay to multiple objects: jets, leptons, photons, ...
- Distribution of interest: scalar p_{\perp} sum = S_{\perp}
- For backgrounds, extrapolate shape from low (N=2, 1.8 < S₇ < 2.8 TeV) to high multiplicity
 - Normalization from low S_{T} , 1.9 < S_{T} < 2.3 TeV

October 11, 2013

© Sabine Hossenfelder a

Microscopic black holes

EXO-12-009

Derive model-dependent limits, as well as limits on excess S_T for different object multiplicities

13 jets, $S_{T} = 4.5 \text{ TeV}$

Arnd Meyer (RWTH Aachen)

Jet extinction

- Even if black holes (or similar phenomena) are produced, we may miss them (trigger, no decay to our "objects", not yet significant, …)
- However, above production threshold, SM processes are highly suppressed
 - Good place to check are inclusive jets
 - PDF and jet energy scale uncertainty are important

Limit on the extinction energy scale (fundamental Planck scale) M > 3.3 TeV

Displaced jets

- Massive long-lived particles decaying to displaced jets can occur in many models: split SUSY, RPV SUSY, hidden valley models etc.
- Benchmark here is a heavy scalar: $gg \rightarrow H^0 \rightarrow X^0X^0 \rightarrow qq qq$
 - Mean decay length of X⁰: 3... 300cm
- Search for di-jets from a common, displaced vertex
- Background suppression based on vertex track multiplicity, fraction of tracks with positive d0, likelihood discriminant

2 candidate events, compatible with background expectation

Displaced jets

- Massive long-lived particles decaying to displaced jets can occur in many models: split SUSY, RPV SUSY, hidden valley models etc.
- Benchmark here is a heavy scalar: $gg \rightarrow H^0 \rightarrow X^0X^0 \rightarrow qq qq$
 - Mean decay length of X⁰: 3... 300cm
- Search for di-jets from a common, displaced vertex
- Background suppression based on vertex track multiplicity, fraction of tracks with positive d0, likelihood discriminant

Heavy stable charged particles

- Comprehensive analysis using time-of-flight (muon system) and/or dE/dx (tracker)
- Lifetime > 1 ns, mass > 100 GeV
- Make use of
- ◆ Track p₁: inner tracker
- Muon $1/\beta$: muon system
- Track I_{as}:

dE/dx MIP incompatibility

Heavy stable charged particles

Results for long-lived gluinos, scalar top quarks, scalar tau leptons, fractionally/multiply charged leptons

Mass limits up to > 1300 GeV (gluinos)

 $\sqrt{s} = 7 \text{ TeV}, L = 5.0 \text{ fb}^{-1} \sqrt{s} = 8 \text{ TeV}, L = 18.8 \text{ fb}^{-1}$ CMS (1800 (²/2) 1600 (²/2) 1400 CMS Vs = 8 TeV, L = 18.8 fb CMS √s = 7 TeV, L = 5.0 fb⁻¹ (2012) CMS √s = 7 TeV, L = 5.0 fb⁻¹ (2011) 400 ATLAS vs = 7 TeV, L = 4.7 fb -7 1200 1200 ss 1000 m ATLAS (s = 7 TeV, L = 37 pb⁻¹ **CL** lower 800 600 400 95% 200 ſ stau stop stop gluino gluino gluino gluino stau direct+ direct ch. (f=0.1) (f=0.1) (f=0.5) (f=1.0) prod. indirect suppr. ch. prod. suppr. CMS vs = 7 TeV. L = 5.0 fb⁻¹ vs = 8 TeV. L = 18.8 fb⁻¹ (1800) $(C_z)^{-2}$ $(C_z)^{$ CMS √s = 7 TeV, L = 5.0 fb⁻¹ √s = 8 TeV, L = 18.8 fb⁻¹ CMS √s = 7 TeV, L = 5.0 fb⁻¹ (2012) 0 CMS √s = 7 TeV, L = 5.0 fb⁻¹ (2011) 400 - **ATLAS** √s = 7 TeV, L = 4.4 fb⁻¹ .== .== 1200 sel 1000 95% CL lower 800 600 400 200

2

EXO-12-026

8

Charge (e)

6

Δ

Outlook

- Run 2 from 2015 to 2017: \sqrt{s} = 13 14 TeV, $\int L dt \sim 40 45 \text{ fb}^{-1}/a$
- Longterm HL-LHC from ~2023, ∫L dt ~ 300 fb⁻¹/a, 3000 fb⁻¹ total, ~ 140 PU
- Example: vector-like T' → tZ, tH, bW (as B2G-12-015)

ECFA workshop last week: https://indico.cern.ch/conferenceDisplay.py?confId=252045

New physics may still be hiding in the data already collected

Conclusions

- Important guidance from the "new boson"
- Unfortunately no compelling evidence for new physics

No stone left unturned in BSM searches at the LHC and CMS

While there's an overwhelming output of results, many signatures

- But many results exploring new territory
- Many publications with full 2012 data set close to publication
- Preparing for next run in 2015

are not yet fully exploited

This and more at

https://twiki.cern.ch/twiki/bin/view/CMSPublic/ PhysicsResultsEXO and PhysicsResultsB2G

Backup

Summary

